
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

A self-adaptive artificial bee colony algorithm
with local search for TSK-type neuro-fuzzy

system training

Kuang-Pen Chou Chin-Teng Lin Wen-Chieh Lin
Institute of Computer Science and Faculty of Engineering and Department of Computer Science

Engineering Information Technology National Chiao-Tung University
National Chiao-Tung University University of Technology Sydney Hsinchu, Taiwan

Hsinchu, Taiwan Sydney, Australia wclin@cs.nctu.edu.tw
kpchou.cs00g@nctu.edu.tw Chin-Teng.Lin@uts.edu.au

Abstract—In this paper, we introduce a self-adaptive artificial
bee colony (ABC) algorithm for learning the parameters of a
Takagi-Sugeno-Kang-type (TSK-type) neuro-fuzzy system
(NFS). The proposed NFS learns fuzzy rules for the premise part
of the fuzzy system using an adaptive clustering method
according to the input-output data at hand for establishing the
network structure. All the free parameters in the NFS, including
the premise and the following TSK-type consequent parameters,
are optimized by the modified ABC (MABC) algorithm.
Experiments involve two parts, including numerical optimization
problems and dynamic system identification problems. In the first
part of investigations, the proposed MABC compares to the
standard ABC on mathematical optimization problems. In the
remaining experiments, the performance of the proposed method
is verified with other metaheuristic methods, including differential
evolution (DE), genetic algorithm (GA), particle swarm
optimization (PSO) and standard ABC, to evaluate the
effectiveness and feasibility of the system. The simulation results
show that the proposed method provides better approximation
results than those obtained by competitors methods.

Index Terms—Evolutionary algorithm (EA), Artificial bee
colony (ABC)optimization, Neuro-fuzzy system (NFS)

I. INTRODUCTION
Dynamic systems are commonly found in many real-world

applications, such as control, pattern recognition, and other
engineering problems [1] [2] [3]. Especially in control areas, the
goal is to develop a system to describe the time dependence of a
serial of given states in a geometrical manifold. At any given
time, the state of a dynamic system, which is represented by a
tuple of real numbers, corresponds to a particular point in the
state space. The output of a dynamic system is derived with
evolution rules from past states, including both input and output
before, and current states.

The integration of fuzzy logic and artificial neural network
is widely applied to construct control systems for solving non-
linear problems in the machine learning community [2] [3],
which has advantages from both high-level reasoning ability
of fuzzy logic and low-level learning power of neural network.
Moreover, the neuro-fuzzy system (NFS) transforms
humanlike decision-making as a family of fuzzy IF-THEN

rules to express the locally linear relations between input and
output. By blending linear relations via fuzzy membership
functions without complicated mathematics, the overall NFS
can be established to present a non-linear model.

One critical design issue while building a NFS is to deter-mine
the number of fuzzy rules used to cover each input di-mension.
Most researchers employ a firing strength criterion to generate
fuzzy sets automatically. Numerous algorithms have been
developed to find proper parameters in the learning phase.
These learning methods can be categorized into two groups:
1) derivate-based and 2) metaheuristic-based methods. The
derivative-based method is also known as back-propagation
(BP) method [4], which aims to minimize the cost function via
propagating the gradient value of output error to adjust the
value of each neuron. In most cases, the BP method works
efficiently to find a set of parameters. However, it may fall
into locally optimal solution due to its intrinsic property to find
global optimum solutions hard. In contrast, numerous
metaheuristic-based methods have introduced [5], which
finds global optimums via bio-inspired methods. The
evolutionary algorithm (EA) is one of the representative
method, which obtains global optimums out by mimicking
evolutionary mech-anism and behavior in a biologic group.
These nature-inspired based techniques have been widely
applied in various areas, including optimization problems,
identification problems and classification problems.

In comparison with the derivative-based methods, the EA
commonly utilizes the information obtained from the individ-ual in
human-made population without any gradient informa-tion [6].
EA has a higher chance to escape from local optimal solutions
by operating different mutation mechanism. More-over,
crossover mechanism promotes the information to be exchanged
within the population to obtain better search results as possible,
and elimination mechanism replaces unsuitable solution with a
new one to improve the search effectivity.

In literature, different protocols of swarm intelligence-based
algorithms, including particle swarm optimization (PSO), ge-netic
algorithm (GA), differential evolution (DE) and artificial

978-1-7281-2153-6/19/$31.00 c 2019 IEEE 1502

Layer 2 (Fuzzification Layer): Each node in this layer

defines a membership function that calculates the output
from the previous layer into a fuzzy set.

ui1 −

m
i,j

2
u2 = exp . (2)

−

i,j σi,j !

u1i = xi.

bee colony (ABC), have been proposed to learn the
parameters of artificial neural networks [7] [5] [8]. Among
the various algorithms mentioned above, the ABC has
shown an impres-sive performance on different constraint
problems. The ABC is introduced by Karaboga [9], which
imitates the foraging behavior of natural honeybees, and
evaluated on numerical optimization problems [10].

In this study, we introduce a modified ABC (MABC) algorithm to
train the parameters of TSK-type NFS, named NFS MABC, for
solving non-linear system problems. The proposed NFS MABC
comprises two parts, including the structure learning and the
parameter learning. In the structure learning phase, the number of
fuzzy rules for each input dimension is determined with an
adaptive clustering method. Moreover, the semantic term of first-
order TSK-type reasoning is regarded as the subsequent clause
of each fuzzy rule. In the parameter learning phase, the proposed
MABC is applied for parameter optimization by a batch learning
mode. The MABC is different from the standard ABC. We
introduce an adaptive mutation parameter to make the process of
evolution more efficient. Moreover, ranking-based weights are
utilized to keep the difference significantly between individuals.
Finally, the search strategy of local neighbor is applied to avoid
convergence early to trap at local optimal solutions.

The remainder of this study is organized as follows. Section
II introduce the structure of the NFS. Section III presents a
description of the standard ABC and the scheme of pro-posed
MABC. In Section IV, numerical optimization and dynamic
system identification problems are used to reveal the
performance of the proposed method, respectively. Finally,
conclusion is given in Section V.

II. STRUCTURE OF THE NEURO-FUZZY SYSTEM

In this section, we introduce the architecture of the NFS used in
this study. The structure of the NFS is established according to
the pairs of the input-output datums at hand with an adaptive
clustering algorithm and the TSK-type fuzzy reasoning. The
proposed NFS comprises five layers and nodes in each layer
serve as neurons. Fig.1 depicts the overview of the NFS. In the
premise part of the NFS, distinct fuzzy sets are applied to
generate fuzzy rules. Moreover, the first-order TSK-type fuzzy
reasoning serves as the consequent part of each fuzzy IF-THEN
rule. Note that the structure of the NFS is determined in the first
generation via go through all training datum pairs and obtained
the initial weights. In the remaining generations, the architecture
of the NFS is fixed, the learning procedure only adjusts values of
parameters in the NFS. The mathematical functions of each layer
in the NFS are given as

follows. The input of the NFS is defined

 , X = (x1, . . . ,
 where is the dimenson of the input ~ . X

Layer 1 (Input Layer): Each node in layer 1 corresponds
to one input variable and transmit it to next layer as input
with no computation.

where mi,j and σi,j denotes the mean and variance of the
Gaussian membership function for the jth term of the ith
input variable xi, respectively.

Layer 3 (Spatial Firing Layer): Each node in layer 3
corresponds to one fuzzy rule and performs as a spatial rule
node. A spatial firing strength u3j is calculated using fuzzy
AND operator to perform the premise part of each rule j. The
spatial firing strength is defined as the expression below.

Y
u3 = F j = u2 . (3)

j i,j
j

Layer 4 (Consequent Layer): Each node in layer 3 has
a corresponding node in this layer named as a
consequent node. Nodes in layer 4 perform a linear
combination of the input variables. The output of each
consequent node is defined as follows:

Xn

u4 = a
i,j

x (t). (4)
j i

i=1
where ai,j is a weight linking from a node in the previous
layer to a node in the current layer.

Layer 5 (Output Layer): The node in layer 5 is the output
node of the NFS, which performs defuzzification operation to
integrate all of actions of previous layers as the expression
below. P P F

h

 R Fj (n ai,jxi)
y = uj5 = j=1 i=1 i

, (5)

P
R

 j=1 j
where R and y are the total number of fuzzy rules and the
output of the NFS, respectively.

III. PARAMETER OPTIMIZATION IN THE NFS

A. The standard ABC
The ABC algorithm, introduced by Karaboga [9], imitates the

foraging behavior of natural bee swarms. In comparison with
other inspired-heuristic approaches, except the essential
parameters, the ABC algorithm only requires one additional
parameter, limit, to determine when to abandon exhausted so-
lutions. The foraging behavior in the ABC algorithm is treated as
finding an optimum solution for a particular problem. Each food
source in the ABC algorithm corresponds to a possible solution
for the target problem; namely, the amount of nectar contained in
a food source indicates the adaptability of the solution to the
problem. In the standard ABC algorithm, three kinds of artificial
agents are defined, including employed bees, onlooker bees,
and scout bees, and corresponding to different stages with
distinct search strategies, respectively. Moreover, the number of
employed bees and onlooker bees are often equal to the size of
the colony. The main learning steps of the

(1) standard ABC algorithm are given as follows:

1503

Fig. 1. Structure of the neuro-fuzzy system which is established using adaptive clustering method and TSK-type fuzzy reasoning to express
the IF-THEN rules.

• Initialize the population and its corresponding parameters
• REPEAT

– Employed bees explore the environment
according to its previous memory.

– Onlooker bees search for better sources near the
hive depending on the feedback from employed
bees on the dancing area.

– Scout bees assign new positions of food sources
to replace exhausted food sources.

• UNTIL (terminated condition)
At the first step, the initial population of SN food sources,

~ ~ , is generated randomly, where is the

X = X1,...,XSN SN
number of individuals in the population. Each food source ~ Xi

is a D-dimensional vector presented as ~

Xi = (xi,1, . . . , xi,D)
and is initialized using (6) , where maxj and minj are the upper
bound and the lower bound at dimension j, respectively.

xi,j = minj + rand(0, 1)j(maxj − minj). (6)
In every search procedure, an employed bee or an

onlooker bee randomly selects a neighbor as the
reference and modifies on arbitrary one parameter to
produce an offspring source as below:

vj = xi,j + φj(xi,j − xk,j), (7)
where k ∈ [1, . . . , SN] but different from i and, j ∈
[1, . . . , D]. φj is a scaling factor in the interval of [-1,1] to
determine the offset between the current source and the
candi-date source. The quality of the candidate source,
fitness value, is computed according to its cost value. The
greedy method is applied to the sifting mechanism;
namely, a candidate solution with higher fitness than its
parent solution, then the older one will be replaced.

Although the number of employed bees and onlooker bees
is equal to the size of the population, the selection strategy is
different in these two phases. At employed bee phase, each
food source is ensured to be investigated once in each
generation. In contrast to a fair selection, a food source be

chosen by an onlooker bee to explore according to its
fitness value. A source with higher fitness value has a
higher chance to be chosen to investigate by the roulette
wheel method presented as the following expression.

probi =
 f iti

. (8)

P

SN

 i=1
f it

i
(10) vj = xm,j + φj(xn,j − xo,j).

In the scout bee stage, food sources which can not be
improved at least a predefined limit times of exploration
will be abandoned by scout bees and replaced by new
one using (6).

B. The proposed Modified ABC

The previous section introduced the fundamental concept of
the ABC algorithm. In this section, we present a modi-fied ABC
named as MABC. Since the ABC algorithm has been shown to
be competitive with other conventional bio-inspired algorithms on
numerical optimization problem, many researchers carry out in-
depth research on ABC. Moreover, the ABC algorithm is widely
used to solve engineering problems. The improvement of ABCs
can be roughly divided into three categories: 1) introduce new
solution search equations [11]
[12] [13], 2) blend with other operations [14] [15], and 3)
adopt a multi-population strategy [10].

In the standard ABC, only one dimension of each consid-ered
source changes in each investigation that causes slow
convergence speed on high dimension problems. The previous
study introduced a mutation parameter, MR, to accelerate the
evolution speed. Each position of a considered food source has
a chance to change depending on the predefined mutation rate;
namely, if a random number is large than the preset value, the
value of that position keep. In this study, we follow the concept of
mutation and integrate the trail times of each food source with an
adaptive mutation scheme as shown in (9), where trails(i) is the
number of exploration times for source i that cannot be
improved. With the increase of the exploration

1504

 candj =
(
 xji,j. if rand(0, 1)j ≥ M R · exp− (rand(0,1)j·trials(i)) ; otherwise, (9)

 v limit

vj = xi,j + φj(xm,j − xn,j), f iti ≥ f itm and f iti ≥ f itn; otherwise, (11)

 x
lbest,j

+

φ

j
(x

lbest,j−xi,j
),

lbest = k, k ∈ [m, n], s.t. f itk ≥ max(f itm, f itn).
times that a food source cannot be improved, an artificial agent shown as algorithm 1.
should employ mutation strategy on this food source carefully

new

probi =

 wi
. (13)

and discreetly.

P
SN

Besides, it is commonly a challenging issue to get a bal- i=1
w

i
ance between exploration and exploitation when researchers

oppoj = rand(0, 1)j(maxj + minj) − xi,j. (14)

develop EA algorithms. In this study, we adopt a similar search

strategy to the standard ABC, but a different formula in the

employed bees stage, to maintain the ability of exploration as Algorithm 1: Pseudo code of the proposed MABC
shown in (10), where m, n, o ∈ [1, SN] and m 6= n 6= o 6=
i. 1: Initialize population using (6) and the required
The information of the local best solution is utilized as parameters
the guide term to improve the ability of exploitation in the 2: Evaluate the current population
onlooker bee stage. For each search iteration, an onlooker 3: set F Es = SN and Gen = 0
bee not only selects a food source according to the selection 4: repeat
probability but also randomly picks two of its neighbors for 5: //**Employed bee stage**//
competition to produce local best source. The one has a higher 6: Employed bees explore all food sources using (10).
fitness value than others is regarded as the local best term and 7: //**Information exchange**//
be used to dominate the search process as (11). 8: Assign each food source a probability to be chosen

Moreover, we notice that the difference between food using (13) with its corresponding weight depending on
sources becomes ambiguous when they have similar fitness. the ranking order as (12).
The phenomenon causes that onlooker bees are hard to choose 9: //**Onlooker bee stage**//
a solution with distinguished to explore; in other words, the 10: Onlooker bee selects a food source by roulette wheel
ability of exploration in the onlooker bee stage decreases. To selection.
maintain the difference between individuals, we introduce a 11: Onlooker bee searches the selected source and its
ranking-based weight mechanism to replace the probability local neighbors using (11).
calculated directly according to fitness values of each food 12: //**Scout bee stage**//
source. In the information exchange stage, each individual 13: Scout bees examine food sources and replace
in the population are sorted according to its fitness value exhausted sources by (6) and (14).
in descending order and assigned weights according to the 14: Record the best food so far
arrangement order by (12). 15: Gen = Gen + 1
 16: until Gen=MaxGen
 17: Return the optimal parameters

1

− 1 (δSNr−1)2

(12)

 2

w
r
=

 δSN√ 2π exp ,
IV. SIMULATION RESULTS

where r is the rth solution, δSN is the standard deviation, and δ
is a adjustable parameter. When δ is large, the weights of
individuals are near uniform; otherwise, the best-ranking soution
are strongly preferred in the onlooker bee stage. The probability
of each solution to be chosen is computed by (13). As mentioned
before, solutions cannot be improved furthermore will be
abandoned in the scout bee stage. Inspired by opposition-based
learning [15], the opposite position of the poor source is
evaluated to gain the opportunity to escape from a local optimum
to find a better solution. Using (6) and (14) to generate two
candidate solution, and the one has higher fitness will be
preserved. The overview of the proposed MABC is

To verify the performance of the proposed method, we

engage two experiments, including numerical optimization
and dynamic system identification, in this section.

A. Numerical optimization problems

We evaluate the performance of the proposed MABC on
scalable numerical benchmark functions provided by CEC 2017
special session [16] and compare it with the standard ABC. Tab.
I lists the function types of the benchmark func-tions. In this
study, the dimensions of the benchmark functions are set to D =
30, and 50. Each function is regarded as a black box, although
the values of the optimal solutions are known

1505

 TABLE I TABLE III
 FUNCTION TYPES OF CEC’17 BENCHMARK FUNCTIONS. THE RESULTS OF THE PROPOSED ABC AND THE STANDARD ABC FOR
 D=50.

 Function Type Dim=50
 Unimodal Multimodal Hybrid Composition ABC MABC

 Functions Functions Functions Functions No. Mean±STD Mean±STD
Function No. f1, f3 f4, . . . , f10 f11 . . . , f20 f21, . . . , f30 f01 1.6401e+03 ± 1.7755e+03 8.6269e+03 ± 9.1293e+03

f03 2.3614e+05 ± 2.2746e+04 1.8117e+05 ± 2.3514e+04

 f04 2.8243e+01 ± 1.0553e+01 7.6648e+01 ± 5.7493e+01
 TABLE II f05 1.8860e+02 ± 2.4693e+01 1.0500e+02 ± 6.9513e+01

THE RESULTS OF THE PROPOSED ABC AND THE STANDARD ABC FOR f06 2.6372e-11 ± 2.7327e-11 3.8014e-07 ± 1.2125e-06
 D=30. f07 2.0766e+02 ± 2.0122e+01 2.6576e+02 ± 2.1530e+01
 f08 2.0371e+02 ± 2.2103e+01 9.2334e+01 ± 5.6968e+01
 f09 4.8024e+03 ± 1.5977e+03 6.7129e-01 ± 1.3322e+00

f10 4.1685e+03 ± 3.2987e+02 8.9147e+03 ± 7.8189e+02

 Dim=30

f11 4.0288e+02 ± 1.3821e+02 6.7963e+01 ± 2.5719e+01

 ABC MABC
 No. Mean±STD Mean±STD f12 2.3557e+06 ± 1.2795e+06 1.6678e+06 ± 1.2976e+06

f13 2.0207e+03 ± 1.8046e+03 3.9174e+03 ± 5.4407e+03

 f01 1.6898e+02 ± 2.1507e+02 6.1062e+03 ± 5.9425e+03
 f03 1.1509e+05 ± 1.4640e+04 6.7823e+04 ± 1.4275e+04 f14 5.0028e+05 ± 3.5159e+05 9.6200e+04 ± 6.5930e+04
 f04 2.7357e+01 ± 2.8225e+01 7.8688e+01 ± 1.0328e+01 f15 3.7270e+03 ± 4.9983e+03 4.3065e+03 ± 7.0365e+03
 f05 8.1647e+01 ± 1.0381e+01 4.1425e+01 ± 2.3736e+01 f16 1.2131e+03 ± 1.9501e+02 9.3437e+02 ± 2.6715e+02
 f06 3.6442e-11 ± 3.4981e-11 3.5210e-08 ± 1.9603e-07 f17 7.9360e+02 ± 1.6930e+02 6.0028e+02 ± 1.4711e+02
 f07 9.5713e+01 ± 8.7584e+00 1.0045e+02 ± 2.1793e+01 f18 9.1804e+05 ± 5.0590e+05 6.6607e+05 ± 3.0892e+05
 f08 8.4685e+01 ± 1.3371e+01 3.2587e+01 ± 2.0397e+01 f19 1.0628e+04 ± 4.5469e+03 1.6558e+04 ± 1.1175e+04
 f09 7.5300e+02 ± 3.6322e+02 8.4399e-02 ± 1.4423e-01 f20 6.0721e+02 ± 1.3371e+02 4.9127e+02 ± 1.8199e+02
 f10 2.2359e+03 ± 3.0242e+02 3.8857e+03 ± 4.6147e+02 f21 3.9717e+02 ± 2.1157e+01 3.4590e+02 ± 7.3201e+01
 f11 3.2034e+02 ± 2.6529e+02 5.0371e+01 ± 2.7469e+01 f22 1.7025e+03 ± 2.3647e+03 5.9079e+03 ± 4.3983e+03
 f12 2.6946e+05 ± 1.2493e+05 1.8156e+05 ± 1.7753e+05 f23 6.4716e+02 ± 4.7754e+01 4.9984e+02 ± 3.9660e+01
 f13 7.1742e+03 ± 6.4374e+03 1.8520e+04 ± 1.9421e+04 f24 9.9566e+02 ± 6.8051e+01 7.0949e+02 ± 2.3124e+01
 f14 1.0383e+05 ± 1.0512e+05 7.6468e+03 ± 4.3282e+03 f25 5.0962e+02 ± 1.8026e+01 5.2136e+02 ± 4.1809e+01
 f15 1.6948e+03 ± 2.1068e+03 7.2340e+03 ± 8.7338e+03 f26 1.0762e+03 ± 1.3560e+01 1.8690e+03 ± 1.7492e+02
 f16 4.9823e+02 ± 1.5250e+02 2.2141e+02 ± 9.5566e+01 f27 6.3392e+02 ± 2.3101e+01 5.9184e+02 ± 4.1107e+01
 f17 1.8307e+02 ± 7.3326e+01 8.2641e+01 ± 2.0586e+01 f28 4.8365e+02 ± 8.8363e+00 4.8929e+02 ± 2.0352e+01
 f18 2.0693e+05 ± 1.2415e+05 1.6701e+05 ± 9.7699e+04 f29 1.0526e+03 ± 1.2667e+02 5.8080e+02 ± 1.3456e+02
 f19 2.2320e+03 ± 2.5114e+03 2.7095e+03 ± 3.3063e+03 f30 6.8908e+05 ± 5.4594e+04 1.0297e+06 ± 2.9224e+05
 f20 1.7235e+02 ± 7.3130e+01 5.3479e+01 ± 3.3372e+01 wins 13 16
 f21 2.4379e+02 ± 7.3699e+01 2.4905e+02 ± 2.1369e+01
 f22 1.0175e+02 ± 1.6094e+00 1.0045e+02 ± 1.4775e+00
 f23 4.0148e+02 ± 2.2839e+01 3.7903e+02 ± 8.5145e+00
 f24 2.3865e+02 ± 1.2334e+02 4.9268e+02 ± 1.5396e+01 combinations of these EA approaches with the NFS are rep-
 f25 3.8426e+02 ± 8.3505e+01 3.8777e+02 ± 9.7607e-01 resented as NFS DE, NFS PSO, NFS GA, and NFS ABC, f26 2.1507e+02 ± 2.9292e+01 1.3162e+03 ± 8.6547e+01

 f27 5.1108e+02 ± 4.6025e+00 5.0784e+02 ± 5.3992e+00 respectively. For a meaningful comparison, we set the same
 f28 4.0019e+02 ± 3.1552e+00 3.7880e+02 ± 6.7878e+01 population size and number of generations for all competitive
 f29 5.8169e+02 ± 7.9435e+01 4.6271e+02 ± 5.3510e+01

algorithms with 50 and 2000, respectively. Moreover, the f30 5.0960e+03 ± 1.8174e+03 5.5047e+03 ± 3.2918e+03

NFS ABC and the proposed NFS MABC adopt the same wins 13 16

 criteria, limit is set to five times of the problem dimension, to
 abandon exhausted solutions. Tab. IV gives the descriptions of
in advance. Two competitive algorithms perform each function dynamic system processing problems used in this study, where
31 runs, and the maximum function evaluations is defined as y(t) and u(t) are current state of the dynamic systems as the
10000 × D. The common parameters, including population input, and y(t + 1) is the desired output.

size and limit, are set to 50 and 5 × D, respectively. The 2πt
(16) experimental results are shown in Tabs. II, III. The mean and u(t) = sin().

standard deviation of error values, error values are calculated 100

In problem 1, the system has one output and a control input. by f(~x) − f(~x∗) as illustrated in [16], are presented in these
tables. From Tabs. II, III, the proposed method achieves a The training of the NFS involves 900-time steps datums gen-
lower mean of error values than the standard ABC in most erated as described in [2]. The input is i.i.d. uniformly random
cases. sequence over [−2, 2] for the first half of the 900-time steps

B. Indentification of dynamic systems
 and the remaining time steps are given by a sinusoid function
 1.05sin(πt/45). The testing signal is generated by (15). We

In this section, four function approximation problems are follow the same protocols as described in [2] to obtain the
provided to verify the feasibility and effectiveness of the training and test data. Tab. V gives a detailed description of

proposed method. Moreover, different kinds of EAs as com- the training and testing reports for each combination of NFS.
petitors are engaged to optimize the NFS, including DE, PSO, Fig. 2 depicts the difference of identification results between
GA, and standard ABC. For the convenience of description, the the NFS MABC and the actual system output.

1506

 sin(πt/25), t < 250,
 − ≤

 u(t) = 1, 1,
 250 t < 500, (15)

 500 ≤ t < 750,

0.3sin(πt/25) + 0.1sin(πt/32) + 0.6sin(πt/10), 750 ≤ t < 1000.

 TABLE IV
 NONLINEAR DYNAMIC SYSTEMS AND CORRESPONDING PARAMETERS USED TO EVALUATE IN THIS WORK.

 No. of

System

Problem No. Input of NFS training/testing
 data

1 y(t), u(t) 900/1000 y(t + 1) = 0.72y(t) + 0.025y(t − 1)u(t − 1) + 0.01u2(t − 2) + 0.2u(t − 3)

2 y(t), u(t)

900/1000
y(t + 1) = f (y(t), y(t − 1), y(t − 2), u(t), u(t − 1)) ,

 where f(x1, x2, x3, x4, x5) = x1x2x3x5(x3−1)+x4
 1+x2 +x2
 3 2

1 y(t), u(t) 200/300 y(t + 1) = y(t) + u3(t)
 y 2 (t)+1

2 x(t − 24), x(t − 18), 500/500 dx(t) = 0.2x(t−τ) 0.1x(t)

 x(t − 12), x(t − 6) dt 1+x10(t−τ) −

Fig. 2. Simulation result of dynamic system problem using the
proposed NFS MABC with three rules in problem 1.

Fig. 3. Simulation result of dynamic system problem using the
proposed NFS MABC with three rules in problem 2.

In problem 2, the same protocols are adopted as in
Problem 1 to generate the training data and testing data
sets. Tab. VI shows the result reports, including the
number of rules generated, the number of free
parameters and root-mean-square errors (RMSE) of all
comparative models for training and testing. Fig. 3 shows
the prediction results of the proposed NFS MABC.

In problem 3, we use the control input by (16) to generate the
data sets for training and testing purpose and the system output
y(t) is bounded within the range [−2, 2], and y(0) = 0. Moreover,
the suggestion by [4] is adopted to use 200 samples as the
training set. Tab. VII and Fig. 4 show the learning performance of
all related NFSs and the simulation results, respectively. The
prediction curve by the proposed method has a perfect match
with the actual response of the system.

Problem 4, known as the Mackey-Glass chaotic time series, is
a time series prediction problem, which is generated by the delay
differential equation as listed in Tab. IV. In the equation,

τ is set to 17, and the initial value of x is given as x(0) = 1.2.
The system predicts x(t) using the tuple of four past states
[x(t −24), x(t −18), x(t −12), x(t −6)]. As suggestion in [2], [4],
[17], total 1000 patterns are generated from time step 124 to
1123 to form training data sets with the first 500 patterns, and
the remainings for testing. The predicted result is drawn in
Fig. 5, and the learning performance of competitors is
summarized in Tab. VIII. The performance of the proposed
NFS MABC surpasses than other NFSs.

V. CONCLUSIONS
In this paper, a modified ABC with a self-adaptive mecha-nism

is introduced to learn the parameters of a TSK-type NFS for
solving the dynamic system identification problems. For
constructing the NFS model, an adaptive clustering method is
employed to generate fuzzy rules automatically. Moreover, the
TSK-type reasoning is applied for the consequent part of each
fuzzy rule. All free parameters, including the premise and
subsequent reasoning parts in the NFS, are adjusted by the
proposed MABC for finding better values. To verify the

1507

TABLE V

PERFORMANCE OF COMPETITORS FOR THE PROBLEM 1.

 NFS DE NFS PSO NFS GA NFS ABC NFS MABC

 No. of rules 3 3 3 3 3
 No. of parameters 21 21 21 21 21
 Train RMSE

0.0937 ± 0.0009

0.0961 ± 0.0012

0.0970 ± 0.0006 0.0929 ± 0.0005 0.0924 ± 0.0003

 (Mean±STD)
 Test RMSE

0.0294 ± 0.0026

0.0320 ± 0.0020

0.0323 ± 0.0041 0.0302 ± 0.0038 0.0276 ± 0.0029

 (Mean ± STD)

 TABLE VI
 PERFORMANCE OF COMPETITORS FOR THE PROBLEM 2.

 NFS DE NFS PSO NFS GA NFS ABC NFS MABC

 No. of rules 3 3 3 3 3
 No. of parameters 21 21 21 21 21
 Train RMSE

0.0660 ± 0.0053

0.0700 ± 0.0050

0.0731 ± 0.0051 0.0649 ± 0.0057 0.0635 ± 0.0065

 (Mean±STD)
 Test RMSE

0.0297 ± 0.0104

0.0383 ± 0.0024

0.0404 ± 0.0102 0.0222 ± 0.0400 0.0218 ± 0.0069

 (Mean ± STD)

 TABLE VII
 PERFORMANCE OF COMPETITORS FOR THE PROBLEM 3.

 NFS DE NFS PSO NFS GA NFS ABC NFS MABC

 No. of rules 3 3 3 3 3
 No. of parameters 21 21 21 21 21
 Train RMSE

0.0137 ± 0.0087

0.0189 ± 0.0083

0.00235 ± 0.0091 0.00120 ± 0.0063

0.0094 ± 0.0064

 (Mean±STD)
 Test RMSE

0.0141 ± 0.0091

0.0194 ± 0.0085

0.0242 ± 0.0100 0.0123 ± 0.0066

0.0097 ± 0.0067

 (Mean ± STD)

 TABLE VIII
 PERFORMANCE OF COMPETITORS FOR THE PROBLEM 4.

 NFS DE NFS PSO NFS GA NFS ABC NFS MABC

 No. of rules 3 3 3 3 3
 No. of parameters 39 39 39 39 39
 Train RMSE

0.0359 ± 0.0234

0.1047 ± 0.0543

0.1007 ± 0.0360 0.0019 ± 0.0088 0.0161 ± 0.0084

 (Mean±STD)
 Test RMSE

0.0368 ± 0.0024

0.1064 ± 0.0553

0.1025 ± 0.0361 0.0193 ± 0.0087 0.0161 ± 0.0082

 (Mean ± STD)

Fig. 4. Simulation result of dynamic system problem using the
proposed NFS MABC with three rules in problem 3.

Fig. 5. Simulation result of Mackey-Glass chaotic series using the
proposed NFS MABC with three rules in problem 4.

1508

general ability of the proposed MABC, numerical optimization
problems are concluded with the standard ABC algorithm on
two problem sizes. The experimental results show that the
proposed algorithm performs better than the standard ABC
on most mathematical optimum problems. To verify the per-
formance bring up the proposed method, several
evolutionary algorithms are considered with the same NFS
model. The simulation results show that the proposed MABC
algorithm made the proposed NFS reaps better
approximation results than other evolutional approaches.

REFERENCES

[1] M. Emami, A. A. Goldenberg, and I. Trksen, “Fuzzy-logic control

of dynamic systems: from modeling to
design,” Engineering Applications of Artificial Intelligence, vol. 13, no. 1,
pp. 47 – 69, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197699000317

[2] C.-F. Juang, Y.-Y. Lin, and C.-C. Tu, “A recurrent self-evolving fuzzy
neural network with local feedbacks and its application to dynamic
system processing,” Fuzzy Sets and Systems, vol. 161, no. 19, pp.
2552 – 2568, 2010, theme: Neural Networks. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165011410001612

[3] K. Shihabudheen and G. Pillai, “Recent advances in
neuro-fuzzy system: A survey,” Knowledge-Based Systems, vol. 152, pp.
136 – 162, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950705118301825

[4] C.-F. Juang and C.-T. Lin, “An online self-constructing neural fuzzy
inference network and its applications,” IEEE Transactions on Fuzzy
Systems, vol. 6, no. 1, pp. 12–32, Feb 1998.

[5] M.-F. Han, C.-T. Lin, and J.-Y. Chang, “Differential evolution
with local information for neuro-fuzzy systems optimisation,”
Knowledge-Based Systems, vol. 44, pp. 78–89, 05 2013.

[6] I. Boussad, J. Lepagnot, and P. Siarry, “A survey on
optimization metaheuristics,” Information Sciences, vol. 237,
pp. 82 – 117, 2013, prediction, Control and Diagnosis
using Advanced Neural Computations. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025513001588

[7] C.-F. Juang, “A tsk-type recurrent fuzzy network for dynamic systems
processing by neural network and genetic algorithms,” IEEE Transac-
tions on Fuzzy Systems, vol. 10, no. 2, pp. 155–170, April 2002.

[8] D. Karaboga and E. Kaya, “Training anfis using artificial bee
colony algorithm for nonlinear dynamic systems identification,”
in 2014 22nd Signal Processing and Communications
Applications Conference (SIU), April 2014, pp. 493–496.

[9] D. Karaboga, “An idea based on honey bee swarm for
numerical opti-mization, technical report - tr06,” Technical
Report, Erciyes University, 01 2005.

[10] M. Zhao and P. Wang, “Multi-population artificial bee colony (mpabc)
algorithm for numerical optimization,” IOP Conference Series: Materials
Science and Engineering, vol. 452, no. 3, p. 032003, 2018. [Online].
Available: http://stacks.iop.org/1757-899X/452/i=3/a=032003

[11] G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm for
numerical function optimization,” Applied Mathematics and Com-putation,
vol. 217, no. 7, pp. 3166 – 3173, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0096300310009136

[12] A. Banharnsakun, T. Achalakul, and B. Sirinaovakul, “The best-so-far
selection in artificial bee colony algorithm,” Applied Soft Computing, vol.
11, no. 2, pp. 2888 – 2901, 2011, the Impact of Soft Computing for the
Progress of Artificial Intelligence. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494610003029

[13] Y. Xue, J. Jiang, B. Zhao, and T. Ma, “A self-adaptive artificial bee colony
algorithm based on global best for global optimization,” Soft Computing,
vol. 22, no. 9, pp. 2935–2952, May 2018. [Online]. Available:
https://doi.org/10.1007/s00500-017-2547-1

[14] F. Kang, J. Li, Z. Ma, and H. Li, “Artificial bee colony algorithm with local
search for numerical optimization,” JSW, vol. 6, pp. 490–497, 2011.

[15] S. Mahdavi, S. Rahnamayan, and K. Deb, “Opposition based learning: A
literature review,” Swarm and Evolutionary Computation, vol. 39, pp. 1 –
23, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2210650216304333

[16] N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, and P. N. Suganthan,

“Problem definitions and evaluation criteria for the cec 2017 special
session and competition on single objective real-parameter,” Nanyang
Technological University, Singapore, Tech. Rep., Nov. 2016.

[17] Y. Lin, J. Chang, and C. Lin, “Identification and prediction of
dynamic systems using an interactively recurrent self-evolving
fuzzy neural network,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 24, no. 2, pp. 310–321, Feb 2013.

1509

	2019 IEEE
	A+self-adaptive+artificial+bee+colony+algorithm+with

