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ABSTRACT Electrooculography (EOG) is considered as the most stable physiological signal in the 
development of human computer interface (HCI) for detecting eye-movement variations. EOG signal 
classi cation has gained more traction in recent years to overcome physical inconvenience in paralyzed 
patients. In this paper, a robust classi cation technique, such as eight directional movements is 
investigated by introducing a concept of buffer along with a variation of the slope to avoid misclassi 
cation effects in EOG signals. Blinking detection becomes complicated when the magnitude of the 
signals are considered. Hence, a correction technique is introduced to avoid misclassi cation for 
oblique eye movements. Meanwhile, a case study has been considered to apply these correction 
techniques to HCI baseball game to learn eye-movements.  
INDEX TERMS Eye movement classi cation, HCI, baseball game, EOG. 
 
I. INTRODUCTION  
The importance of eye movement tracking along with 
human-computer interaction (HCI) has been investigated in 
this paper. This approach has remained a promising method 
which is used in recent years to detect and analyze eye 
movements. Electrooculography (EOG) is an inexpensive 
technique used in recent years to record eye movements 
[1]. EOG signal classi cation is considered as the most 
useful control sig-nals for human-computer interface [2]. 
Eight directional eye movement classi cation algorithm is an 
effective way to ana-lyze the aftermath effect of noise in 
EOG signals. However, a thorough understanding of various 
characteristics of eye movements leads to a better 
understanding of eye-movement detection algorithm.  

Following types of eye movements can be detected 
through EOG signals. 
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A. VERGENCE  
Vergence eye movements are considered as, ‘‘slow discon-
jugate eye movements that allow the visual system to fuse 
targets moving in depth, giving a person the ability to 
perceive the world in all three dimensions’’ [3]. 
 
B. PURSUIT MOVEMENTS  
Pursuit movement occurs while the eye tracks a 
moving object. It means that the image of an object 
can maintain focus on the fovea. 
 
C. SACCADE  
Saccades are classi ed as rapid eye movements where 
these eye movements observe the world without an 
externally driven feedback system [3]. Saccades are 
faster than Vergence and Pursuit eye movements. 
 
D. BLINK  
Blink can be described as a rapid eyelid movement which 
has a stimulant to the surrounding environment such as

 
   

 



 
 
temperature, relative humidity, and brightness. Blink 
rate is directly associated with mental state, physical 
activity, or fatigue [4], [5]. 
 
E. FIXATION  
Fixations are the stationary state of eyes. Visual gaze is 
maintained in a single location during xation state. Fixations 
are the events that occur between two saccades. The 
average xation time ranges from 100ms to 200ms [6].  

In recent years, several eye tracking techniques have 
evolved which allow the detection and monitoring of eye 
movements. One of them is Infrared oculography (IR), which 
is generally used to quantify the difference between the 
amounts of infrared light re ected by the sclera and sen-sor 
(phototransistor) pair [7]. However, IR is not a reason-able 
technology to measure pursuit or saccades because of the 
nonlinearity problem. Many other techniques such as search 
eye coil [8], [9], video images [10], [11] and EOG have been 
proposed to track eye movements [12], [13]. EOG has been 
very popular due to its ease of signal acquisition approach. 
However, studies show that hybrid brain-computer interface 
utilizing hybrid signal are in prac-tice [12], [14], [15], these 
papers concentrate on EOG based eye movement analysis. 
EOG measurement is based on the potential difference 
between electrodes from the skin it is placed. Human eyes 
act like a dipole with cornea acting as positive side and 
retina as a negative side. When eye-balls are rotated, the 
inner dipoles also move consequently. These movements of 
eye dipoles make electrical potential slightly change around 
the eyes. Thus the potential difference assessing eyeball 
rotation can be measured. Because of these characteristics, 
EOG signals are considered as an appropriate approach to 
develop human-computer interface (HCI). It also aids in 
translating eye movements into human understandable 
commands.  

EOG has become a preliminary eye movement detect-ing 
technique in developing HCI systems such as voice recognition 
[16], [17], visual information [18], gesture con-trol [19], [20], 
methods based on brain signals, infrared head-operated 
joysticks [21] and many other medical usages. Extensive 
research is being carried out in terms of non-medical 
applications such as gaming [22] [25], and browsing internet 
[26]. However, this paper aims to utilize EOG based classi 
cation in gaming applications for practical consumption. It 
discusses an approach to have high accuracy and low 
computation for an EOG-based HCI baseball game. 
 
II. MATERIALS AND METHODS  
Figure 1 gives the overview of the proposed BCI system. 
BCI system focuses on aspects of extracting EOG sig-nals. 
An EOG measuring device will be used to record the eye-
movements from the subjects. A signal acquisition sys-tem 
is used to collect EOG signals from the devices and the 
processed signals are transmitted to personal devices with 
the aid of Bluetooth devices. Thereby, HCI computations are 
carried out. Classi cation algorithms are applied for 
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FIGURE 1. System Overview for extracting EOG signals.  
 
 
 
 
 
 
 
 
FIGURE 2. Schematic diagram of electrodes placement. 

 

eye-movement detections, and the output is 
represented by a graphical user interface. 
 
A. EOG MEASURING DEVICE  
An EOG Mindo device from National Chiao Tung University 
Brain Research Center has been used to measure EOG 
signals from subjects. Electro-physiological signals are 
measured by placing electrodes around eyes as shown in 
the gure 2. Electrode placed on the forehead is a reference 
signal. Four channels are read by placing electrodes around 
eyes, where Ch1 and Ch2 collect horizontal signals, and 
Ch3 and Ch4 col-lect vertical signals. 
 
B. SIGNAL ACQUISITION  
The proposed wireless EOG signal acquisition device was 
approximately 45 32 8 mm3 in size. A Bluetooth module was 
employed to transmit the EOG signals wire-lessly. The 
Bluetooth module BM0203 provided a suf cient transfer band 
rate (115 200 b/s) and was compliant with the computer’s 
Bluetooth v2.0 with enhanced data rate (EDR) speci cation. 
Power was supplied by a lithium battery with an output voltage 
of 3V. A commercial 750 mA h Li-ion battery has been used to 
supply power to the EOG acquisition circuit, which has capacity 
to operate continuously for 12 hours. EOG signals are 
measured by the wet or dry sensors which are rstly ampli ed by 
the preampli er unit. The preampli er ampli es the voltage 
difference between the reference sig-nals and those of the EOG 
electrodes, while simultaneously rejecting common-mode noise 
(i.e., the power line noise). An instrumentation ampli er 
(INA2126, Texas Instruments, 
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FIGURE 3. A structural overview of classification algorithm.  

FIGURE 4. Signal with 60 Hz noise before moving average method.

 

Dallas, TX, USA) was used for its extremely high input 
impedance and high common-mode rejection ratio 
(CMRR) ( 90 dB) [27].  

Instrumentation ampli ers have the ability to improve CMRR 
and amplify the EOG signals to a degree, where the minute 
voltage levels can also be detected. Gain of the pream-pli er 
unit was set to 5.5 V/V. The cutoff frequency was reg-ulated at 
0.1 Hz by using a high-pass lter. Microcontroller program which 
is controlling preampli er and lter stage has reduced the 60 Hz 
noise in the EOG signals employing a mov-ing average. In 
addition, a 12-bit resolution ADC has been used to digitize the 
EOG signals. A microcontroller unit was also used to digitize 
the EOG signals, with a sampling rate of 256 Hz. The sync lter 
removed signals with frequencies higher than 62.5 Hz. After 
removing the noise and amplifying the EOG signals, the data 
was transmitted to the computer interface via a wireless 
module. 
 
C. SIGNAL CLASSIFICATION ALGORITHM  
EOG Classi cation algorithm is designed to reduce the overall 
calculation time and it also does not require signal down 
sampling. The structural overview of the classi ca-tion algorithm 
is as shown in gure 3. A software program gathers four 
channels transmitted from a Bluetooth device. System reduces 
the common mode noise caused by elec-tromyography (EMG) 
and environmental noise. Raw signals are obtained in 
horizontal and vertical form. In order to extract features from the 
eye-movement, raw signals need to be smoothened. 
Calculation amount of the signal has been reduced by 
introducing buffer in the classi cation phase. 
 
1) RAW EOG SIGNAL  
Electrodes are placed around the eyes to record EOG 
signals. During this process traces of EMG signals are 
found due to facial contact of electrodes. This paper intends 
to discuss extracting only the EOG signals. Hence, EMG 
signals needs to be removed from the raw signals. Equation 
(1) and (2) demonstrates the subtraction of channel 2 from 
channel 1 and channel 3 from channel 4. The signal 
processing is done by using these equations. 
 

Horizontal Signal D Ch1signal .Horizontal C/  
Ch2signal .Horizontal /  (1) 

 

 
 

 
Vertical Signal D Ch3Signal .Vertical C/  

Ch4Signal .Vertical / (2) 
 
a: SIGNAL SMOOTHING  
Some high frequency noise still could corrupt the signal in 
an unexpected way. Thus, to solve this problem, a ltering 
process in the rmware level is introduced. A moving average 
method is utilized, to t the limitation of the hardware. Mov-
ing average also called rolling average, is the basic type of 
FIR lter in DSP domain. Moving average is most commonly 
used with time series data to smooth out short-term uctu-
ations and highlight long-term trends or cycles. The choice 
between short-and long-term, and setting of moving aver-
age parameters depends on the requirement of application. 
Mathematically, the moving average is a type of convolution 
and similar to a low-pass lter used in signal processing. The 
moving average lter is optimal for a common task: reducing 
random noise while retaining a sharp step response. This 
makes it as the premier lter for time domain signals. Now 
considering an M-point sequence x[n], it needs to be 
transformed to a new sequence y[n] through an N -point 
mov-ing average for this sequence. It means that the each 
element of output y[n] is the average of N values in order of 
input sequence x[n]. Its input-output relation can be 
represented in equation (3).  

1 
y [n] D   .x [n] C x [n C 1] C : : : C x [n C N   1]/  N  

D 1 XN 1 x [nk] (3) 
 

 N kD0   
As mentioned above, the recorded signals are easily 

inter-fered by 60Hz noise, especially when the 
acquisition circuit gets closer to the electric appliances. It 
has been showed in the gure 4, that the original sine 
wave had been contaminated by 60Hz power-line noise. 
After applying the moving average lter with a 5-point 
moving window, the moving average could be effectively 
removed by power-line noise, as shown in the gure 5.  

Given a continuous noise signal x(t) with frequency F Hz, it is 
apparently that the integral within 1/F sec is equal to zero. A 
digital situation is demonstrated here. Equation (3) can be 
extended to digital form. That means the summation of all 
 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5. Signal with 60 Hz noise after moving average method. 

FIGURE 6. Special blinking types using magnitude classification.

 

discrete signals with one period is equal to zero as 
shown in equations (4) and (5).  

Z 0 1=x x(t) D 0 (4) 

X
All signals with one period X [n C K ] D 0 (5) 

kD0    
The moving window size is decided by both sampling 
rate and the noise frequency as shown in equation (6).  

 Sampling Rate S 
Moving Window Size D  (6)  

 Noise Frequency F 
 
b: BUFFER  
Computational expense of the system can be reduced by 
introducing buffer which is employed to retrieve temporary 
data. Computation occurs only when the buffer is full. 
Hence, it avoids the unnecessary computation there by 
increasing the ef ciency of classi er unit. 
 
2) FEATURE EXTRACTION  
In order to analyze the eye-movements from EOG, mean-
ingful features needs to be recognized and extracted. Dis-
tinguishable patterns present in saccades makes it easy to 
be classi ed further. Primarily, blinks and saccades needs to 
be segregated. Secondly, more than one eye movement 
needs to be identi ed based on this study. 
 
3) CLASSIFIER  
Differentiation and peak detection play an important role 
in the classi cation algorithm. Differentiation is used to 
observe the variation of the slopes which can distinguish 
blinking and other eye-movement ef ciently. Figure 6 
demonstrates eye-movement classi cation based on 
magnitude variation tech-nique. However, this approach 
is not used to detect certain eye-movements.  

Hence, signal classi cation requires a novel approach to 
identify blinks in a comprehensive manner, and which can 
also decrease the correction rate. In this paper, a slope 
variation technique is used to distinguish blinks from other 
eye-movements. Figure 7 shows the slope variation of a 
look-up saccade and the slope variation of a blinking. The 
slope variation of the blinking is apparently larger than the 
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FIGURE 7. Feature of look-up saccade and blinking.  
 
 
look-up saccade when compared with the look-up 
saccade in gure 7 with the special blinking #2 in gure 6. 
It is discovered that their magnitude is both around 1000 
V but the look-up saccade has longer duration than 
special blinking #2. That means the slope variation of the 
special blinking #2 is still larger than the look-up 
saccade. The slope variation method increases the ef 
ciency to classify blinks from other eye-movements. 
 
a: PEAK DETECTION  
Peak detection is a method designed to reduce the 
calculation time and the number of misclassi ed cases by 
detecting the peak values of the vertical and horizontal 
signal. Classi ca-tion algorithm will nd peak values of the 
differentiated sig-nals. The peak value detection is 
utilized to identify various types of eye-movements. 
 
b: BLINKING DETECTION AND REJECTION  
There is a need to overcome misclassi cation which 
might adversely affect the speci c eye-movement 
detection. Blinks in the signal are identi ed and removed 
in order to avoid the interference of blinks with horizontal 
and vertical signals. Interference with horizontal and 
vertical signal will result in misclassi cation.  

A novel method has been introduced to overcome misclas-si 
cation caused by blinks. An ef cient way of classifying eye-
movement is to differentiate signals and to extract peak value of 
signals is shown in gure 8. Once the peak values 
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FIGURE 8. Differentiating blink and saccade.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 9. Process of rejecting the blinks.  
 
 
 
 
 
 
 
 
 
 
 
FIGURE 10. Representation of a look-up saccade. 

 

has been veri ed, blinks can be easily rejected based on their 
threshold values. The eye-movement marked beyond their 
threshold values after the peak values are recognized are classi 
ed as blink. Once the blink has been identi ed, they are rejected 
to extract saccades. The system searches for peak values, and 
then the left signal of gure 8 is decided as a blink. System does 
not identify center signal, hence it is marked as a saccade. The 
blinking rejection process is shown in gure 9. 
 
c: PATTERN RECOGNITION  
Various eye-movement detection is done by observing the peak 
values of the signal. Figure 10 illustrates that the peak value of 
the vertical signal is marked above the upper thresh-old and 
hence the system considers it as a look-up saccade.  

Four other eye-movements identi ed are look-up-and-left, 
look-up-and-right, look-down-and-left, and look-down-and-right 
as oblique saccades. System identi es a look-up saccade when 
the peak of vertical signal is marked beyond the upper 
threshold value. Similarly system can identify a look-left 
saccade when it encounters horizontal signal marked beyond 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 11. Representation of a look-up-and-left saccade.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 12. Setting interface. 
 

its threshold value. Combination of look-up and look-left 
saccades forms a look-up-and-left saccade eye-movement 
as shown in gure 11. However, both look-up saccade and 
look-left saccade have to occur at the same time. A 
misclassi-cation is created when there is a mismatch in the 
occurrence of two signals. This misclassi cation can be 
removed by applying the exception correction. 
 
D. GRAPHICAL USER INTERFACE DESIGN  
This paper aims to present classi cation results on a HCI 
baseball game platform. An initial baseball game interface is 
shown in the gure12. A time range is set up to display the data, 
le and name. Once all the required information is gathered, 
device is paired with a Bluetooth device to stimu-late interface. 
Figure 13. Simulating interface is activated by pressing start 
button and it will guide user through different steps. This will aid 
us to record user reaction and to recognize various eye-
movements. The total number of eye-movements occurred 
during this session can also be registered. 
 
III. EXPERIMENTAL SETUP  
Three aspects of experimental set up has been discussed in 
this paper. First experiment set up is to verify the classi - 
cation working capability by considering normal scale and 
cues. Second experiment setup tests the capability of the 
classi cation by eliminating cues and using the same scale 
 

  



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
FIGURE 13. Stimulating interface and the user steps.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 14. Calibration interface and using procedure. 
 

as the rst test experiment. Third experiment is to test the 
classi cation functionality on a tablet by reducing original 
scale size to half of its size as to make it work on a tablet 
while considering the cues. Eye-movement is detected 
based on the horizontal and vertical threshold values of 
EOG signals. A Matlab based approach has been 
utilized to analyze the recorded EOG signal. The 
calibration interface utilized in this project can distinguish 
various eye-movements based on the threshold values.  

Figure 14 shows a simple and effective calibration inter-
face system. Initially user needs to press ‘‘Start calibration’’ 
button, and the calibration will show the cue in the center of 
the frame. Then the up-right red dot will show up, now the 
user will have two seconds to move their eyes to the up-
right position. Similarly, experiments will be repeated for 
down-right position. This experiment position will be 
repeated for 10 times for the system to collect suf cient data 
to set up an appropriate threshold value.  

An experimental environment is set up to mimic the day 
to day computer usage. Hence, a distance of 50cm is 
maintained between the viewer and the monitor. Look-up 
and look-down distances from eyes and monitor are main-
tained at 11cm. Look-right and look-left distance from eye to 
monitor is 13cm. This experiment is set up on a 22’’ monitor. 
Figure 15 shows the experiment set up. Since the 
magnitude and accuracy [28] of EOG signal depends on the 
angular velocity, distance is transferred into the angle which 
is convenient to establish the relation between EOG signal

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 15. Experiment environment. 
 
TABLE 1. Angle of view.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 16. Color code representation for experiment procedure 
with cues. 
 

and the scale of screen. Table 1 illustrates the 
calculated angle of view. The above equation can be 
extended to digital form. That means the summation 
of all discrete signals with one period is equal to zero. 
 
A. EXPERIMENT PROCEDURE WITH CUES  
In day-to-day activities, eight directional saccades and 
x-ation are observed. Different color code is assigned 
for respective eye-movements as shown in gure 16. 
Look-up, look-down, look-right, look-left, look-right-up, 
look-right-down, look-left-up and look-left-down are 
represented by red, orange, green, yellow, blue, aqua 
blue, violet and navy blue respectively. 
 
B. EXPERIMENT PROCEDURE WITHOUT CUES  
This experiment is designed to simulate an intuitive technique 
while using the EOG application. Cues have been elimi-nated 
so that the user don’t have to limit their eye moves in a 
particular direction. Process of this experiment is empty for 
initial 2 seconds. For the next 5 seconds the subject is
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FIGURE 17. Experiment procedure without cues.  
 
 
 
 
 
 
 

FIGURE 19. Calibration interface. 
 

TABLE 2. Results of experiment procedure with cues.  
 

 
FIGURE 18. Computer screen and tablet screen.
 
 
asked to move eyes in any direction. Color code 
represents the respective eye-movement as described in 
the previous section. Figure 17 shows the experimental 
set up without cues. Primarily, this experiment is 
intended to provide a natural approach to play HCI game 
by allowing user to have an independent eye-movement. 
 
C. EXPERIMENT PROCEDURE WITH CUES 
USING SMALL SCALE 
This experiment is repeated similar to the previous set up by 
narrowing down the scale. A challenge has been 
encountered while narrowing the scale, as the scale is 
narrowed the dis-tance between eye and the monitor is also 
reduced. This will cause the signal to be smaller in 
amplitude and it becomes dif cult to classify the signal. It will 
also raise misclassi - cation due to the signal direction being 
deviated from the expected direction. In order to use this 
EOG classi cation algorithm on a tablet, the scale is 
narrowed about half of the original size. Figure 18 shows 
that as we de ate the scale to 6 cm X 6.5 cm, it allows users 
to see the tablet from 41.7 cm distance.  

Now the shrinking scale will change the threshold that 
classi es eye-movements because the distance and the 
angle of view are smaller. A calibration interface has been 
designed to t the screen size. This has been stimulated on 
the PC as shown in gure 19. As shown in gure 19 each of 
them has three red points. First user needs to focus on the 
center red point, after the cue vanishes, the user will now 
have two seconds to make an eye-movement. The user is 
asked to look at the right-up red point for ve times. Each 
time the user is given two seconds to look at the point. 
Later, the user is asked to follow the similar pattern in the 
right-down direction. The system will acquire required 
information from these eye-movements.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IV. RESULTS  
EOG signal is considered in this study to differentiate 
various eye-movements of the subjects. A classi cation 
technique is provided which removed 90% of blinks along 
with extracting required saccades. Hence, it is effective in 
removing blinks. Overall computational time has been 
reduced by eliminating down sampling of the EOG signals. 
This has increased ef - ciency of the classi cation system. 
 
A. RESULTS OF EXPERIMENT PROCEDURE WITH CUES  
Experiment procedure with cues result in high correct rate. 
The current classi cation technique yields higher accuracy 
when compared with the historical data and classi cation 
techniques. It is evident from the comparison results listed in 
table 2 and 3. The classi cation result is more stable for 
number 2, number 4, number 6 and number 8. Number 1, 
number 3, number 7, number 9 have resulted in stable 
oblique eye-movement. 
 
B. RESULTS OF EXPERIMENT PROCEDURE  
WITHOUT CUES  
In this experiment procedure without cues, the correct rate 
decrease apparently. Results showed in table 4 indicates that



  
 
 
 
TABLE 3. Results of previous classification. TABLE 5. Results of experiment procedure with cues SSD.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TABLE 4. Results of experiment procedure without cues. TABLE 6. Results of application on HCI baseball game. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
correct rates are slightly deteriorated from that 
procedure with cues. The correct rate of the number 5 
has lowered signi cantly. 
 
C. RESULTS OF EXPERIMENT PROCEDURE WITH 
CUES ON SMALL SCALE DEVICE (SSD) 
Result obtained by procedure with cues on a small scale 
device show that there is a decrease in the correct rate. 
Table 5 shows that the correct rates of number 2, number 4, 
number 6 and number 8 have increased from that of previ-
ous results. It signi es that the proposed classi cation tech-
niques works appropriately for small scale screens. 
However, the correct rate of number 1, number 3, number 7, 
number 9 are considerably low. This classi cation can t the 
small scale, it can be applied on the tablet. 
 
D. RESULTS OF APPLICATION ON HCI BASEBALL GAME  
The setting up for the HCI Baseball game is as shown in gure 
20. Firstly, press the ‘‘START’’ button to enter the HCI Baseball 
game. A translucent panel with the numbers will show up. 
Number 5 in the center on the panel is brighter than other 
numbers. Subsequently, the next number will randomly 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 20. HCI game processing. 
 

 
light up and it will blink. While the number is blinking, 
we move the eyes towards the blinking number, from 
the center of panel. If the blinking number is 5, eyes 
still stand on the center of the panel.  

Accuracy rate as shown in gure 21. Since every run 
has 10 trials, each run of the interface will show a 
number and the user repeats the task 10 times. A 
correct rate is obtained by dividing it by ten trials. The 
correct rate has increased and hence this EOG classi 
cation can be leveraged into real life scenario. 
 
V. DISCUSSION  
Experimental results have demonstrated that the proposed 
classi cation techniques provide high accuracy and have 
improved the uency of HCI game interpretation methods. 
Stable classi cation is obtained by conducting experiments 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 21. Look-up saccade and look-right saccade compared with 
look-up-right saccade. 
 

 
with cues. Most of the blinks were removed during this clas-
si cation technique and the oblique eye-movements are well 
classi ed with the above method. When the experiment was 
conducted without cues, blinks were not removed effectively 
due to processing time. Hence, a buffer was implemented 
which aided in classifying eye-movements. This system will 
split the signal when it encounters a blink before passing it 
through buffer. This will cause misclassi cation. This factor 
explains the decrease in correctness rate for experiment 
pro-cedures without cues for number 5.  

The average correct rate of the result for experiment with 
cues in the small scale is lower than the average correct rate of 
the result for experiment with cues. This can be observed for 
the correct rate of number 1, number 3, number 7 and number 
9. This circumstance will explain that the angle of view is 
smaller, which can make the EOG signal smaller and the EOG 
signal is proportionate with the angle of view. When the oblique 
eye-movement distance is longer from the screen, the signal of 
the vertical and the horizontal are smaller than the up, down, 
right and left eye-movements.  

It is evident from gure 21 that the oblique eye-movement 
signal is smaller than the look-up saccade or look-right sac-
cade. This occurrence demonstrates that the signal scale is 
about ten times smaller than the original signal and it is 
caused by electrode displacement.  

Figure 22 explains a look-up-left saccade. For look-up-left 
saccade signal is captured by channel 2 and channel 3. If there 
is only a look-up saccade, signal is captured by channel 3. 
Channel captured for look-up saccade is clear and hence 
appear large. When an oblique eye-movement occur, the left 
eye will not directly approach the channel 2 or channel 3. 
Therefore, vertical and the horizontal signal of the oblique eye-
movement are smaller than the up, down, right and left eye-
movements. Small scale has the smaller angle of view than the 
normal scale, apparently the signal in small scale is smaller 
than normal scale. The other key point is that if there is a slight 
disturbance while using the tablet, this classi cation can tolerate 
a bit of deviation. That is because, 

 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 22. The electrode placement with the oblique eye-movement.  
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 23. Two look-up saccades without differentiation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 24. Two look-up saccades with differentiation. 
 

 
classi cation applies differentiation. This will shrink the 
magnitude of signals which makes deviation smaller.  

Figure 23 shows two saccades without differentiation, 
and the deviation is 293 micro-volt. In gure 24 we can 
observe two saccades with differentiation, and the 
deviation is 15 units. When a threshold is set by the 
calibration, the error probability of the two saccades 
without differentiation is higher than two saccades with 
differentiation. It aids differen-tiation to shrink the scale of 
the signals and this can shrink the deviation at the same 
time which in turn decreases the error probability. 
 
VI. CONCLUSION  
It is evident from the HCI Baseball game that the classi ca-
tion can be utilized in everyday life. Usability and simplicity 
of the classi cation is made ef cient due to online compu-
tation. The performance accuracy of the system has been 
improved by scaling down the measurement to t a tablet. 
The proposed method has established that by utilizing eight 
eye-directional movement the accuracy and performance of 
the system can be increased. Research conducted based 
on procedures without cues and small scale measurements 
calls for a further study in terms of improving the accuracy. 

 



 
 
 
 

In future, we focus on developing descriptive alternatives 
for all directions and even smaller scale eye-movements 
clas-si cation and also on the implementation of a stable 
classi - cation on the circuit board. This EOG device can 
work freely like a remote controller or a joystick. 
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