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Abstract   
Background: In the past decade, fatigue has been regarded as one of the main 

fac‐ tors impairing task performance and increasing behavioral lapses during 

driving, even leading to fatal car crashes. Although previous studies have explored 

the impact of acute fatigue through electroencephalography (EEG) signals, it is still 

unclear how different fatigue levels affect brain–behavior relationships.  
Methods: A longitudinal study was performed to investigate the brain dynamics and 

behavioral changes in individuals under different fatigue levels by a sustained atten‐ 

tion task. This study used questionnaires in combination with actigraphy, a noninva‐ 

sive means of monitoring human physiological activity cycles, to conduct longitudinal 

assessment and tracking of the objective and subjective fatigue levels of recruited 

participants. In this study, degrees of effectiveness score (fatigue rating) are divided 

into three levels (normal, reduced, and high risk) by the SAFTE fatigue model.  
Results: Results showed that those objective and subjective indicators were nega‐ 

tively correlated to behavioral performance. In addition, increased response times 

were accompanied by increased alpha and theta power in most brain regions, es‐ 

pecially the posterior regions. In particular, the theta and alpha power dramatically 

increased in the high‐fatigue (high‐risk) group. Additionally, the alpha power of the 

occipital regions showed an inverted U‐shaped change.  
Conclusion: Our results help to explain the inconsistent findings among existing stud‐ 

ies, which considered the effects of only acute fatigue on driving performance while 

ignoring different levels of resident fatigue, and potentially lead to practical and pre‐ cise 

biomathematical models to better predict the performance of human operators. 
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1 | INTRODUCTION 

 
Fatigue behind the wheel is assumed to be a crucial factor in the 

failure of drivers to avoid automobile crashes, which can 

 
 
 
 
lead to accidents, injuries, and fatalities (Fairclough & Graham, 

1999; Hanowski, Wierwille, & Dingus, 2003; Sexton, Thomas, 

& Helmreich, 2000). Especially during long‐term, monotonous, or 

nighttime driving, (acute) fatigue (or drowsiness) frequently
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occurs, reducing drivers' performance. Hence, a comprehensive 

understanding of drowsy driving is an urgent necessity to enable 

researchers to develop drowsiness countermeasures for real‐life 

applications. Many imaging biomarkers relevant to drowsiness, such 

as eye closure, eye blinking (Caffier, Erdmann, & Ullsperger, 2003), 

and head nodding (Ji, Zhu, & Lan, 2004), have been used to monitor 

the cognitive state of drivers. However, false alarms are likely to 

occur, since these facial attributes are not always accom‐ panied by 

drowsiness (Horne & Reyner, 1999). 
 

In the past few decades, several studies have reported that 

drowsiness‐related behavioral lapses are accompanied by spectral 

changes in electroencephalograms (EEGs; Davidson, Jones, & 

Peiris, 2007; Huang et al., 2016; Kecklund & Akerstedt, 1993; Lin et 

al., 2010; Makeig & Inlow, 1993; Makeig & Jung, 1995; Peiris, 

Jones, Davidson, & Bones, 2006). Thus, many EEG‐based 

drowsiness moni‐ toring and detection technologies have recently 

been developed for driving applications (Huang et al., 2016; Lin, 

Huang, Chuang, Ko, & Jung, 2013; Wang et al., 2014). The previous 

literatures have shown that brain oscillations in the alpha (8–12 Hz) 

and theta (4–7 Hz) bands are associated with driving lapses or with 

fluctuations in task perfor‐ mance under drowsiness (Huang et al., 

2016; Huang, Jung, Chuang, Ko, & Lin, 2012; Jung, Makeig, 

Stensmo, & Sejnowski, 1997; Lin et al., 2010; Lin, Nascimben, King, 

& Wang, 2018). Another researcher re‐ ported significant increases 

only in theta power, frequency of theta bursts, and length of EEG 

theta activity episodes between alert and poor/drowsy performance, 

during prolonged driving, or with pro‐ gressive deterioration of 

drivers' vigilance levels (Seen, Tamrin, & Meng, 2010). 
 

Additionally, analyzing the ratio of theta power to alpha power 

suggests that alpha activity gradually decreases and is replaced by 

increasing theta activity during microsleep episodes (Boyle, Tippin, 

Paul, & Rizzo, 2008; Daniel, 1967). However, alpha, (theta + 

alpha)/beta, and alpha/beta power were observed to trend upward 

as driving error increased (Campagne, Pebayle, & Muzet, 2004; 

Taniguchi & Takaoka, 2001) or as fatigue gradually occurred (Eoh, 

Chung, & Kim, 2005; Jap, Lal, Fischer, & Bekiaris, 2009; Lal & 

Craig, 2001; Schier, 2000; Simon et al., 2011). Furthermore, sev‐ 

eral studies (Glass & Riding, 1999; Ota, Toyoshima, & Yamauchi, 

1996) have noted that alpha power follows a biphasic trend (an 

inverted U‐shaped curve) as behavioral performance (or arousal 

level) decreases in some situations. As mentioned above, EEG re‐ 

sults, especially in the alpha band, varied across studies. One pur‐ 

pose of the present study is to find the crucial factor that results in 

these inconsistent findings. 
 

Most previous studies were conducted within well‐controlled 

settings. For example, each participant was instructed to maintain 

an alcohol‐ and caffeine‐restricted diet for 1 day before each ex‐ 

periment and required to complete a questionnaire about his or her 

sleeping habits; all participants had normal work and rest schedules, 

got enough sleep, and had not stayed up late at any time in a period 

of several days before the experiment. However, in the real world, 

individual daily physiological states are likely to be less uniform. 

There is still no subjective measurement for long‐term tracking of

 

 

participants' fatigue state on a daily basis. Hence, it remains unclear 

how to incorporate changing fatigue levels into a brain–behavior 

model for real‐world applications. 
 

There is literature showing that varying levels of fatigue in 

humans can induce homeostatic changes in the brain (Shenoy, 

Krauledat, Blankertz, Rao, & Muller, 2006). Therefore, we hypoth‐ 

esize that varying levels of fatigue may confound the observed rela‐ 

tionship between brain dynamics and behavioral performance, thus 

affecting drowsiness detection mechanisms. In this study, we aim to 

investigate the effect of different fatigue levels on the brain–be‐ 

havior relationship in driving. A longitudinal study was performed 

using an integrated daily sampling system (DSS) to track the fatigue 

states of multiple participants; the data were acquired from subjec‐ 

tive reports (questionnaires), such as the Karolinska Sleepiness 

Scale (KSS) and the Fatigue Visual Analog Scale (FVAS), and from 

actig‐ raphy conducted daily over a 20‐week period. Actigraphy, 

which is integrated into the DSS alongside the questionnaires, can 

continu‐ ously monitor the rest/activity cycles of the subject to 

assess fatigue levels, which is expressed by an effectiveness score. 

According to the effectiveness scores from actigraphy, fatigue states 

were di‐ vided into three different levels (high, reduced, and normal 

risks). All participants were scheduled to conduct the sustained 

attention task on three occasions at each of three levels of fatigue in 

order to explore the effect of different fatigue levels on simulated 

driving performance and corresponding informative EEG features. 

Finally, we established brain–behavior models (i.e., the relationship 

between EEG dynamics and task performance) that take into 

account differ‐ ent levels of fatigue for drowsy driving applications. 
 

 
2 | MATERIALS AND METHODS 

 

2.1 | Subjects 
 

Seventeen healthy subjects (13 males and four females) aged 22.4 

± 1.5 years were recruited to participate in this study. All sub‐ jects 

were right‐handed, had normal or corrected‐to‐normal vision, and 

were not taking any medications known to affect cognitive function. 

None of the subjects had a history of central or periph‐ eral 

neurological impairments, brain injury, alcohol abuse, diabetes, or 

drug addiction. The Institutional Review Board of National Chiao 

Tung University, Taiwan, approved the study. All subjects were first 

given an orientation session describing the procedures for the ex‐ 

periment and their responsibilities during the long‐term study, and 

they were informed about the experimental materials, features, and 

processes and required to read and sign a consent form before the 

experiments. 

 

2.2 | Experimental equipment 

 

2.2.1 | Actigraphy monitoring device 
 

A Fatigue Science Readiband actigraph (Fatigue Science) was is‐ 

sued to each participant during the study. The Readiband is a
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wrist‐worn actigraphy device that objectively and automatically 

characterizes sleep timing, duration, and quality, as well as an es‐ 

timated percentage effectiveness score based on the patented 

Sleep, Activity, Fatigue, & Task Effectiveness (SAFTE) model 

(Kaida et al., 2006). The SAFTE model has been validated in 

independ‐ ent laboratory studies and operational human factors 

investiga‐ tions (Hursh et al., 2004; Van Dongen, Baynard, Maislin, 

& Dinges, 2004). Effectiveness scores describe how cognitive 

effectiveness, reaction time, and fatigue risk are affected by sleep 

quality, sleep quantity, and sleep/wake timing. The model uses 

sleep data to cal‐ culate an effectiveness score. 
 

The SAFTE model mathematically simulates the main physi‐ 

ological processes that determine the level of fatigue (i.e., defi‐ 

ciency in performance effectiveness) at any given point in time. It 

contains a circadian process that represents the way in which the 

body clock influences both performance and circadian regula‐ tion, 

as well as a sleep‐reservoir process that represents the way in 

which recovery sleep is affected by bedtime, wake time, sleep 

quality, sleep quantity, sleep debt, the circadian timing of sleep, and 

any type of sleep fragmentation (waking up during the night). The 

SAFTE model provides real‐time effectiveness scores and de‐ 

termines when fatigue levels will reach a point where safety and 

performance are at risk. 

 

2.2.2 | Self‐reporting questionnaires 
 

Self‐reporting questionnaires, including the Karolinska Sleepiness Scale 

(KSS) and the Fatigue Visual Analog Scale (FVAS), were imple‐ mented 

to enable subjects to record their psychometric responses to fatigue, 

sleep, and stress. The KSS has been used extensively to measure 

subjective sleepiness and was originally validated with am‐ bulatory 

EEG (Akerstedt & Gillberg, 1990; Kecklund & Akerstedt, 1993). The KSS 

was administered to participants on a daily basis to record subjective 

sleepiness. Participants indicate which level best reflected the 

psychophysical state they had experienced in the last 10 min. The KSS 

is a ten‐point scale (1 = extremely alert; 3 = alert; 5 = neither alert nor 

sleepy; 7 = sleepy but no difficulty remaining awake; and 9 = very sleepy, 

great effort to keep awake, fighting sleep; Akerstedt & Gillberg, 1990). 
 

The FVAS has proven to be a simple yet effective tool (Lee, Hicks, 
 
& Ninomurcia, 1991). It is a sliding scale from “not at all fatigued” to 

“extremely fatigued.” For this experiment, the participant responded 

by placing a cursor on a line, and the device translated the location 

of the cursor to a number from 0 to 100. 

 

2.2.3 | Virtual reality scene 
 

Virtual reality (VR)‐based monotonous highway driving experiments 

were performed in a driving simulator that mimicked realistic driv‐ 

ing situations in a dark, sound‐reduced room. The VR scenes simu‐ 

lated driving at a constant speed (100 km/hr) on a four‐lane divided 

highway, with the car randomly drifting away from the center of the 

cruising lane to the left or right side with equal probability to

 

 

simulate driving on nonideal road surfaces or with poor alignment. 

The road was straight and uniform. Moreover, there was no traffic or 

other stimuli appeared in the VR scene, simulating a driving situation 

that is likely to induce drowsiness. The scenes were updated at 60 

frames per second. 

 

2.2.4 | EEG acquirement 
 

During the experiment, EEG activity was recorded by the SynAmps 

system (Compumedics Ltd.) using a 64‐channel scalp electrode array 

(Ag/AgCl electrodes) with a unipolar reference at the mastoid. The EEG 

electrodes were placed according to a modified international 10–20 

system. Contact impedance between EEG electrodes and the cortex was 

calibrated to <10 kΩ. The EEG data were recorded with a 32‐bit 

quantization level at a sampling rate of 1,000 Hz and pre‐ processed 

with a 50‐Hz low‐pass filter and a 0.5‐Hz high‐pass filter. 

 

2.3 | Experimental paradigm 
 

Each participant was provided a wrist‐worn actigraph and trained in its 

use and how to operate the system and log daily data. Beginning at the 

orientation session, the participants were required to wear the Readiband 

continuously during the entire study period (i.e., 20 weeks) in order to 

objectively and automatically monitor their daily sleep patterns, 

rest‐activity cycle, and fatigue. Within an hour after awakening each 

morning, subjects were instructed to complete the self‐reporting 

questionnaires, including the subjective measures of fatigue/sleepiness 

and stress. Additionally, the effectiveness score (ES, 0%–100%) 

displayed on the Readiband was registered manually. The ES, an 

actigraph‐based sleep/wake score, was estimated by a biomathematical 

model of alertness (Hursh et al., 2004) built into the Readiband. In this 

study, we defined the normal group as having a daily effectiveness score 

near the MEAN + standard deviation (SD; The MEAN and SD were 

calculated over approximately 1 month). Subjects with effectiveness 

scores lower than the MEAN−SD were considered the high‐risk group. 

Those with effectiveness scores lying between the normal and high‐risk 

ranges were categorized as the reduced group. Participants were asked 

to wear the actigraph con‐ tinuously for the duration of the study. 
 

The data from the Readiband were automatically uploaded to a 

server which was maintained by the researchers in this laboratory. 

All the participants received notifications (by text message) to re‐ 

port for experimental trials within 12 hr if their conditions fit the 

experimental requirements. If it was not possible for a given par‐ 

ticipant to come in for testing within that period, or if there was a 

scheduling conflict in the laboratory, he or she was re‐evaluated the 

following day to determine whether he or she was still classified in 

the same readiness category after another night. If not, monitoring 

continued until an appropriate or high‐risk, reduced, or normal state 

was reached again. 
 

Because we wished to conduct the experimental sessions with 

participants under well‐rested, sleep‐deprived, and sleep‐re‐ 

stricted states as they naturally occur in the real world, we could



4 of 12  |     HUANG et al. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FI G U R E 1   Experimental session paradigm. (a) The timeline of the experimental session. The KSS score, FVAS score, and ES were 

recorded at three time points. One point was in the morning, and the other two points were immediately before and after the experiment. Note 

that the experiment was conducted within 12 hr (usually within 8 hr) after the subject was notified by text message. (b) Event‐related 

lane‐keeping tasks. The solid black arrows represent the driving trajectory. The empty circle represents deviation onset. The double circle 

represents response onset. The circle with a cross represents the end of the response. The driver's RT is the time interval from deviation 

onset (empty circle) to response onset (double circle). The end of the response (circle with a cross) means that the driver has steered the car 

back into the original lane. The next deviation begins at 8–12 s after the end of the previous response (adapted from Huang, Jung, & Makeig, 

2007) 

 

not predetermine or counterbalance the times when participants experiment. In this session, the participants conducted the sus‐ 
 
were scheduled for testing because we could not control when they tained attention task experiment (Figure 1b). The program simu‐ 
 
would experience those states. To accommodate this limitation in‐ lated driving a car at a certain speed (100 km/hr) on the highway 
 
herent in observational research, we tested each participant in 2‐ at night, and the car automatically drifted away from the cruising 
 
week windows in whatever state he or she happens to be in for the lane to the left or right side with equal probability; participants were 
 
first three experimental sessions, and for the remainder of the ex‐ instructed to steer the vehicle back to the cruising lane as fast as 
 
perimental sessions, they were scheduled when their sleep patterns possible after becoming aware of the deviation. If the participants 
 
and subjective states were in the states yet to be tested. did not respond to the lane‐perturbation event, for example, if they 
 

Figure 1a shows the time sequence of the experiment ses‐ fell asleep, the vehicle could hit the left or right curb within 2.5 and 
 
sion, from the morning measurement of fatigue to the end of the 1.5 s, respectively.
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FI G U R E 2   The estimating regression 

between subjective questionnaire scores 

(KSS & FVAS) and objective fatigue 

measurement (ES) at three time points in 

the day (morning, before the experiment, 

and after the experiment). The value on 

the X‐axis is the ES, and the values on 

the Y‐axis are the KSS and FVAS 

scores. ** p‐value <.01 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The vehicle would then continue to move along the curb until it 

returned to the original lane. Each lane‐departure event was defined 

as a “trial” that included three critical moments: “Deviation onset” is 

the moment when the car starts to drift away, “response onset” rep‐ 

resents the moment when the participant perceives the drift and be‐ 

gins to steer the car back to the cruising lane, and “response offset” 

is the moment when the car returns to the center of the cruising lane 

and the participant ceases to rotate the steering wheel. The next 

lane‐departure event occurred 8–12 s after the “response offset.” 

Reaction time was defined as the interval between deviation onset 

and response onset in a trial. In the interest of creating driving con‐ 

ditions likely to induce fatigue, there were no other vehicles or stim‐ 

uli that might disturb the driver's attention. Participants' cognitive 

states and driving performance were monitored via a surveillance 

video camera and the vehicle trajectory throughout the experiment. 

 

2.4 | Data analysis 
 

The recorded 62‐channel EEG signals were first inspected to remove 

bad EEG channels and then down‐sampled to 250 Hz. To observe the 

fluctuation in EEG signals at specific events, we extracted the continuous 

62‐channel EEG signals into 9‐s epochs, time locked to 2 s before and 7 

s after each deviation onset. The epochs contami‐ nated by noise 

signals (muscle activity, blinking, eye movement, or

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

environmental noise) were eliminated manually to minimize their in‐ 

fluence on subsequent analysis.   
Independent component analysis (ICA; Bell & Sejnowski, 1995, 

Makeig, Bell, Jung, & Sejnowski, 1996) was applied to decompose EEG 

signals into temporally independent time courses correspond‐ ing to 

brain and nonbrain sources using EEGLAB (Delorme & Makeig, 2004). 

The 62‐channel EEG signals were separated into 62 indepen‐ dent 

components, based on the assumption that EEG signals at the sensors 

were linear mixtures of activation of distinct brain and non‐ brain sources 

whose time courses were statistically independent. 
 

To identify comparable independent components across sub‐ jects, 

we grouped components from multiple subjects into compo‐ nent 

clusters based on their scalp maps, equivalent dipole locations, and 

baseline power spectra of component activations (Delorme & Makeig, 

2004; Jung et al., 2001). The time courses of activation for the 

components of interest were selected and transferred into the frequency 

domain by the fast Fourier transform (FFT). The dynamic changes, 

defined as tonic changes in the EEG signals, were measured from the 

cruising period before the deviation onset in each epoch. 
 

The average power spectra were then obtained by averaging 

across time points to obtain a mean baseline. For each channel in 

each session, the tonic power spectra of all epochs (trials) were 

sorted by their RTs and then normalized by subtracting the mean 

power spectra of the “alert trials” with the shortest RTs (lowest 10%
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of all RT‐sorted trials). Finally, to identify the trend of tonic power 

spectra in different levels of fatigue, we sorted all trials (epochs) by 

reaction time for each level of fatigue.  

 

2.5 | Statistical analysis with 

hierarchical linear modeling 
 
In this study, longitudinal daily data (103–151 days) and experimental 

session data (6–9 experiments) were collected from 17 subjects over the 

course of a semester. We used these data to find the association 

between subjective questionnaires and objective sleep measure‐ ments. 

Such diary and session data recorded over prolonged peri‐ ods, nested 

within participants and experimental test sessions, are naturally 

multilevel data. Therefore, a multilevel modeling approach was needed. 

Using multilevel random coefficient modeling (Nezlek, 2001; Woltman, 

Feldstain, MacKay, & Rocchi, 2012), we applied level 1 analyses to 

model the within‐subject variability of the data recorded repeatedly over 

extended time periods and level 2 analy‐ ses to model variability across 

subjects over time. 
 

This approach has been used to illustrate the daily relationship 

between mood and sleep across 2 weeks (Mccrae et al., 2008). 

Multilevel analysis was conducted using mixed models in SPSS

 

 

FI G U R E 3   Comparison of averaged 

values of subjective questionnaire (KSS  
& FVAS) scores among three different 

fatigue level groups (high‐risk, reduced, 

and normal groups) at three time points in 

the day (morning, before the experiment, 

and after the experiment). Standard 

deviations are also shown. *p‐value <.05, 

**p‐value <.01 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

software to distinguish between‐ and within‐individual sources. 

Specifications for the multilevel models were selected following 

Peugh and Enders (2005) to determine the best‐fitting model for the 

variables in this study. 
 

There are two levels in the random coefficient regression model. The 

level 1 model refers to the within‐person or individual change model 

(i.e., repeated measurements over time) and describes the longitudinal 

changes in each individual (i.e., the variation within the individual over 

time). The level 2 model estimates the average within‐ person initial 

status and rate of change over a predictor variable. 

 

3 | RESULTS 

 

3.1 | Relationship among objective and 

subjective measures of fatigue 
 
Figure 2 shows the relations between objective sleep information 

measurement (X‐axis) and subjective questionnaires (Y‐axis; gray 

lines, individual regression; black lines, group mean) during different 

sessions. In each row of the figure, one graph shows the objective 

measurement (ES) and a subjective questionnaire (KSS or FVAS) in 

the morning on the day of the sustained attention task, another one
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(PreKSS or PreFVAS vs. ES) shows the values immediately before 

the sustained attention task, and the third reflects the measure‐ 

ments immediately after the sustained attention task (PostKSS or 

PostFVAS vs. ES). The whole dataset was collected from 17 

subjects over the course of a semester (20 weeks) in this study. The 

coef‐ ficients γ10 and γ00 from the univariate mixed model 

regression used to predict the ES after experiment preparation 

represent the slope and intercept, respectively. The coefficient γ10 is 

the overall mean slope across subjects and sessions, and γ00 is the 

overall (grand) mean intercept across subjects and sessions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FI G U R E 4   Comparison of normalized RTs of trials of lane‐keeping 

task among three different fatigue groups (high‐risk, reduced, and 

normal groups). Standard deviations are also shown. The significantly 

longest RTs were in the high‐risk group. *p‐value <.05 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FI G U R E 5   The trends of averaged 

component power spectra in the delta, 

theta, alpha, and beta bands from the 

frontal components among three different 

fatigue groups (high‐risk, reduced, and 

normal groups) with increasing normalized 

RTs. Note that the EEG power shown in 

this figure was calculated from the EEG 

data recorded in the 3 s prior to the onset 

of lane deviation

 

 

The subfigures in the left column of Figure 2 show the signifi‐ 

cant linear decreases in KSS (γ10 = −0.07, standard error [SE] = 

0.01, p < .01; γ00 = 11.70, SE = 0.86, p < .01; in Figure 2a), PreKSS  

(γ10 = −0.08, SE = 0.017, p < .01; γ00 = 12.97, SE = 1.398, p < .01; in 

Figure 2c), and PostKSS (γ10 = −0.09, SE = 0.022, p < .01; γ00 = 13.23,  
SE = 1.515, p < .01; in Figure 2e). The subfigures in the right column of 

Figure 2 show the significant linear decreases in FVAS (γ10 = −0.8, SE = 

0.125, p < .01; γ00 = 115.97, SE = 10.477, p < .01; in Figure 2b), 

PreFVAS (γ10 = −0.83, SE = 0.136, p < .01; γ00 = 129.67, SE = 11.699, 

p < .01; in Figure 2d), and PostFVAS (γ10 = −0.91, SE = 0.166, p < .01; 
 

γ 00 = 134.61, SE = 14.184, p < .01; in Figure 2f). These results 

show a clear correlation between subjective measurements (KSS 

and FVAS) and objective measurements (ES). 

In Figure 3, the three fatigue groups including the high‐risk (red 

bars), reduced (yellow bars), and normal (blue bars) groups are 

com‐ pared in terms of KSS, FVAS, PreKSS, PreFVAS, PostKSS, 

and PostFVAS. Except the values of PreFVAS between high‐risk 

and re‐ duced groups, the significant differences among all three 

fatigue groups can be explored as shown in Figure 3 (p < .05). It is 

worth to note that the significances between high‐risk and normal 

groups are always small (p < .01). The results show that the 

subjective question‐ naire (KSS & FVAS) scores are significantly 

different across the three different fatigue levels. 

 

3.2 | Comparison of task performance 

between different levels of fatigue 
 
The comparisons of normalized reaction time among three fatigue 

groups are shown in Figure 4 (vertical axis, normalized reaction time; 

horizontal axis, red, high‐risk group; yellow, reduced group; blue, normal 

group). The reaction times were normalized by dividing the 
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mean shortest reaction times (lowest 10% of all reaction times) of 

alert trials of the respective experiment. A significant difference in 

normalized reaction time was found between the high‐risk group 

and the normal group (SE = 0.105, p‐value = .014, using the 

Bonferroni adjustment for multiple pairwise comparisons in 

hierarchical linear modeling). The mean normalized reaction time 

significantly differed between the reduced group and the normal 

group, with SE = 0.078, p‐value = .015. Nevertheless, there was no 

significant difference in the mean normalized reaction time between 

the reduced group and the high‐risk group. Regarding the 

behavioral performance results, the normalized RTs increased with 

increasing fatigue levels (normal, reduced, and high‐risk).  

 

3.3 | Brain–behavior relationships across 

different levels of fatigue 
 

Figures 5 and 6 show the comparison of frontal and occipital trends 

among the three different fatigue groups, respectively. Figures 5a–d 

and 6a–d show the relation between prestimulus EEG log power in 

the delta, theta, alpha, and beta bands and normalized reaction time 

(Y‐axis, power in dB; X‐axis, RT‐sorted index and the correspond‐ 

ing normalized reaction time; Color: red, high‐risk state; yellow, in‐ 

termediate state; blue, normal state). EEG data were collected from 

17 subjects in 143 half‐hour sessions, and both measures (EEG log 

power and normalized reaction times) were smoothed using a win‐ 

dow of 10% of trials. 
 

Figure 5a shows that there was a dramatic monotonic power in‐ 

crease in the delta band as normalized reaction time increased in the 

high‐risk and intermediate group. In addition, the delta band power in the 

frontal regions showed an inverted U‐shaped change that was

 

 

FI G U R E 6   The trends of averaged 

component power spectra in the delta, 

theta, alpha, and beta bands from the 

occipital components among three 

different fatigue groups (high‐risk, 

reduced, and normal groups) with 

increasing normalized RTs. Note that 

the EEG power shown in this figure was 

calculated from the EEG data recorded 

over the 3 s prior to the onset of lane 

deviation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

observed only in the normal group. Figure 5b shows that there was 

a monotonic power increase in the alpha band as normalized reac‐ 

tion time increased in the intermediate group. The alpha band power 

of the frontal regions showed an inverted U‐shaped change only in 

the high‐risk group. As shown in Figure 5c, the theta band power in 

the high‐risk group dramatically increased with normalized reaction 

time. The theta band power in the intermediate group increased with 

normalized reaction time. 
 

Figure 6a shows that there was a dramatic monotonic increase 

in delta band as normalized reaction time increased in the high‐risk 

group. Figure 6b shows that there was a monotonic power increase 

in the alpha band when normalized reaction time increased in the 

normal and intermediate group. In addition, the alpha band power of 

the parietal regions showed an inverted U‐shaped change only in 

the high‐risk group. In Figure 6c, the theta band power in the high‐ 

risk group dramatically increased with normalized reaction time. The 

theta band power in the intermediate group increased with normal‐ 

ized reaction time. 
 

Figures 7 and 8 show the comparisons of different bands power 

elevations relative the baseline across three different fatigue levels 

group in frontal and occipital area, respectively. In each band, all tri‐ als 

were divided into two segments based on RT (RT <2‐s and >2‐s). 
 

In Figure 7, the power of all bands (delta, theta, alpha, and beta) 

in different levels (high, reduced, and normal risks) is not 

significantly different among three fatigue level groups in section 

trials with RT <2‐s. In section trials with RT >2‐s, the power 

increase (p < .05) in high‐risk group was significantly different from 

reduced and normal groups, especially in theta and delta bands. 

Additionally, the alpha and theta power in reduced group was 

significantly higher (p < .05) than those in normal group.
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FI G U R E 7   Comparison of the △power 

in the delta, theta, alpha, and beta bands 

from the frontal component among three 

different fatigue groups (normal, reduced, 

and high‐risk groups). Standard deviations 

are also shown. The Wilcoxon rank‐sum 

test was applied to determine significant 

differences. *p‐value <.05, **p‐value <.01 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In Figure 8, the power of all bands (delta, theta, alpha, and beta) 

in different levels (high, reduced, and normal risks) is also not 

significantly different among three fatigue level groups in section 

trials with RT <2‐s. In section trials with RT >2‐s, the power 

increase (p < .05) in high‐risk group was significantly dif‐ ferent in 

delta, theta, and alpha bands from reduced and nor‐ mal groups. 

Additionally, the alpha and theta power in reduced group were also 

significantly higher (p < .05) than those in nor‐ mal group. 
 

 

 

4 | DISCUSSION 

 

This study compares the power spectra between groups with dif‐ 

ferent levels of fatigue to identify informative EEG features that can 

reflect different subjects' cognitive states. In the experiments, each 

subject conducted a sustained attention task (cruising on the 

highway) at different fatigue levels, as characterized by EEG 

signals, subjective questionnaires (KSS and FVAS), and objective 

sleep meas‐ urements (ES), to clarify the effect of real‐world fatigue 

on simulated driving.

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 | Effect of fatigue on psychometric 

responses and task performance 
  
Figure 2 shows the comparisons between daily subjective question‐ 

naires and objective sleep measurements. The ES describes how 

cognitive effectiveness, reaction time, and fatigue risk are affected by 

sleep quality, sleep quantity, and sleep/wake timing. The relations 

between subjective questionnaires and objective sleep measure‐ ments 

across days can be observed in these experimental results. Both KSS 

and FVAS scores were significantly correlated with ES. The relation 

between KSS and ES was found to be a negative correlation, with KSS 

decreasing 0.03 units per unit of ES (0–100 scale). A similar pattern 

could be found in FVAS, which decreased 0.12 units per unit of ES. The 

findings lead us to believe that ES can be a reliable and objective index 

of fatigue levels to classify different fatigue states. 
 

Figure 3 shows that the mean values of KSS, FVAS, PreKSS, 

PreFVAS, PostKSS, and PostFVAS across sessions in the high‐risk 

group were significantly higher than those in the normal group. The 

difference in questionnaires between the high‐risk and normal groups is 

obvious. However, the mean values of KSS, FVAS, PreKSS, PreFVAS, 

PostKSS, and PostFVAS across sessions in the reduced
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group were also different from those in the high‐risk and normal 

groups.   
This study further compared behavioral performance (RT) across 

different levels of fatigue. We hypothesize that poor behavioral per‐ 

formance may appear at higher fatigue levels (high‐risk group). As the 

results show in Figure 4, the highest normalized reaction time is in the 

high‐risk group because the performance of subjects in the high‐risk 

group was influenced easily by factors such as activity, rest, and sleep. 
 

In this study, we divided fatigue levels into three different groups by 

ES. The experimental results show that the high‐risk group had higher 

sleepiness and fatigue scores than any other group, as reported on 

subjective questionnaires (KSS & FVAS; Lin et al., 2018). With re‐ spect 

to driving behavior, we also found that subjects in the high‐risk group 

had the longest latency to respond to the deviation stimuli during the 

driving tasks as shown in Figure 4. Therefore, we found that there was a 

negative correlation between ES and fatigue level. 

 

4.2 | Effect of fatigue on brain–

behavior relationships 
 
According to the above results, in the reduced and normal groups, 

we found that theta and alpha band power increased, especially in

 

 

FI G U R E 8   Comparison of the △power 

in the delta, theta, alpha, and beta bands 

from the occipital component among three 

different fatigue groups (normal, reduced, 

and high‐risk groups). Standard deviations 

are also shown. The Wilcoxon rank‐sum 

test was applied to determine significant 

differences. *p‐value <.05, **p‐value <.01 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

occipital and frontal regions, as behavioral performance (RT) dete‐ 

riorated. The theta band power in the occipital area increased sig‐ 

nificantly in the high‐risk group compared with the reduced and 

normal groups as behavioral performance deteriorated. In addition, 

an inverted U‐shaped relationship was observed in the alpha band. 
 

Previous literature (Huang et al., 2012, 2016; Jung et al., 1997; 

Lin et al., 2010) indicates that theta band power increases with lon‐ 

ger RTs during simulated driving. This upward tendency was not 

very clear in the normal group, whose RTs were also shorter than 

those of the high‐risk group because subjects in the normal group 

were not likely to feel drowsy. In the high‐risk group, however, we 

confirmed that theta band power in the occipital region clearly in‐ 

creases with RTs. This result not only agrees with the findings in 

previous studies (Huang et al., 2012, 2016; Lin et al., 2010) but also 

reveals that there are different brain–behavior relationships in dif‐ 

ferent fatigue groups. In addition, alpha band power in the occipital 

region has had mixed results in previous studies. Most of the litera‐ 

tures (Huang et al., 2012, 2016; Lin et al., 2010) indicate that alpha 

band power in the occipital region increases with longer RTs, but 

there are other publications (Glass & Riding, 1999; Ota et al., 1996) 

reporting that alpha band power in occipital region has an inverted 

U‐shaped relationship with RTs. What we know is there have been
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different alpha band power results in different studies and experi‐ ments. 

In our research, we found that alpha band power increased with longer 

RTs in the normal and reduced groups. However, in the high‐risk group, 

we found a U‐shaped relationship between RTs and alpha band power, 

which indicates a sleep onset point according to previous research. From 

our video data, we found that the subjects in the high‐risk group usually 

fell asleep, which means that they en‐ tered stage 1 sleep when RTs 

reached a certain length. Many pre‐ vious studies obtained different 

results in different experiments. In the current research, we further 

divided subjects' fatigue states into three different levels and explored 

the brain–behavior relationships across all three. Therefore, our study 

can explain the contradiction among previous studies in terms of different 

fatigue levels. Different fatigue states would cause different brain–

behavior relationships in the real world, instead of well‐controlled 

settings. 
 

Through the experimental results, this study illustrated that the 

brain–behavioral relationships varied depending on the levels of fa‐ 

tigue. In the high‐risk group (high‐fatigue level), theta band power 

was also a suitable feature for fatigue detection, rising as RT dete‐ 

riorated in occipital and frontal regions. Hence, theta band power 

should be suitable for assessing drivers' vigilance levels under high‐ 

risk conditions. Furthermore, in the reduced and normal groups 

(me‐ dium and low fatigue levels), the alpha band power fluctuations 

in the occipital area were more sensitive than the theta band power 

fluctuations and may be an even better feature for detecting fatigue. 

In addition, it is important to note that this study is different from 

previous studies in that it takes different fatigue levels into account. 

Thus, the present study explains the conflicting results of previous 

studies and can explore more precise brain dynamic features to pre‐ 

dict subjects' fatigue states and behavioral performance. 
 

 

5 | CONCLUSION 

 

This study recorded daily measurements of participants' naturally 

occurring sleep timing, duration, and quality, as well as their subjec‐ 

tive perceptions of fatigue/sleepiness, and interpreted real‐world 

fatigue during simulated driving. The study identified the informa‐ 

tive EEG features that reflect different fatigue levels. Furthermore, it 

established brain–behavior models that take fatigue into account; 

such models could be applied to help prevent drowsy driving. 
 

This study also shows that the EEG spectra of trials were signifi‐ 

cantly different among the three different levels of fatigue and iden‐ 

tifies the proper EEG features in specific brain regions for general 

fatigue detection. Such findings might lead to practical applications 

in an adaptive fatigue detection system for effectively and accu‐ 

rately assessing the cognitive state of human operators in daily life. 
 

 
ACKNOWLEDGMENTS 
 

The authors would like to thank the Ministry of Science and Technology 

of the Republic of China, Taiwan, for financially supported this work 

under contract no. MOST 106‐2221‐E‐009‐016‐MY2, MOST

 

 

106‐2218‐E‐009‐027‐MY3, MOST 108-2321-B-038-005-MY2 and 

MOST 108-2628-E-019-001-MY3. This work was also supported in part 

by the Australian Research Council (ARC) under discovery grants 

DP180100670 and DP180100656. This research was also sponsored in 

part by the Army Research Laboratory and was accomplished under 

Cooperative Agreement Numbers W911NF‐10‐2‐0022. 
 

 
CONFLICT OF INTEREST 
 

None declared. 
 

 
DATA AVAILABILITY STATEMENT 
 

The data that support the findings of this study are available from 

the corresponding author upon reasonable request. 

 

ORCID 
 

Kuan‐Chih Huang  https://orcid.org/0000-0001-7100-8091  
 

 
REFERENCES 
 

Akerstedt, T., & Gillberg, M. (1990). Subjective and objective sleepiness 

in the active individual. International Journal of Neuroscience, 52, 

29– 37. https://doi.org/10.3109/00207459008994241 

Bell, A. J., & Sejnowski, T. J. (1995). An information‐maximization approach 

to blind separation and blind deconvolution. Neural Computation, 7, 1129–

1159. https://doi.org/10.1162/neco.1995.7.6.1129  
Boyle, L. N., Tippin, J., Paul, A., & Rizzo, M. (2008). Driver performance 

in the moments surrounding a microsleep. Transportation Research 

Part F: Traffic Psychology and Behaviour, 11, 126–136. https://doi. 

org/10.1016/j.trf.2007.08.001 
 
Caffier, P. P., Erdmann, U., & Ullsperger, P. (2003). Experimental evalu‐ 

ation of eye‐blink parameters as a drowsiness measure. European 

Journal of Applied Physiology, 89, 319–325. https://doi.org/10.1007/ 

s00421-003-0807-5  
Campagne, A., Pebayle, T., & Muzet, A. (2004). Correlation between 

driving errors and vigilance level: Influence of the driver's age. 

Physiology & Behavior, 80, 515–524. https://doi.org/10.1016/j.physb 

eh.2003.10.004  
Daniel, R. S. (1967). Alpha and theta EEG in vigilance. Perceptual and 

Motor Skills, 25, 697–703. https://doi.org/10.2466/pms.1967.25.3.697 

Davidson, P. R., Jones, R. D., & Peiris, M. T. R. (2007). EEG‐based  
lapse detection with high temporal resolution. IEEE Transactions on 

Biomedical Engineering, 54, 832–839. https://doi.org/10.1109/ 

TBME.2007.893452 

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for 

analysis of single‐trial EEG dynamics including independent compo‐ 

nent analysis. Journal of Neuroscience Methods, 134, 9–21. https

://doi. org/10.1016/j.jneumeth.2003.10.009  
Eoh, H. J., Chung, M. K., & Kim, S. H. (2005). Electroencephalographic 

study of drowsiness in simulated driving with sleep deprivation. 

International Journal of Industrial Ergonomics, 35, 307–320. https:// 

doi.org/10.1016/j.ergon.2004.09.006 
 

Fairclough, S. H., & Graham, R. (1999). Impairment of driving performance 

caused by sleep deprivation or alcohol: A comparative study. Human Factors, 

41, 118–128. https://doi.org/10.1518/001872099779577336 Glass,  A.,  &  

Riding,  R.  J.  (1999).  EEG  differences  and  cognitive style.  Biological  

Psychology,  51,  23–41.  https://doi.org/10.1016/ 
S0301-0511(99)00014-9

https://orcid.org/0000-0001-7100-8091
https://doi.org/10.3109/00207459008994241
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1016/j.trf.2007.08.001
https://doi.org/10.1016/j.trf.2007.08.001
https://doi.org/10.1007/s00421-003-0807-5
https://doi.org/10.1007/s00421-003-0807-5
https://doi.org/10.1016/j.physbeh.2003.10.004
https://doi.org/10.1016/j.physbeh.2003.10.004
https://doi.org/10.2466/pms.1967.25.3.697
https://doi.org/10.1109/TBME.2007.893452
https://doi.org/10.1109/TBME.2007.893452
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.ergon.2004.09.006
https://doi.org/10.1016/j.ergon.2004.09.006
https://doi.org/10.1518/001872099779577336
https://doi.org/10.1016/S0301-0511(99)00014-9
https://doi.org/10.1016/S0301-0511(99)00014-9


12 of 12  |     HUANG et al. 

 

Hanowski, R. J., Wierwille, W. W., & Dingus, T. A. (2003). An on‐road 

study to investigate fatigue in local/short haul trucking. Accident 

Analysis & Prevention, 35, 153–160. https://doi.org/10.1016/ S0001-

4575(01)00098-7  
Horne, J., & Reyner, L. (1999). Vehicle accidents related to sleep: A re‐ 

view. Occupational and Environmental Medicine, 56, 289–294. https

:// doi.org/10.1136/oem.56.5.289  
Huang, K. C., Huang, T. Y., Chuang, C. H., King, J. T., Wang, Y. K., Lin, C. T., 
 

& Jung, T. P. (2016). An EEG‐based fatigue detection and mitigation 

system. International Journal of Neural Systems, 26, 1650018. https

:// doi.org/10.1142/S0129065716500180  
Huang, K. C., Jung, T. P., Chuang, C. H., Ko, L. W., & Lin, C. T. (2012). 

Preventing lapse in performance using a drowsiness monitoring and 

management system. 2012 Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC), 2012, 3336–3339. 
Huang, R. S., Jung, T. P., & Makeig, S. (2007). Multi‐scale EEG brain 

dy‐ namics during sustained attention tasks. 2007 IEEE International 

Conference on Acoustics, Speech, and Signal Processing, Iv(1–3), 

1173–1176.  
Hursh, S. R., Redmond, D. P., Johnson, M. L., Thorne, D. R., Belenky, 

G., Balkin, T. J., … Eddy, D. R. (2004). Fatigue models for applied 

re‐ search in warfighting. Aviation Space and Environmental 

Medicine, 75, A44–A53.  
Jap, B. T., Lal, S., Fischer, P., & Bekiaris, E. (2009). Using EEG spectral 

components to assess algorithms for detecting fatigue. Expert 

Systems with Applications, 36, 2352–2359. https://doi.org/10.1016/j. 

eswa.2007.12.043 
 
Ji, Q., Zhu, Z. W., & Lan, P. L. (2004). Real‐time nonintrusive monitoring and 

prediction of driver fatigue. IEEE Transactions on Vehicular Technology, 

53, 1052–1068. https://doi.org/10.1109/TVT.2004.830974  
Jung, T. P., Makeig, S., Stensmo, M., & Sejnowski, T. J. (1997). Estimating 

alertness  from  the  EEG  power  spectrum.  IEEE  Transactions  on 

Biomedical Engineering, 44, 60–69. https://doi.org/10.1109/10.553713 Jung, 

T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., 
& Sejnowski, T. J. (2001). Analysis and visualization of single‐trial 

event‐related potentials. Human Brain Mapping, 14, 166–185. https

:// doi.org/10.1002/hbm.1050  
Kaida, K., Takahashi, M., Akerstedt, T., Nakata, A., Otsuka, Y., Haratani, T.,  

& Fukasawa, K. (2006). Validation of the Karolinska sleepiness scale 

against performance and EEG variables. Clinical Neurophysiology, 117, 
1574–1581. https://doi.org/10.1016/j.clinph.2006.03.011  

Kecklund, G., & Akerstedt, T. (1993). Sleepiness in long‐distance truck 

driving ‐ An ambulatory EEG study of night driving. Ergonomics, 36, 

1007–1017. https://doi.org/10.1080/00140139308967973  
Lal, S. K. L., & Craig, A. (2001). A critical review of the psychophysiol‐ 

ogy of driver fatigue. Biological Psychology, 55, 173–194. https://doi. 

org/10.1016/S0301-0511(00)00085-5  
Lee, K. A., Hicks, G., & Ninomurcia, G. (1991). Validity and reliability of a 

scale to assess fatigue. Psychiatry Research, 36, 291–298. https

://doi. org/10.1016/0165-1781(91)90027-M 

Lin, C. T., Huang, K. C., Chao, C. F., Chen, J. A., Chiu, T. W., Ko, L. W., 

& Jung, T. P. (2010). Tonic and phasic EEG and behavioral changes 

in‐ duced by arousing feedback. NeuroImage, 52, 633–642. https

://doi. org/10.1016/j.neuroimage.2010.04.250  
Lin, C. T., Huang, K. C., Chuang, C. H., Ko, L. W., & Jung, T. P. (2013). 

Can arousing feedback rectify lapses in driving? Prediction from 

EEG power spectra. Journal of Neural Engineering, 10, 056024. 

https://doi. org/10.1088/1741-2560/10/5/056024 
 
Lin, C. T., Nascimben, M., King, J. T., & Wang, Y. K. (2018). 

Task‐related EEG and HRV entropy factors under different 

real‐world fatigue scenarios. Neurocomputing, 311, 24–31. https

://doi.org/10.1016/j. neucom.2018.05.043  
Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996). 

Independent component analysis of electroencephalographic data. 

Advances in Neural Information Processing Systems, 8, 145–151.

 

 

Makeig, S., & Inlow, M. (1993). Lapses in alertness ‐ Coherence of fluc‐ 

tuations in performance and EEG spectrum. Electroencephalography 

and Clinical Neurophysiology, 86, 23–35.  
Makeig, S., & Jung, T. P. (1995). Changes in alertness are a principal 

com‐ ponent of variance in the EEG spectrum. NeuroReport, 7, 213–

216. https://doi.org/10.1097/00001756-199512000-00051  
Mccrae, C. S., Mcnamara, J. P. H., Rowe, M. A., Dzierzewski, J. M., Dirk, J., 

Marsiske, M., & Craggs, J. G. (2008). Sleep and affect in older adults: Using 

multilevel modeling to examine daily associations. Journal of Sleep Research, 

17, 42–53. https://doi.org/10.1111/j.1365-2869.2008.00621.x Nezlek, J. B. 

(2001). Multilevel random coefficient analyses of event‐ and 

interval‐contingent data in social and personality psychology re‐ search. 

Personality and Social Psychology Bulletin, 27, 771–785. https://  
doi.org/10.1177/0146167201277001  

Ota, T., Toyoshima, R., & Yamauchi, T. (1996). Measurements by 

biphasic changes of the alpha band amplitude as indicators of 

arousal level. International Journal of Psychophysiology, 24, 25–37. 

https://doi. org/10.1016/S0167-8760(96)00048-7 
 
Peiris, M. R., Jones, R. D., Davidson, P. R., & Bones, P. J. (2006). Detecting be‐ 

havioral microsleeps from EEG power spectra. Conference Proceedings IEEE 

Engineering in Medicine and Biology Society, 1, 5723–5726.  

Peugh, J. L., & Enders, C. K. (2005). Using the SPSS mixed proce‐ dure 

to fit cross‐sectional and longitudinal multilevel models. Educational 

and Psychological Measurement, 65, 811–835. https://doi. 

org/10.1177/0013164405278558  
Schier, M. A. (2000). Changes in EEG alpha power during simulated driv‐ ing: 

A demonstration. International Journal of Psychophysiology, 37, 155–162. 

https://doi.org/10.1016/S0167-8760(00)00079-9  

Seen, K. S., Tamrin, S. B. M., & Meng, G. Y. (2010). Driving fatigue and 

per‐ formance among occupational drivers in simulated prolonged 

driv‐ ing. Global Journal of Health Science, 2, 167. https

://doi.org/10.5539/ gjhs.v2n1p167  
Sexton, J. B., Thomas, E. J., & Helmreich, R. L. (2000). Error, stress, 

and teamwork in medicine and aviation: Cross sectional surveys. 

BMJ, 320, 745–749. https://doi.org/10.1136/bmj.320.7237.745 

Shenoy, P., Krauledat, M., Blankertz, B., Rao, R. P. N., & Muller, K. R. 

(2006). Towards adaptive classification for BCI. Journal of Neural 

Engineering, 3, R13–R23. https://doi.org/10.1088/1741-2560/3/1/R02 

Simon, M., Schmidt, E. A., Kincses, W. E., Fritzsche, M., Bruns, A., Aufmuth, 

C., … Schrauf, M. (2011). EEG alpha spindle measures as indicators of 

driver fatigue under real traffic conditions. Clinical Neurophysiology, 122, 

1168–1178. https://doi.org/10.1016/j.clinph.2010.10.044 

Taniguchi, T., & Takaoka, A. (2001). A weak signal for strong responses: 

Interferon‐alpha/beta revisited. Nature Reviews Molecular Cell 

Biology, 2, 378–386. https://doi.org/10.1038/35073080  
Van Dongen, H. P. A., Baynard, M. D., Maislin, G., & Dinges, D. F. 

(2004). Systematic interindividual differences in neurobehavioral 

impair‐ ment from sleep loss: Evidence of trait‐like differential 

vulnerability. Sleep, 27, 423–433.  
Wang, Y. T., Huang, K. C., Wei, C. S., Huang, T. Y., Ko, L. W., Lin, C. T.,  

… Jung, T. P. (2014). Developing an EEG‐based on‐line 

closed‐loop lapse detection and mitigation system. Frontiers in 

Neuroscience, 8, 321. https://doi.org/10.3389/fnins.2014.00321  
Woltman, H., Feldstain, A., MacKay, J. C., & Rocchi, M. (2012). An introduc‐ 

tion to hierarchical linear modeling. Tutorials in Quantitative Methods for 

Psychology, 8, 52–69. https://doi.org/10.20982/tqmp.08.1.p052  

 

 

How to cite this article: Huang K‐C, Chuang C‐H, Wang Y‐K, 

Hsieh C‐Y, King J‐T, Lin C‐T. The effects of different fatigue 

levels on brain–behavior relationships in driving. Brain Behav. 

2

0

1

9

;

0

https://doi.org/10.1016/S0001-4575(01)00098-7
https://doi.org/10.1016/S0001-4575(01)00098-7
https://doi.org/10.1016/S0001-4575(01)00098-7
https://doi.org/10.1136/oem.56.5.289
https://doi.org/10.1136/oem.56.5.289
https://doi.org/10.1136/oem.56.5.289
https://doi.org/10.1142/S0129065716500180
https://doi.org/10.1142/S0129065716500180
https://doi.org/10.1142/S0129065716500180
https://doi.org/10.1016/j.eswa.2007.12.043
https://doi.org/10.1016/j.eswa.2007.12.043
https://doi.org/10.1109/TVT.2004.830974
https://doi.org/10.1109/10.553713
https://doi.org/10.1002/hbm.1050
https://doi.org/10.1002/hbm.1050
https://doi.org/10.1002/hbm.1050
https://doi.org/10.1016/j.clinph.2006.03.011
https://doi.org/10.1080/00140139308967973
https://doi.org/10.1016/S0301-0511(00)00085-5
https://doi.org/10.1016/S0301-0511(00)00085-5
https://doi.org/10.1016/0165-1781(91)90027-M
https://doi.org/10.1016/0165-1781(91)90027-M
https://doi.org/10.1016/0165-1781(91)90027-M
https://doi.org/10.1016/j.neuroimage.2010.04.250
https://doi.org/10.1016/j.neuroimage.2010.04.250
https://doi.org/10.1016/j.neuroimage.2010.04.250
https://doi.org/10.1088/1741-2560/10/5/056024
https://doi.org/10.1088/1741-2560/10/5/056024
https://doi.org/10.1016/j.neucom.2018.05.043
https://doi.org/10.1016/j.neucom.2018.05.043
https://doi.org/10.1016/j.neucom.2018.05.043
https://doi.org/10.1097/00001756-199512000-00051
https://doi.org/10.1111/j.1365-2869.2008.00621.x
https://doi.org/10.1177/0146167201277001
https://doi.org/10.1177/0146167201277001
https://doi.org/10.1016/S0167-8760(96)00048-7
https://doi.org/10.1016/S0167-8760(96)00048-7
https://doi.org/10.1177/0013164405278558
https://doi.org/10.1177/0013164405278558
https://doi.org/10.1016/S0167-8760(00)00079-9
https://doi.org/10.5539/gjhs.v2n1p167
https://doi.org/10.5539/gjhs.v2n1p167
https://doi.org/10.5539/gjhs.v2n1p167
https://doi.org/10.1136/bmj.320.7237.745
https://doi.org/10.1088/1741-2560/3/1/R02
https://doi.org/10.1016/j.clinph.2010.10.044
https://doi.org/10.1038/35073080
https://doi.org/10.3389/fnins.2014.00321
https://doi.org/10.20982/tqmp.08.1.p052

