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Abstract—In this paper, we introduce a self-adaptive artificial 
bee colony (ABC) algorithm for learning the parameters of a 
Takagi-Sugeno-Kang-type (TSK-type) neuro-fuzzy system 
(NFS). The proposed NFS learns fuzzy rules for the premise part 
of the fuzzy system using an adaptive clustering method 
according to the input-output data at hand for establishing the 
network structure. All the free parameters in the NFS, including 
the premise and the following TSK-type consequent parameters, 
are optimized by the modified ABC (MABC) algorithm. 
Experiments involve two parts, including numerical optimization 
problems and dynamic system identification problems. In the first 
part of investigations, the proposed MABC compares to the 
standard ABC on mathematical optimization problems. In the 
remaining experiments, the performance of the proposed method 
is verified with other metaheuristic methods, including differential 
evolution (DE), genetic algorithm (GA), particle swarm 
optimization (PSO) and standard ABC, to evaluate the 
effectiveness and feasibility of the system. The simulation results 
show that the proposed method provides better approximation 
results than those obtained by competitors methods.  

Index Terms—Evolutionary algorithm (EA), Artificial bee 
colony (ABC)optimization, Neuro-fuzzy system (NFS) 
 

I. INTRODUCTION  
Dynamic systems are commonly found in many real-world 

applications, such as control, pattern recognition, and other 
engineering problems [1] [2] [3]. Especially in control areas, the 
goal is to develop a system to describe the time dependence of a 
serial of given states in a geometrical manifold. At any given 
time, the state of a dynamic system, which is represented by a 
tuple of real numbers, corresponds to a particular point in the 
state space. The output of a dynamic system is derived with 
evolution rules from past states, including both input and output 
before, and current states.  

The integration of fuzzy logic and artificial neural network 
is widely applied to construct control systems for solving non-
linear problems in the machine learning community [2] [3], 
which has advantages from both high-level reasoning ability 
of fuzzy logic and low-level learning power of neural network. 
Moreover, the neuro-fuzzy system (NFS) transforms 
humanlike decision-making as a family of fuzzy IF-THEN 

 
 
 
 
rules to express the locally linear relations between input and 
output. By blending linear relations via fuzzy membership 
functions without complicated mathematics, the overall NFS 
can be established to present a non-linear model.  

One critical design issue while building a NFS is to deter-mine 
the number of fuzzy rules used to cover each input di-mension. 
Most researchers employ a firing strength criterion to generate 
fuzzy sets automatically. Numerous algorithms have been 
developed to find proper parameters in the learning phase. 
These learning methods can be categorized into two groups: 
1) derivate-based and 2) metaheuristic-based methods. The 
derivative-based method is also known as back-propagation 
(BP) method [4], which aims to minimize the cost function via 
propagating the gradient value of output error to adjust the 
value of each neuron. In most cases, the BP method works 
efficiently to find a set of parameters. However, it may fall 
into locally optimal solution due to its intrinsic property to find 
global optimum solutions hard. In contrast, numerous 
metaheuristic-based methods have introduced [5], which 
finds global optimums via bio-inspired methods. The 
evolutionary algorithm (EA) is one of the representative 
method, which obtains global optimums out by mimicking 
evolutionary mech-anism and behavior in a biologic group. 
These nature-inspired based techniques have been widely 
applied in various areas, including optimization problems, 
identification problems and classification problems.  

In comparison with the derivative-based methods, the EA 
commonly utilizes the information obtained from the individ-ual in 
human-made population without any gradient informa-tion [6]. 
EA has a higher chance to escape from local optimal solutions 
by operating different mutation mechanism. More-over, 
crossover mechanism promotes the information to be exchanged 
within the population to obtain better search results as possible, 
and elimination mechanism replaces unsuitable solution with a 
new one to improve the search effectivity. 

In literature, different protocols of swarm intelligence-based 
algorithms, including particle swarm optimization (PSO), ge-netic 
algorithm (GA), differential evolution (DE) and artificial 
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Layer 2 (Fuzzification Layer): Each node in this layer 

defines a membership function that calculates the output 
from the previous layer into a fuzzy set.  
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bee colony (ABC), have been proposed to learn the 
parameters of artificial neural networks [7] [5] [8]. Among 
the various algorithms mentioned above, the ABC has 
shown an impres-sive performance on different constraint 
problems. The ABC is introduced by Karaboga [9], which 
imitates the foraging behavior of natural honeybees, and 
evaluated on numerical optimization problems [10]. 

In this study, we introduce a modified ABC (MABC) algorithm to 
train the parameters of TSK-type NFS, named NFS MABC, for 
solving non-linear system problems. The proposed NFS MABC 
comprises two parts, including the structure learning and the 
parameter learning. In the structure learning phase, the number of 
fuzzy rules for each input dimension is determined with an 
adaptive clustering method. Moreover, the semantic term of first-
order TSK-type reasoning is regarded as the subsequent clause 
of each fuzzy rule. In the parameter learning phase, the proposed 
MABC is applied for parameter optimization by a batch learning 
mode. The MABC is different from the standard ABC. We 
introduce an adaptive mutation parameter to make the process of 
evolution more efficient. Moreover, ranking-based weights are 
utilized to keep the difference significantly between individuals. 
Finally, the search strategy of local neighbor is applied to avoid 
convergence early to trap at local optimal solutions. 

The remainder of this study is organized as follows. Section 
II introduce the structure of the NFS. Section III presents a 
description of the standard ABC and the scheme of pro-posed 
MABC. In Section IV, numerical optimization and dynamic 
system identification problems are used to reveal the 
performance of the proposed method, respectively. Finally, 
conclusion is given in Section V. 

II. STRUCTURE OF THE NEURO-FUZZY SYSTEM 

In this section, we introduce the architecture of the NFS used in 
this study. The structure of the NFS is established according to 
the pairs of the input-output datums at hand with an adaptive 
clustering algorithm and the TSK-type fuzzy reasoning. The 
proposed NFS comprises five layers and nodes in each layer 
serve as neurons. Fig.1 depicts the overview of the NFS. In the 
premise part of the NFS, distinct fuzzy sets are applied to 
generate fuzzy rules. Moreover, the first-order TSK-type fuzzy 
reasoning serves as the consequent part of each fuzzy IF-THEN 
rule. Note that the structure of the NFS is determined in the first 
generation via go through all training datum pairs and obtained 
the initial weights. In the remaining generations, the architecture 
of the NFS is fixed, the learning procedure only adjusts values of 
parameters in the NFS. The mathematical functions of each layer 
in the NFS are given as 

follows. The input of the NFS is defined 
 

 , X = (x1, . . . , 
 where   is the dimenson of the input ~ .  X 

Layer 1 (Input Layer): Each node in layer 1 corresponds 
to one input variable and transmit it to next layer as input 
with no computation. 



where mi,j and σi,j denotes the mean and variance of the 
Gaussian membership function for the jth term of the ith 
input variable xi, respectively.  

Layer 3 (Spatial Firing Layer): Each node in layer 3 
corresponds to one fuzzy rule and performs as a spatial rule 
node. A spatial firing strength u3j is calculated using fuzzy 
AND operator to perform the premise part of each rule j. The 
spatial firing strength is defined as the expression below.  

Y 
u3 = F j = u2  . (3) 

j  i,j  
j  

Layer 4 (Consequent Layer): Each node in layer 3 has 
a corresponding node in this layer named as a 
consequent node. Nodes in layer 4 perform a linear 
combination of the input variables. The output of each 
consequent node is defined as follows: 

Xn 

u4 = a 
i,j 

x (t). (4) 
j   i   

i=1  
where ai,j is a weight linking from a node in the previous 
layer to a node in the current layer. 

Layer 5 (Output Layer): The node in layer 5 is the output 
node of the NFS, which performs defuzzification operation to 
integrate all of actions of previous layers as the expression 
below. P   P F    
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, (5)    

P 
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    j=1   j    
where R and y are the total number of fuzzy rules and the 
output of the NFS, respectively. 

 
III. PARAMETER OPTIMIZATION IN THE NFS  

A. The standard ABC  
The ABC algorithm, introduced by Karaboga [9], imitates the 

foraging behavior of natural bee swarms. In comparison with 
other inspired-heuristic approaches, except the essential 
parameters, the ABC algorithm only requires one additional 
parameter, limit, to determine when to abandon exhausted so-
lutions. The foraging behavior in the ABC algorithm is treated as 
finding an optimum solution for a particular problem. Each food 
source in the ABC algorithm corresponds to a possible solution 
for the target problem; namely, the amount of nectar contained in 
a food source indicates the adaptability of the solution to the 
problem. In the standard ABC algorithm, three kinds of artificial 
agents are defined, including employed bees, onlooker bees, 
and scout bees, and corresponding to different stages with 
distinct search strategies, respectively. Moreover, the number of 
employed bees and onlooker bees are often equal to the size of 
the colony. The main learning steps of the  

(1) standard ABC algorithm are given as follows: 
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Fig. 1. Structure of the neuro-fuzzy system which is established using adaptive clustering method and TSK-type fuzzy reasoning to express 
the IF-THEN rules. 

 
• Initialize the population and its corresponding parameters  
• REPEAT  

– Employed bees explore the environment 
according to its previous memory.  

– Onlooker bees search for better sources near the 
hive depending on the feedback from employed 
bees on the dancing area.  

– Scout bees assign new positions of food sources 
to replace exhausted food sources.  

• UNTIL (terminated condition)  
At the first step, the initial population of SN food sources, 

~ ~ , is generated randomly, where is the 

X = X1,...,XSN SN 
number of individuals in the population. Each food source ~ Xi 

is a D-dimensional vector presented as ~ 

Xi = (xi,1, . . . , xi,D)  
and is initialized using (6) , where maxj and minj are the upper 
bound and the lower bound at dimension j, respectively. 
 

xi,j = minj + rand(0, 1)j(maxj − minj). (6)  
In every search procedure, an employed bee or an 

onlooker bee randomly selects a neighbor as the 
reference and modifies on arbitrary one parameter to 
produce an offspring source as below: 

vj = xi,j + φj(xi,j − xk,j), (7)  
where  k ∈ [1, . . . , SN] but  different  from  i and,  j  ∈ 
[1, . . . , D]. φj is a scaling factor in the interval of [-1,1] to 
determine the offset between the current source and the 
candi-date source. The quality of the candidate source, 
fitness value, is computed according to its cost value. The 
greedy method is applied to the sifting mechanism; 
namely, a candidate solution with higher fitness than its 
parent solution, then the older one will be replaced.  

Although the number of employed bees and onlooker bees 
is equal to the size of the population, the selection strategy is 
different in these two phases. At employed bee phase, each 
food source is ensured to be investigated once in each 
generation. In contrast to a fair selection, a food source be 

 
chosen by an onlooker bee to explore according to its 
fitness value. A source with higher fitness value has a 
higher chance to be chosen to investigate by the roulette 
wheel method presented as the following expression. 

probi = 
  f iti 

. (8) 

P 

SN 

 i=1 
f it

i  
(10) vj = xm,j + φj(xn,j − xo,j).  

In the scout bee stage, food sources which can not be 
improved at least a predefined limit times of exploration 
will be abandoned by scout bees and replaced by new 
one using (6). 
 
B. The proposed Modified ABC  

The previous section introduced the fundamental concept of 
the ABC algorithm. In this section, we present a modi-fied ABC 
named as MABC. Since the ABC algorithm has been shown to 
be competitive with other conventional bio-inspired algorithms on 
numerical optimization problem, many researchers carry out in-
depth research on ABC. Moreover, the ABC algorithm is widely 
used to solve engineering problems. The improvement of ABCs 
can be roughly divided into three categories: 1) introduce new 
solution search equations [11]  
[12] [13], 2) blend with other operations [14] [15], and 3) 
adopt a multi-population strategy [10]. 

In the standard ABC, only one dimension of each consid-ered 
source changes in each investigation that causes slow 
convergence speed on high dimension problems. The previous 
study introduced a mutation parameter, MR, to accelerate the 
evolution speed. Each position of a considered food source has 
a chance to change depending on the predefined mutation rate; 
namely, if a random number is large than the preset value, the 
value of that position keep. In this study, we follow the concept of 
mutation and integrate the trail times of each food source with an 
adaptive mutation scheme as shown in (9), where trails(i) is the 
number of exploration times for source i that cannot be 
improved. With the increase of the exploration 

 
 

1504 



 candj = 
(
 xji,j. if rand(0, 1)j ≥ M R · exp− ( rand(0,1)j·trials(i) ) ; otherwise,  (9)  

     v          limit        

vj = xi,j + φj(xm,j − xn,j), f iti ≥ f itm and f iti ≥ f itn; otherwise,  (11)  

  x
lbest,j 

+
 
φ

j
(x

lbest,j−xi,j 
), 

lbest = k, k ∈ [m, n], s.t. f itk ≥ max(f itm, f itn).   
times that a food source cannot be improved, an artificial agent shown as algorithm 1.       
should employ mutation strategy on this food source carefully      

new 
 
probi = 

 wi 
. (13) 

 
and discreetly.                    

 
                 

P 
SN                  

Besides, it is commonly a challenging issue to get a bal-           i=1 
w

i    
ance between exploration and exploitation when researchers    

oppoj = rand(0, 1)j(maxj + minj) − xi,j. (14) 
 

develop EA algorithms. In this study, we adopt a similar search     
               

strategy to the standard ABC, but a different formula in the                

employed bees stage, to maintain the ability of exploration as  Algorithm 1: Pseudo code of the proposed MABC   
shown in (10), where m, n, o ∈ [1, SN] and m 6= n 6= o 6= 
i. 1: Initialize population using (6) and the required   
The information of the local best solution is utilized as   parameters       
the guide term to improve the ability of exploitation in the 2: Evaluate the current population    
onlooker bee stage. For each search iteration, an onlooker 3: set F Es = SN and Gen = 0    
bee not only selects a food source according to the selection 4: repeat           
probability but also randomly picks two of its neighbors for 5:  //**Employed bee stage**//    
competition to produce local best source. The one has a higher 6:  Employed bees explore all food sources using (10). 
fitness value than others is regarded as the local best term and 7:  //**Information exchange**//    
be used to dominate the search process as (11).  8:  Assign each food source a probability to be chosen 

Moreover,  we  notice  that  the  difference  between  food    using (13) with its corresponding weight depending on 
sources becomes ambiguous when they have similar fitness.    the ranking order as (12).     
The phenomenon causes that onlooker bees are hard to choose 9:  //**Onlooker bee stage**//    
a solution with distinguished to explore; in other words, the 10:  Onlooker bee selects a food source by roulette wheel 
ability of exploration in the onlooker bee stage decreases. To    selection.       
maintain the difference between individuals, we introduce a 11:  Onlooker bee searches the selected source and its 
ranking-based weight mechanism to replace the probability    local neighbors using (11).    
calculated directly according to fitness values of each food 12:  //**Scout bee stage**//      
source. In the information exchange stage, each individual 13:  Scout bees examine food sources and replace   
in the population are sorted according to its fitness value    exhausted sources by (6) and (14).   
in descending order and assigned weights according to the 14:  Record the best food so far    
arrangement order by (12).           15:  Gen = Gen + 1       
              16:  until Gen=MaxGen      
              17:  Return the optimal parameters    
  

1 
  

− 1 ( δSNr−1 )2 

(12) 

               

                   
    2                

w
r 
=

 δSN√ 2π exp   ,                 
IV. SIMULATION RESULTS  

where r is the rth solution, δSN is the standard deviation, and δ 
is a adjustable parameter. When δ is large, the weights of 
individuals are near uniform; otherwise, the best-ranking soution 
are strongly preferred in the onlooker bee stage. The probability 
of each solution to be chosen is computed by (13). As mentioned 
before, solutions cannot be improved furthermore will be 
abandoned in the scout bee stage. Inspired by opposition-based 
learning [15], the opposite position of the poor source is 
evaluated to gain the opportunity to escape from a local optimum 
to find a better solution. Using (6) and (14) to generate two 
candidate solution, and the one has higher fitness will be 
preserved. The overview of the proposed MABC is 

 
To verify the performance of the proposed method, we 

engage two experiments, including numerical optimization 
and dynamic system identification, in this section. 
 
A. Numerical optimization problems  

We evaluate the performance of the proposed MABC on 
scalable numerical benchmark functions provided by CEC 2017 
special session [16] and compare it with the standard ABC. Tab. 
I lists the function types of the benchmark func-tions. In this 
study, the dimensions of the benchmark functions are set to D = 
30, and 50. Each function is regarded as a black box, although 
the values of the optimal solutions are known 
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     TABLE I                TABLE III     
 FUNCTION TYPES OF CEC’17 BENCHMARK FUNCTIONS.  THE RESULTS OF THE PROPOSED ABC AND THE STANDARD ABC FOR 
                      D=50.     

                                  
     Function Type                Dim=50     
   Unimodal Multimodal  Hybrid  Composition         ABC      MABC  

   Functions Functions  Functions  Functions    No.  Mean±STD      Mean±STD  
Function No. f1, f3 f4, . . . , f10 f11 . . . , f20 f21, . . . , f30    f01 1.6401e+03 ± 1.7755e+03 8.6269e+03 ± 9.1293e+03  

              

  
f03 2.3614e+05 ± 2.2746e+04 1.8117e+05 ± 2.3514e+04 

 
              
                f04 2.8243e+01 ± 1.0553e+01 7.6648e+01 ± 5.7493e+01  
     TABLE II          f05 1.8860e+02 ± 2.4693e+01 1.0500e+02 ± 6.9513e+01  

THE RESULTS OF THE PROPOSED ABC AND THE STANDARD ABC FOR    f06 2.6372e-11 ± 2.7327e-11  3.8014e-07 ± 1.2125e-06  
     D=30.          f07 2.0766e+02 ± 2.0122e+01 2.6576e+02 ± 2.1530e+01  
                f08 2.0371e+02 ± 2.2103e+01 9.2334e+01 ± 5.6968e+01  
                f09 4.8024e+03 ± 1.5977e+03 6.7129e-01 ± 1.3322e+00  
            

  
f10 4.1685e+03 ± 3.2987e+02 8.9147e+03 ± 7.8189e+02 

 
     Dim=30      
        

 

 

  
f11 4.0288e+02 ± 1.3821e+02 6.7963e+01 ± 2.5719e+01 

    ABC    MABC  
 No.  Mean±STD   Mean±STD     f12 2.3557e+06 ± 1.2795e+06 1.6678e+06 ± 1.2976e+06  
        

 

 

  
f13 2.0207e+03 ± 1.8046e+03 3.9174e+03 ± 5.4407e+03 

  f01 1.6898e+02 ± 2.1507e+02  6.1062e+03 ± 5.9425e+03  
 f03 1.1509e+05 ± 1.4640e+04  6.7823e+04 ± 1.4275e+04     f14 5.0028e+05 ± 3.5159e+05 9.6200e+04 ± 6.5930e+04  
 f04 2.7357e+01 ± 2.8225e+01  7.8688e+01 ± 1.0328e+01     f15 3.7270e+03 ± 4.9983e+03 4.3065e+03 ± 7.0365e+03  
 f05 8.1647e+01 ± 1.0381e+01  4.1425e+01 ± 2.3736e+01     f16 1.2131e+03 ± 1.9501e+02 9.3437e+02 ± 2.6715e+02  
 f06 3.6442e-11 ± 3.4981e-11  3.5210e-08 ± 1.9603e-07     f17 7.9360e+02 ± 1.6930e+02 6.0028e+02 ± 1.4711e+02  
 f07 9.5713e+01 ± 8.7584e+00  1.0045e+02 ± 2.1793e+01     f18 9.1804e+05 ± 5.0590e+05 6.6607e+05 ± 3.0892e+05  
 f08 8.4685e+01 ± 1.3371e+01  3.2587e+01 ± 2.0397e+01     f19 1.0628e+04 ± 4.5469e+03 1.6558e+04 ± 1.1175e+04  
 f09 7.5300e+02 ± 3.6322e+02  8.4399e-02 ± 1.4423e-01     f20 6.0721e+02 ± 1.3371e+02 4.9127e+02 ± 1.8199e+02  
 f10 2.2359e+03 ± 3.0242e+02  3.8857e+03 ± 4.6147e+02     f21 3.9717e+02 ± 2.1157e+01 3.4590e+02 ± 7.3201e+01  
 f11 3.2034e+02 ± 2.6529e+02  5.0371e+01 ± 2.7469e+01     f22 1.7025e+03 ± 2.3647e+03 5.9079e+03 ± 4.3983e+03  
 f12 2.6946e+05 ± 1.2493e+05  1.8156e+05 ± 1.7753e+05     f23 6.4716e+02 ± 4.7754e+01 4.9984e+02 ± 3.9660e+01  
 f13 7.1742e+03 ± 6.4374e+03  1.8520e+04 ± 1.9421e+04     f24 9.9566e+02 ± 6.8051e+01 7.0949e+02 ± 2.3124e+01  
 f14 1.0383e+05 ± 1.0512e+05  7.6468e+03 ± 4.3282e+03     f25 5.0962e+02 ± 1.8026e+01 5.2136e+02 ± 4.1809e+01  
 f15 1.6948e+03 ± 2.1068e+03  7.2340e+03 ± 8.7338e+03     f26 1.0762e+03 ± 1.3560e+01 1.8690e+03 ± 1.7492e+02  
 f16 4.9823e+02 ± 1.5250e+02  2.2141e+02 ± 9.5566e+01     f27 6.3392e+02 ± 2.3101e+01 5.9184e+02 ± 4.1107e+01  
 f17 1.8307e+02 ± 7.3326e+01  8.2641e+01 ± 2.0586e+01     f28 4.8365e+02 ± 8.8363e+00 4.8929e+02 ± 2.0352e+01  
 f18 2.0693e+05 ± 1.2415e+05  1.6701e+05 ± 9.7699e+04     f29 1.0526e+03 ± 1.2667e+02 5.8080e+02 ± 1.3456e+02  
 f19 2.2320e+03 ± 2.5114e+03  2.7095e+03 ± 3.3063e+03     f30 6.8908e+05 ± 5.4594e+04 1.0297e+06 ± 2.9224e+05  
 f20 1.7235e+02 ± 7.3130e+01  5.3479e+01 ± 3.3372e+01    wins    13         16    
 f21 2.4379e+02 ± 7.3699e+01  2.4905e+02 ± 2.1369e+01                        
 f22 1.0175e+02 ± 1.6094e+00  1.0045e+02 ± 1.4775e+00                        
 f23 4.0148e+02 ± 2.2839e+01  3.7903e+02 ± 8.5145e+00                        
 f24 2.3865e+02 ± 1.2334e+02  4.9268e+02 ± 1.5396e+01  combinations of these EA approaches with the NFS are rep- 
 f25 3.8426e+02 ± 8.3505e+01  3.8777e+02 ± 9.7607e-01  resented as NFS  DE, NFS  PSO, NFS  GA, and NFS  ABC,  f26 2.1507e+02 ± 2.9292e+01  1.3162e+03 ± 8.6547e+01      

 f27 5.1108e+02 ± 4.6025e+00  5.0784e+02 ± 5.3992e+00  respectively. For a meaningful comparison, we set the same 
 f28 4.0019e+02 ± 3.1552e+00  3.7880e+02 ± 6.7878e+01  population size and number of generations for all competitive 
 f29 5.8169e+02 ± 7.9435e+01  4.6271e+02 ± 5.3510e+01  

algorithms with 50 and 2000, respectively. Moreover, the  f30 5.0960e+03 ± 1.8174e+03  5.5047e+03 ± 3.2918e+03  
             

NFS ABC and the proposed NFS MABC adopt the same  wins   13     16    
                                   

             criteria, limit is set to five times of the problem dimension, to 
             abandon exhausted solutions. Tab. IV gives the descriptions of 
in advance. Two competitive algorithms perform each function dynamic system processing problems used in this study, where 
31 runs, and the maximum function evaluations is defined as y(t) and u(t) are current state of the dynamic systems as the 
10000 × D. The common parameters, including population input, and y(t + 1) is the desired output.     

size and limit, are set to 50 and 5 × D, respectively. The             2πt 
(16) experimental results are shown in Tabs. II, III. The mean and          u(t) = sin(  ).  

           

standard deviation of error values, error values are calculated             100       
 

In problem 1, the system has one output and a control input. by f(~x) − f(~x∗) as illustrated in [16], are presented in these  
tables. From Tabs. II, III, the proposed method achieves a The training of the NFS involves 900-time steps datums gen- 
lower mean of error values than the standard ABC in most erated as described in [2]. The input is i.i.d. uniformly random 
cases.            sequence over [−2, 2] for the first half of the 900-time steps 

B. Indentification of dynamic systems 
    and the remaining time steps are given by a sinusoid function 
    1.05sin(πt/45). The testing signal is generated by (15). We              

In this section, four function approximation problems are follow the same protocols as described in [2] to obtain the 
provided to verify the feasibility and effectiveness of the training and test data. Tab. V gives a detailed description of 

proposed method. Moreover, different kinds of EAs as com- the training and testing reports for each combination of NFS. 
petitors are engaged to optimize the NFS, including DE, PSO, Fig. 2 depicts the difference of identification results between 
GA, and standard ABC. For the convenience of description, the the NFS MABC and the actual system output. 
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  sin(πt/25),             t < 250,  
 −                ≤  

                  

 u(t) = 1, 1, 
             250 t < 500, (15) 

                500 ≤ t < 750,  
                     
  

0.3sin(πt/25) + 0.1sin(πt/32) + 0.6sin(πt/10), 750 ≤ t < 1000. 

 

   
      TABLE IV        
 NONLINEAR DYNAMIC SYSTEMS AND CORRESPONDING PARAMETERS USED TO EVALUATE IN THIS WORK.  
                     
    No. of 

System 
             

Problem No. Input of NFS  training/testing              
    data                 

1 y(t), u(t)   900/1000 y(t + 1) = 0.72y(t) + 0.025y(t − 1)u(t − 1) + 0.01u2(t − 2) + 0.2u(t − 3)  

2 y(t), u(t) 
  

900/1000 
y(t + 1) = f (y(t), y(t − 1), y(t − 2), u(t), u(t − 1)) ,  

  where f(x1, x2, x3, x4, x5) = x1x2x3x5(x3−1)+x4  
      1+x2 +x2   
                 3 2   

1 y(t), u(t)   200/300 y(t + 1) =   y(t)  + u3(t)      
  y 2 (t)+1      

                 

2 x(t − 24), x(t − 18), 500/500  dx(t) = 0.2x(t−τ)  0.1x(t)     
      

 x(t − 12), x(t − 6)   dt 1+x10(t−τ) −        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Simulation result of dynamic system problem using the 
proposed NFS MABC with three rules in problem 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Simulation result of dynamic system problem using the 
proposed NFS MABC with three rules in problem 2.  

 
 

In problem 2, the same protocols are adopted as in 
Problem 1 to generate the training data and testing data 
sets. Tab. VI shows the result reports, including the 
number of rules generated, the number of free 
parameters and root-mean-square errors (RMSE) of all 
comparative models for training and testing. Fig. 3 shows 
the prediction results of the proposed NFS MABC.   

In problem 3, we use the control input by (16) to generate the 
data sets for training and testing purpose and the system output 
y(t) is bounded within the range [−2, 2], and y(0) = 0. Moreover, 
the suggestion by [4] is adopted to use 200 samples as the 
training set. Tab. VII and Fig. 4 show the learning performance of 
all related NFSs and the simulation results, respectively. The 
prediction curve by the proposed method has a perfect match 
with the actual response of the system.  

Problem 4, known as the Mackey-Glass chaotic time series, is 
a time series prediction problem, which is generated by the delay 
differential equation as listed in Tab. IV. In the equation, 

 
τ is set to 17, and the initial value of x is given as x(0) = 1.2. 
The system predicts x(t) using the tuple of four past states 
[x(t −24), x(t −18), x(t −12), x(t −6)]. As suggestion in [2], [4], 
[17], total 1000 patterns are generated from time step 124 to 
1123 to form training data sets with the first 500 patterns, and 
the remainings for testing. The predicted result is drawn in 
Fig. 5, and the learning performance of competitors is 
summarized in Tab. VIII. The performance of the proposed 
NFS MABC surpasses than other NFSs.   

V. CONCLUSIONS  
In this paper, a modified ABC with a self-adaptive mecha-nism 

is introduced to learn the parameters of a TSK-type NFS for 
solving the dynamic system identification problems. For 
constructing the NFS model, an adaptive clustering method is 
employed to generate fuzzy rules automatically. Moreover, the 
TSK-type reasoning is applied for the consequent part of each 
fuzzy rule. All free parameters, including the premise and 
subsequent reasoning parts in the NFS, are adjusted by the 
proposed MABC for finding better values. To verify the 
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TABLE V 

PERFORMANCE OF COMPETITORS FOR THE PROBLEM 1. 
 

       NFS DE NFS PSO NFS GA NFS ABC  NFS MABC  
                               

 No. of rules 3   3  3  3  3  
 No. of parameters 21  21  21 21 21  
 Train RMSE 

0.0937 ± 0.0009 
 

0.0961 ± 0.0012 
 

0.0970 ± 0.0006 0.0929 ± 0.0005 0.0924 ± 0.0003 
 

 (Mean±STD)    
 Test RMSE 

0.0294 ± 0.0026 
 

0.0320 ± 0.0020 
 

0.0323 ± 0.0041 0.0302 ± 0.0038 0.0276 ± 0.0029 
 

 (Mean ± STD)    
                                 

                TABLE VI             
          PERFORMANCE OF COMPETITORS FOR THE PROBLEM 2.        
                          
       NFS DE NFS PSO NFS GA NFS ABC  NFS MABC  
                               

 No. of rules 3   3  3  3  3  
 No. of parameters 21  21  21 21 21  
 Train RMSE 

0.0660 ± 0.0053 
 

0.0700 ± 0.0050 
 

0.0731 ± 0.0051 0.0649 ± 0.0057 0.0635 ± 0.0065 
 

 (Mean±STD)    
 Test RMSE 

0.0297 ± 0.0104 
 

0.0383 ± 0.0024 
 

0.0404 ± 0.0102 0.0222 ± 0.0400 0.0218 ± 0.0069 
 

 (Mean ± STD)    
                                 

                TABLE VII             
          PERFORMANCE OF COMPETITORS FOR THE PROBLEM 3.        
                          
       NFS DE  NFS PSO  NFS GA NFS ABC  NFS MABC  
                          

 No. of rules  3    3     3   3  3  
 No. of parameters  21    21   21  21  21  
 Train RMSE  

0.0137 ± 0.0087 
 

0.0189 ± 0.0083 
 

0.00235 ± 0.0091 0.00120 ± 0.0063 
 

0.0094 ± 0.0064 
 

 (Mean±STD)      
 Test RMSE  

0.0141 ± 0.0091 
 

0.0194 ± 0.0085 
 

0.0242 ± 0.0100 0.0123 ± 0.0066 
 

0.0097 ± 0.0067 
 

 (Mean ± STD)      
                                 

                TABLE VIII             
          PERFORMANCE OF COMPETITORS FOR THE PROBLEM 4.        
              
       NFS DE NFS PSO NFS GA NFS ABC  NFS MABC  
                     

 No. of rules 3   3  3  3  3  
 No. of parameters 39  39  39 39 39  
 Train RMSE 

0.0359 ± 0.0234 
 

0.1047 ± 0.0543 
 

0.1007 ± 0.0360 0.0019 ± 0.0088 0.0161 ± 0.0084 
 

 (Mean±STD)    
 Test RMSE 

0.0368 ± 0.0024 
 

0.1064 ± 0.0553 
 

0.1025 ± 0.0361 0.0193 ± 0.0087 0.0161 ± 0.0082 
 

 (Mean ± STD)    
                                  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Simulation result of dynamic system problem using the 
proposed NFS MABC with three rules in problem 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Simulation result of Mackey-Glass chaotic series using the 
proposed NFS MABC with three rules in problem 4.  

 
 
 

1508 



 
general ability of the proposed MABC, numerical optimization 
problems are concluded with the standard ABC algorithm on 
two problem sizes. The experimental results show that the 
proposed algorithm performs better than the standard ABC 
on most mathematical optimum problems. To verify the per-
formance bring up the proposed method, several 
evolutionary algorithms are considered with the same NFS 
model. The simulation results show that the proposed MABC 
algorithm made the proposed NFS reaps better 
approximation results than other evolutional approaches. 
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