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Abstract 

 

This paper presents a vibration-based damage identification method that utilises a 

“damage fingerprint” of a structure in combination with Principal Component Analysis 

(PCA) and neural network techniques to identify defects. The Damage Index (DI) 

method is used to extract unique damage patterns from a damaged beam structure with 

the undamaged structure as baseline. PCA is applied to reduce the effect of 

measurement noise and optimise neural network training. PCA-compressed DI values 

are, then, used as inputs for a hierarchy of neural network ensembles to estimate 

locations and severities of various damage cases. The developed method is verified by a 

laboratory structure and numerical simulations in which measurement noise is taken 

into account with different levels of white Gaussian noise added. The damage 

identification results obtained from the neural network ensembles show that the 

presented method is capable of overcoming problems inherent in the conventional DI 

method. Issues associated with field testing conditions are successfully dealt with for 

numerical and the experimental simulations. Moreover, it is shown that the neural 

network ensemble produces results that are more accurate than any of the outcomes of 

the individual neural networks. 
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1. Introduction 

 

During the years following World War II the building industry boomed worldwide. 

As a result, many civil structures are now, or will soon be, approaching their design 

lives. Since it is economically not possible to replace all of these aged structures, health 

monitoring and integrity assessment is necessary to ensure the reliability of the 

structures and the safety of the public. The dominant procedures for structural condition 

monitoring today are periodic visual inspections. These, however, are very time-

consuming and costly, and have limited capability to detect damage, especially when 

the damage occurs inside the structure where it is not visible (Abdel Wahab and De 

Roeck, 1999). Other non-destructive techniques rely, for instance, on acoustics, 

ultrasound, magnetic fields, radiography, eddy-currents, thermal fields or X-rays. These 

methods, however, are so-called local methods and require that the damaged region is 

known a priori, and the section of the inspected structure is easily accessible (Doebling 

et al., 1998).  

Vibration-based damage identification techniques, in contrast, are global methods 

and are able to assess the condition of the entire structure simultaneously. These 

techniques are based on the principle that changes of physical properties in a structure 

(i.e. stiffness, damping, mass and boundary conditions) reflect damage, which in turn 

will alter its dynamic characteristics (namely, natural frequencies, mode shapes and 

modal damping). Vibration-based methods examine changes in the structures dynamic 

characteristics to detect defects. Eventually, they are related to certain form of pattern 

recognition problem. Over the past three decades, intensive research has been 

undertaken in the field of dynamic-based damage identification and many algorithms 

have been developed. Comprehensive literature reviews on vibration-based damage 

detection methods were published by Doebling et al. (1996) and Carden and Fanning 

(2004). Among various vibration-based techniques, especially those using modal 

parameters, the damage index (DI) method (Stubbs et al., 1992) is particularly 

promising. This method is based on changes in modal strain energy, and has 

successfully been applied by many researchers in various fields and applications. 

Several modifications of the algorithm have been developed and verified by analytical 

and experimental studies (Choi et al., 2008; Kim and Stubbs, 2002; Stubbs et al., 1995; 
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Stubbs and Park, 1996). Farrar and Jauregui (1998a, b) conducted a comparative study 

of DI method, mode shape curvature method, change in flexibility method, change in 

uniform load surface curvature method and change in stiffness method. These methods 

were applied to experimental and numerical modal data of the I-40 bridge in 

Albuquerque, New Mexico; and the DI method was found to be the one that performed 

the best in terms of accuracy and reliability. Ndambi, Vantomme and Harri (2002) and 

Alvandi and Cremona (2006) compared Modal Assurance Criterion (MAC), Coordinate 

Modal Assurance Criterion (COMAC), flexibility and modal strain energy approaches 

and concluded that the modal strain energy method was the most precise technique 

among them and also the most stable one when different levels of noise were induced. 

Some researchers were even successful in the identification of multiple damage (Patil 

and Maiti, 2005; Shi et al., 1998). Besides the reported successful applications of the 

algorithm, the method faces some critical issues. If damage is located close to a node 

point of a given mode, the defect stays undetected if only this mode is used for 

detection. In addition, even if multiple modes are used, it is likely to produce false 

positive damage detection especially when measurements are limited by the number of 

sensors. Major challenges are faced when the method is applied to real structures under 

real testing conditions. Errors are encountered due to measurement noise interferences, 

limited number of sensor arrays or experimental modal analysis uncertainties. The 

sensitivity to noise especially effects the quantification of defects. Also, the 

identification of light damage still remains problematic (Barroso and Rodriguez, 2004; 

Pereyra et al., 1999). 

In recent years, the use of Artificial Neural Networks (ANNs) in structural damage 

detection has gained much attention. ANNs are artificial intelligence that simulate the 

operation of the human brain. Once trained, they are capable of pattern recognition and 

classification, and are robust in the presence of noise. These characteristics make ANNs 

powerful complementary tools in vibrational damage identification. Several researchers 

employed ANNs in combination with different dynamic-based features for damage 

assessment. In one of the earliest research papers on ANN based dynamic damage 

detection, Elkordy, Chang and Lee (1992) demonstrated that using percentage changes 

in vibrational signatures, rather than using their absolute values, can effectively 

distinguish between patterns corresponding to different damage states. Wu, Ghaboussi 
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and Garrett (1992) were the first to introduce ANN to vibration-based damage detection 

in civil structures. Their paper investigates the feasibility of ANN in structural damage 

detection; an experimental three-storey frame structure was excited by base earthquake 

acceleration and recordings of the Fourier spectrum of the third floor were used as ANN 

inputs to detect damage. The researchers found that the network was successful in 

identifying the damage existence for members in the structure and concluded that ‘the 

use of neural networks for structural damage assessment is a promising line of 

research’. In 2001, Zapico, Worden and Molina presented a damage assessment 

procedure on a two-storey steel frame and steel-concrete composite floor structure. 

Three neural network approaches were proposed. For the first and second approaches, 

the input parameters were the first natural frequency and the first mode shape, 

respectively; for the third approach, the first two longitudinal bending frequencies were 

used as inputs. Whereas the first neural network approach failed, in the second 

approach, the neural network showed an excellent generalisation over the analytical 

data; however, it failed with experimental data due to the poor accuracy of the extracted 

mode shapes. The third approach gave reasonable results. The corresponding trained 

network achieved a good generalization over both the analytical and experimental data. 

Sahin and Shenoi (2003) used changes in natural frequencies and curvature mode 

shapes as input features for ANNs for location and severity prediction of numerical and 

experimental damage in cantilever steel beams. From the network predictions, they 

reported that the reduction in natural frequency provides the necessary information for 

the existence and severity of the damage, however, differences in curvature mode 

shapes severed as a better indicator in the location predictions. Lee and Yun (2006) 

presented a two step damage identification strategy and demonstrated the method on 

numerical data and field test data of the old Hannam Grand Bridge in Seoul, Korea. At 

first, a conventional vibration-based method (DI method) was used to screen potentially 

damaged members and then, neural networks with a noise injection learning algorithm 

were trained with mode shape differences between before and after damage to assess the 

damage. They found that while the conventional method for damage screening produced 

many false damage alarms, the damage assessment results using neural networks still 

showed good estimates for all damage cases. Further contributions in this area were 

made by Xia and Hao (2003) and Bakhary, Hao and Deeks (2007). 



 - 5 - 

An extension to ANNs is the principle of neural network ensembles, which are a 

group of networks that are trained independently for the same task and whose outcomes 

are fused in different stages by ensemble networks. This approach was already used in 

several field applications and it was observed that the ensemble usually performs better 

than the best network used alone (Perrone and Cooper, 1993). The idea of multi-stage 

network training was first employed in the area of vibration-based damage detection by 

Marwala and Hunt (1999). The researchers applied a two stage neural network 

ensemble to numerically simulated cantilever beam data, with one network being 

trained with frequency energies, which are defined as integrals of the real and imaginary 

components of the frequency response functions over various frequency ranges, and 

another network trained by using the first five flexural mode shape vectors. The authors 

found that the ensemble gave a mean error of 7.7 % compared to 9.50 % and 9.75 %, 

respectively, of the individual networks. 

Principal Component Analysis (PCA) is a statistical technique for achieving 

dimensional data reduction and reducing effects of measurement noise. Its application 

for vibration-based damage detection is reported in several papers (Ni et al., 2006; 

Trendafilova et al., 2008; Zang and Imregun, 2001b). By projecting data onto the most 

important principal components, its size can greatly be reduced without significantly 

affecting the data. Thereby, the effectiveness of neural network training can 

significantly be improved and unwanted features induced by measurement noise be 

reduced.  

This paper presents a vibration-based damage identification method that utilises the 

modal strain energy based DI values to analyse dynamic features of beam structures. 

PCA-compressed damage indicators are used as input patterns for training of back-

propagation neural networks. The method is applied to numerical and laboratory beam 

structures and aims to provide reliable predictions on the location and severity of single 

damage. Neural network ensembles are utilised in order to take advantage of unique 

features of individual vibrational mode shapes, such as node point characteristics, 

varying susceptibility to diverse damage scenarios and different sensitivity to sensor 

locations. To simulate field-testing conditions, numerically obtained data is polluted 

with different intensities of white Gaussian noise and issues of limited number of sensor 

arrays are also incorporated. 



 - 6 - 

 

2. Calculation of damage index  

 

The conventional DI method, developed by Stubbs, Kim and Topole (1992), utilises 

an indicator based on relative changes in modal strain energy of a structure before and 

after damage to detect, locate and quantify defects. Modal strain energy expressed in 

terms of the derivative of mode shape as the damage index for the jth element and the ith 

mode, βij, is given by, 

( )
( )

( ) ( )

( ) ( )

′′ ′′

= =
′′ ′′

∫ ∫

∫ ∫

L2 2*
i i

j j 0
ij * L 22 *

j i i
j 0

( x ) dx  ( x ) dxEI
    

EI  ( x ) dx ( x ) dx

φ φ
β

φ φ
(1)

where φi″ is the second derivative of mode shape φi with respect to x and L is the length 

of the beam. The asterisk * denotes the damaged case. The derivation of Eqn (1) is 

discussed in detail in Kim and Stubbs (1995).  

 

To enhance damage detection and produce results related to damage probability, the 

damage index βij is transformed into the standard normal space and the normalised 

damage indicator Zij is given by, 
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with μβij being the mean and σβij the standard deviation of the βij values for all j 

elements. The estimation of the damage severity for element j is expressed by 
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with αij being the severity estimator. Positive Zij and αij values, respectively, indicate 

the possibility of damage and can therefore be utilised to locate and quantify the defects. 

 

3. Application of artificial neural networks 
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As originally developed for emulating the biology of the human brain, Artificial 

Neural Networks (ANNs) consist of two primary elements, neurons and weighted 

interconnections between the neurons. The neurons are linked by transfer functions and 

arranged in sets of input, hidden and output layer. The strength of the neuron connection 

is determined by adjusting a variable (weight) and a constant (bias). ANNs can be 

regarded as nonlinear mathematical functions that map a set of input variables pi 

(i = 1, 2 ...  d) to a set of output variables ak (k = 1, 2 ...  r) (Bishop, 1994). Provided 

enough neurons exist, they are able to represent any function with arbitrary accuracy. 

Once the networks are trained, they are capable of decision making by means of pattern 

recognition and classification. They have a fault tolerance and can distinguish between 

random errors and the desired systematic outputs which make them a robust means for 

representing model-unknown systems encountered in the real world (Masri et al., 2000). 

These properties make them particularly attractive in the field of structural damage 

detection.  

A neural network ensemble is a learning paradigm where several neural networks are 

trained simultaneously for the same task (Sollich and Krogh, 1996). The concept of 

neural network ensembles (also referred to as committees or classifier ensembles) was 

first developed by Hansen and Salamon (1990). Hansen and Salamon showed that the 

generalization ability of a neural network system can significantly be improved through 

ensembling a number of neural networks and then combining their predictions (Zhou et 

al., 2002). First, each network in the ensemble is trained individually and then the 

outputs of each of the networks ae (e = 1, 2 ... n) are fused to produce the ensemble 

output a. A model of a two-stage neural network ensemble is shown in Figure 1. 

 

Figure 1.  Model of a two-stage neural network ensemble. 

 
Generally, individual networks can be generated either by varying the design of the 

networks (i.e. different architecture, transfer functions, training algorithms) or by 

training the individual networks with different training sets. Many ensembling methods 

have been proposed in the literature. The most common methods are bagging and 

boosting. Bagging was proposed by Breiman (1996) and is based on bootstrap sampling 

(Efron and Tibshirani, 1993). First, several training sets are generated from the original 
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training set and then an ensemble neural network is trained from each of those training 

sets. In boosting, proposed by Schapire (1990), the training sets of the single networks 

are determined by the performance of former ones. Training variables that are wrongly 

predicted by previous networks will play more important roles in the training of later 

networks (Zhou et al., 2002).  

 

4. Application of Principal Component Analysis (PCA) 

 

PCA was developed by Pearson (1901) and is one of the most powerful multivariate 

data analysis techniques for achieving dimensionality reduction. It is a statistical 

technique that linearly transforms an original set of k variables into a smaller set of n 

(n<=k) uncorrelated variables, the so-called principal components (PCs). Eigenvalue 

decomposition of the covariance matrix forms the basis of PCA. The direction of the 

resulting eigenvectors represents the direction of the PCs, which are weighted according 

to value of the corresponding eigenvalues. Each PC is a linear combination of the 

original variables. All the PCs are orthogonal to each other and form an orthogonal 

basis for the space of the data. The full set of PCs is equal to the original set of the 

variables. The most significant PCs represent the features that are most dominant in the 

data set. By removing components that contribute least to the overall variance, the 

dimension of the original data set can drastically be reduced without significantly 

affecting the original data (Zang and Imregun, 2001a). Besides the benefit of data 

reduction, PCA is also a powerful tool for disregarding unwanted measurement noise. 

As noise has a random feature, which is not correlated with global characteristics of the 

data set, it is represented by less significant PCs. Therefore, by disregarding PCs of low 

power, measurement noise is filtered. 

Following is a description of the derivation of PCA. Given is the data set [Xij] with 

(i  = 1, 2, …,m) and (j = 1,2,…,k), where m is the total number of observations (e.g. DI 

values Zj or αj) and k the dimension of the observations (e.g. DI data points). First, the 

mean jx  and the standard derivation sj of the jth column are obtained from, 

m
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Then, the data set [ X ] is transformed into the standard normal space yielding the 

variation matrix [ X ] . A normalised element ijx  is given by, 
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The covariance matrix [C] is expressed as,  

T[ X ] [ X ][ C ] 
m 1
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Finally, the PCs are obtained from,  

{ } { }[ C ] P Pi i iλ=  (8)

which is the eigenvalue decomposition of the covariance matrix [C], with λi being the 

ith eigenvalue and {Pi} the corresponding eigenvector. The first PC, which is the largest 

eigenvalue and its associated eigenvector, represents the direction and amount of 

maximum variability in the original data set. The second PC, which is orthogonal to the 

first PC, represents the second most significant contribution from the data set, and so on 

(Fang and Tang, 2005).  

 

5. Methodology 

 

This paper presents a vibration-based damage identification method that determines 

the location and the severity of single defects in numerical and experimental beam 

structures. Damage is identified by artificial neural networks, which utilise PCA-

compressed DI values as input patterns. To simulate field-testing conditions, 

numerically obtained data is polluted with different intensities of white Gaussian noise 

and issues of limited number of sensor arrays are also incorporated. To disregard 

unwanted features introduced by noise, PCA is applied to the damage indicators and 

only the most significant PCs are utilised for neural network training. Instead of using 

single neural networks, an approach based on neural network ensembles is used in order 
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to take advantage of unique features of individual vibrational mode shapes, such as 

node point characteristics, varying susceptibility to diverse damage scenarios and 

different sensitivity to sensor locations and mode shape interpolation. In the neural 

network ensemble, PCA-compressed DI values of each individual vibrational mode are 

first evaluated in individual neural networks and then the individual network outcomes 

are fused in the ensemble.  

Firstly, modal parameters are to be extracted from time history data of the numerical 

and the laboratory beams by means of experimental modal analysis procedures. 

Therefore, modal testing is conducted for the experimental beams, and transient analysis 

with subsequent noise pollution is performed for the numerical structures in order to 

obtain the response time histories. Real testing conditions regarding coarse sensor 

arrays are incorporated by using a minimal number of measurement points for the 

higher mode shapes to be considered. To improve the damage detection results, cubic 

spline interpolation techniques are adopted to reconstruct finer mode shapes. Secondly, 

from the identified mode shapes the modal strain energy based DI values Zj and αj are 

derived. Thirdly, to disregard unwanted features such as those caused by measurement 

noise, the DI values are transferred to the principal component space and only the most 

dominant components of the data are selected for subsequent neural network training. 

Fourthly, sets of individual neural networks are trained to map PCA-compressed DI 

values from individual vibrational modes to the location and the severity of damage. 

Finally, a neural network ensemble fuses the outcomes of the individual networks and a 

conclusive overall damage prediction is obtained.  

The method is verified by two models. The first model is based on numerical 

simulations, in which response time history data are polluted with white Gaussian noise; 

and the second model is experimental, simulating a real test.  

 

6. Damage identification procedure 

 

6.1. Numerical model 

 

A numerical model of a steel beam with the dimensions of 12 mm by 32 mm by 

2,400 mm is created using the finite element analysis package ANSYS (2005a). The 
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element type used is SOLID45, which is a three dimensional structural solid defined by 

eight nodes having translations in the nodal x, y and z directions. The cross-section of 

the beam is modelled with 4 elements across the height and 4 elements along the width. 

A division into 201 nodes and 200 elements in the longitudinal direction of the model is 

chosen in accordance with previous sensitivity studies undertaken by Choi et al. (2007). 

The beam model is of steel with modulus of elasticity of 200,000 N/mm2. The support 

conditions are set as pin-pin. A schematic model of the numerical beam is shown in 

Figure 2 (a). 

 
(a) (b) 

Figure 2.  Finite element modelling of (a) pin-pin supported steel beam and (b) light size damage with a 

width of 1 mm and a height of 4 mm. 
 

Four different damage locations are considered, which are at locations 4/8th, 5/8th, 

6/8th and 7/8th of the span length. The locations are denoted as ‘4’, ‘5’, ‘6’ and ‘7’, and 

are shown in Figure 2 (a). For each of these locations four different damage severities, 

termed as extra light (‘XL’), light (‘L’), medium (‘M’) and severe (‘S’), are investigated. 

All inflicted damage are notch type, 1 mm in length and 1 mm, 4 mm, 8 mm and 12 mm 

in height. This corresponds to a cross-section loss of the second moment of area, I, of 

9.09 %, 33.01 %, 57.81 % and 75.59 %, respectively. Damage is modelled by 

rectangular openings from the soffit of the beam along the span length. The mesh 

density is refined in the vicinity of the defect as displayed in Figure 2 (b). In total, 16 

different damage cases are generated.  

To obtain response time history data of the numerical beam models, transient 

analysis is performed using ANSYS. A force of 800 N, which is a typical impact force 

observed from experimental hammer excitation, is applied at a reference point (here at 

location ‘5’) and the response time histories of the beam are recorded at nine equally 

spaced points. These nine points represent measurement sensors in real testing. The 

following sentences were modified and added: In order to consider noise, which is 

present in a real test, white Gaussian noise of four intensities (1 %, 2 %, 5 % and 10 %) 

is added to the excitation signal and the response time histories. The Matlab function 

‘awgn’ with the noise-to-signal ratio function 20log10(r) is therefore used. For the noise 

intensities of 1 %, 2 %, 5 % and 10 %, r is set to 0.01, 0.02, 0.05 and 0.1, respectively, 
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and white Gaussian is randomly added to the original recorded data. For each level of 

noise, three different sets of noise-polluted data are generated. The different sets of time 

history data are transformed into the frequency spectra using Fast Fourier Transform 

(FFT), which is given by, 

N 1
jk

N
j 0

x( k ) X ( j )W
−

−

=
= ∑  (9)

In the above equation, x(k) represents the discrete series at the time instant k of a 

sampled data N (k =0, 1 … N-1 and j=0, 1 … N-1), where WN equals e-i2π/N. The 

Frequency Response Function (FRF) is estimated by dividing cross-spectra between 

input and output with auto-spectra of input. The modal parameters of the first seven 

flexural modes are identified by performing experimental modal analysis procedures 

utilising the software from LMS (LMS CADA-X).  

 

To enhance the quality and effectiveness of the damage identification, the obtained 

mode shape vectors are reconstructed from 9 to 41 data points utilising cubic spline 

interpolation techniques by using the Spline function in Matlab. In the operation, a tri-

diagonal linear system is solved to describe the coefficients of various cubic 

polynomials, which make up the interpolating spline. A detailed description on the 

reconstruction of mode shapes using cubic spline data interpolation can be found in 

Choi et al. (2006). By correlating modal strain energy which is a function of the refined 

mode shape curvature vectors of the undamaged beam to those of the different damaged 

beams, the DI values Zj and αj are determined following the procedure described in 

section 2. For each noise pollution level and each individual mode, a total of 144 Zj and 

αj damage indices, respectively, are generated by relating each noise-polluted 

undamaged case to each of the noise-polluted damaged cases (4 damage locations × 4 

damage severities × 3 noise-polluted undamaged data sets × 3 noise-polluted damaged 

data sets).  

 

6.2. Experimental model 

 

Laboratory testing of four pin-pin supported steel beams were undertaken in the 

structures laboratory of the University of Technology Sydney (UTS). The dimensions of 
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the beams were 12 mm by 32 mm by 2,400 mm, which are the same as the dimensions 

of the numerical models. A picture of the experimental set up is displayed in Figure 3 

(a). 

 
(a) (b) 

Figure 3.  (a) Laboratory test set up and (b) experimental saw cut damage of light size. 

 

Each of the steel beams was inflicted with four different severities of single damage 

situated at locations 4/8th, 5/8th, 6/8th and 7/8th of the span length. The four damage 

severities of extra light, light, medium and severe, were again 1 mm in length and 1 mm, 

4 mm, 8 mm and 12 mm, respectively, in height. The damage was introduced by saw 

cuts from the soffit of the beam. The damage of light severity is depicted in Figure 3 (b). 

 

The modal parameters of the beams are obtained by performing experimental modal 

testing and analysis. In modal testing, the beams are excited by a modally tuned impact 

hammer. Nine equally spaced piezoelectric accelerometers, mounted on the top surface 

of the beams, were used to measure the beam response. The signals of the hammer and 

the accelerometers were first amplified by signal conditioners and then recorded by a 

data acquisition system. The sampling rate was set to 10,000 Hz for a frequency range 

of 5,000 Hz and 8,192 data points, thus giving a frequency resolution of 0.61 Hz per 

data point. The main data acquisition system consists of a Hewlett Packard state-of-the-

art VXI system equipped with LMS CADA-X. The acquired time history data were then 

transformed into the frequency domain and by performing modal analysis, following the 

same procedures described in section 6.1, the modal parameters are determined. The 

experimental modal testing set up and modal analysis procedures are shown in Figure 4. 

 
Figure 4.  Schematic diagram of experimental modal testing and analysis. 

 

The identified first seven flexural mode shapes are again reconstructed from 9 to 41 

data points and the DI values Zj and αj are derived. As each damage case and the 

undamaged state is tested 5 times, a total of 400 Zj and αj damage indices are generated 



 - 14 - 

for each mode (4 damage locations x 4 damage severities x 5 undamaged data sets x 

5 damaged data sets).  

 

6.3. Principal Component Selection 

 

PCA is applied to the damage indicators in order to extract the most dominant 

characteristics of the data and thereby to disregard unwanted features introduced by 

noise. The ‘princomp’ function in MATLAB is utilised to transfer the DI values to the 

principal component space based on the equations of section 4. The DI values of the 

numerical and the experimental beams are arranged in matrices of m x k, where m are 

the observations (144 and 400 DI values, respectively) and k the dimension of the 

observations (41 DI data points). After the projection, each of the observations is 

presented by 41 principal components. The cumulative contribution percentages of all 

41 PCs of Zj indices of mode 1 of numerical noise-polluted beam data are shown in 

Figure 5. 

 

Figure 5.  Cumulative contribution of PCs obtained from Zj derived from mode 1 of numerical data. 

 

From the graph, it can be seen that the first component accounts for 35.5 % of the 

original data. The first and the second PCs together contribute to 60.1 % of the data and 

the summation of the first three PCs represents 79.8 % of the original data. The 

cumulative contribution from the 11th to the 41st PC is less than 1 %. Therefore, the first 

ten PCs, which represent 99.1 % of the original data, are regarded as most significant 

components and used as input parameters for the neural networks. A very similar 

contribution distribution is obtained from the damage indices Zj and αj of the 

experimental simulations and hence the first ten PCs are also chosen as input features.  

 

6.4. Artificial neural network model 

 

Ensembles of supervised feed-forward multi-layer neural networks are created to 

identify damage. The ten most dominant PCs of the damage indices Zj and αj are 

utilised, respectively, to train neural networks to estimate the location and the severity 
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of damage. First, individual neural networks are trained with PCs that are separated by 

vibrational modes (each individual network evaluates PCA-compressed DI values 

derived from one of the seven captured modes). Then, the outcomes of the individual 

neural networks are combined in a neural network ensemble and a final damage 

prediction is obtained. The individual neural networks comprise of one input layer with 

10 nodes, representing the first ten PCs of the damage indices Zj and αj, respectively; 

four hidden layers with 8, 6, 4 and 2 nodes; and one single node output layer estimating 

the location (in length along the beam) or the severity (in loss of the second moment of 

area, I) of the damage. The number of nodes of each hidden layer was determined 

following the ‘geometric pyramid’ rule as described in Masters (1993). The network 

ensemble is designed with seven input nodes, which are the outputs of the seven 

individual mode networks; three hidden layers of 7, 5, and 3 nodes; and one output node 

estimating the damage location or severity. The transfer functions used are hyperbolic 

tangent sigmoid functions. This transfer function is chosen, as it produces more accurate 

results and faster training times when compared to any of the other available transfer 

functions, which are linear and logistic functions. Training is performed utilising the 

back-propagation conjugate gradient descent algorithm. The input data is divided into 

three sets; a training, a validation and a testing set. While the network adjusts its weight 

from the training samples, its performance is supervised utilising the validation set to 

avoid overfitting. The network training stops when the error of the validation set 

increases while the error of the training set still decreases, which is the point when the 

generalisation ability of the network is lost and overfitting occurs. The division of the 

available input samples into the three sets (training, validation and testing) is conducted 

according to a partitioning system termed chessboard selection. For the laboratory data, 

the chessboard selection principle is illustrated in Table 1. To calculate the damage 

indices Z¡ and α¡, a set of undamaged data is correlated to a set of damaged data, as 

described above. As each undamaged and damaged state was tested five times, a total of 

25 data sets are obtained for each damage case. To select a diverse range of data for 

each set (’train’, ‘val’ and ‘test’), data along a diagonal line of the input samples are 

selected for each set (as illustrated in Table 1). For the laboratory data, each damage 

case is divided into sets of 15 samples for training, 5 samples for validation and 5 

samples for testing. Thereby, for the entire data set of 400 laboratory samples, 240 are 
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allocated for training, and 80 each for validation and testing. For the 144 samples of the 

noise-polluted numerical data, 82 are allocated for training and 31 each for validation 

and testing. The design and operation of all neural networks is performed with the 

software Alyuda NeuroIntelligence version 2.2 from Alyuda Research Inc. 

Table 1.  Chessboard selection for laboratory beam data. 

 

7. Results and discussion 

 

7.1. Damage index values 

 

The DI values Zj and αj, which give indications on the location and the extent of 

damage, are the first intermediate results obtained from the developed procedure. As an 

example, some damage indicators Zj and αj of numerical noise-free beam simulations 

are shown in Figure 6. In the figures, the x-axis shows the length of the beam with ‘1’ to 

‘7’ indicating 7 possible damage locations and the y-axis the damage index. As only 

positive DI values indicate damage, all negative numbers are set to zero. The actual 

damage location is marked with a straight line. Figure 6 (a) shows the damage indicator 

Zj of a beam with a defect at locations ‘5’. Here a clear indication of the damage 

location can be seen. The illustrations of Figure 6 (b) and (c) depict the severity 

estimator αj of beams, which are damaged at location ‘4’ with the damage severities of 

medium and severe. The different magnitudes of the severity estimator αj clearly 

indicate the different extents of the defects. 

 

Figure 6.  Damage indicators of noise-free numerical simulations derived from mode 1. (a) Zj of a 

damage situated at location ‘5’. (b) and (c) αj of a damage situated at location ‘4’ of medium and severe 

severity, respectively. 

 

From the derived DI values, a couple of issues associated with the damage index 

method itself and real life testing limitations of coarse sensor nets and noise 

interferences are identified. Firstly, if damage is located at a node point of a mode shape 

it cannot be detected. For DI value Zj, even false damage indications occur, as presented 

in Figure 7 (a), which shows damage indicator Zj derived from mode 4 of a noise-free 
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numerical beam damaged at mid-span. Secondly, if only a limited number of 

measurement data is available, as is the case in real applications, false positive damage 

indications occur in a couple of damage cases. This phenomenon is shown in Figure 7 

(b), which displays Zj derived from mode 3 of a noise-free numerical beam damaged at 

location ‘5’. Here, besides the correct damage location, a false indication at location ‘6’ 

is visible. Thirdly, damage that is located close to the supports is slightly misallocated 

for all cases. This is presented in Figure 7 (c) for Zj derived from mode 1 of a noise-free 

numerical beam damaged at location ‘7’. When the damage index method is used alone 

to detect damage, defects may falsely be identified. However, the faulty indications by 

the damage index method are recurring patterns. By utilising neural network techniques, 

with their ability to recognise patterns, the damage identification process can be 

improved and critical issues overcome.  

 
Figure 7.  Zj values of noise-free numerical simulations derived from (a) mode 4 of a beam damaged at 

location ‘4’, (b) mode 3 of a beam damaged at location ‘5’ and (c) mode 1 of a beam damaged at 

location ‘7’. 

 

Further, the damage indices are very sensitive to noise interferences and modal 

analysis uncertainties. This phenomenon can be seen in Figure 8, which displays 

damage indicator Zj of numerical simulations polluted with three different noise signals, 

all of 2 % white Gaussian noise. Here damage is present at location ‘5’. Whereas the 

derived DI value of Figure 8 (a) gives the correct damage location, the indices of Figure 

8 (b) and Figure 8 (c) either show an additional damage or misallocate the defect. By 

transferring the damage indicators into the principal component space and considering 

only the most significant PCs, only the main characteristics of the data are considered 

and thereby, uncorrelated features, introduced by noise, are disregarded. 

 
(a) 

 

(b) 
 

(c) 

Figure 8.  Zj values of numerical simulations polluted with three different signals of 2 % white Gaussian 

noise derived from mode 1 of a beam damaged at location ‘5’. 

 

7.2. Individual neural network outcomes 
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Individual neural networks are trained with PCA-compressed damage indices to 

identify defects. The PCs of damage indicator Zj are utilised to determine the location of 

the damage and the PCs of the severity estimator αj are used to quantify the damage 

extent. In the following sections, the outcomes of the individual networks, trained to 

identify locations and severities of noise-polluted numerical and experimental steel 

beams, are presented. In the subsequent figures, the x-axis displays the damage cases 

sorted by their locations (L4, L5, L6 and L7) and their severities (SXL, SL, SM and SS). 

The y-axis represents the normalised error Enorm of either the localisation or the 

quantification outcomes. The normalised error is defined as  

d d
norm

max

(T - O )E ( d )  
L

=  (10)

and 

d d
norm

max

(T - O )E ( d )  
S

=  (11)

respectively, where d is the damage case, Td the target value of d, Od the network output 

value of d, Lmax the total length of the beam (here 2.4 m) and Smax the maximum severity 

of a damage (here 100 % loss of the second moment of area, I). A marked band around 

the 0 % error axis symbolises the area in which the network estimations must fall in 

order to correctly categorise the damage. For the localisation of damage, the band 

ranges from –6.25 % to +6.25 % normalised error, representing the mid points in-

between two damage locations (Enorm(mid point) = ± 0.15 m / 2.4 m = ± 6.25 %). The 

band of the damage quantifications ranges from –12 % to +12 % normalised error, 

representing the average mid points in-between two severity levels. The network 

performances of the training, validation and testing sets are presented below in absolute 

mean of the normalised error Enorm abbreviated as AMNE.  

 

7.2.1. Individual neural network outcomes of numerical model 

 

Individual neural networks trained with noise-polluted numerical data give outcomes 

that vary significantly in their accuracies. Depending on the mode from which the DI 

values were derived, the network results reflect the different characteristics of the 

individual modes. Also, the noise pollution level has an effect on the outcomes of the 
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neural networks. The individual neural network performances of the training, validation 

and testing set of modes 1 to 7 are presented in Table 2 in absolute mean of normalised 

error (AMNE).   

 
Table 2.  Neural network performances (in absolute mean of normalised error (AMNE)) of noise-polluted 

numerical beam simulations to identify damage locations and severities.   

 

 As examples, Figure 9 (a) to (f) display the testing set outcomes of networks trained 

with the first 10 PCs of DI value Zj derived from mode 1, mode 4 and mode 5, 

respectively, that are polluted with 1 % or 10 % white Gaussian noise. From the figures 

it can be seen that many damage cases are incorrectly located for both networks of 

mode 1. This phenomenon can be explained by the small curvature value of mode 1, 

which results in a low sensitivity to damage. Misidentifications of the networks of 

mode 4 occur almost exclusively at the node points of mode 4, which are locations ‘4’ 

and ‘6’. Damage cases from locations ‘5’ and ‘7’ are all correctly identified for the 

mode 4 network trained with 1 % noise polluted data and only two extra-light damage 

cases are wrongly located for data of noise pollution level 10 %. The network 

predictions of mode 5 traine d with 1 % noise polluted data are correct for all but three 

extra-light damage cases; a noise pollution level of 10 % still gives precise damage 

locations for all medium and severe defects. From these outcomes it can be observed 

that individual characteristics of the different modes have a major influence on the 

neural network outcomes. This highlights how important it is to separate the DI values 

by modes. The intensity of noise in contrast seemed to have a lesser effect on the 

damage identification results. This shows the effectiveness of the noise filtering 

capacity of PCA and neural networks. Note: The results of the individual networks 

trained to estimate the severity of the defects show very similar outcome characteristics 

to the networks trained to identify the damage locations.  

 
 (a) mode 1 network – 1 % noise  (b) mode 1 network – 10 % noise 

 (c) mode 4 network – 1 % noise  (d) mode 4 network – 10 % noise 

 (e) mode 5 network – 1 % noise  (f) mode 5 network – 10 % noise 

Figure 9.  Testing set outcomes of individual neural networks trained with PCA-compressed Zj values 

from numerical simulations polluted with 1 % and 10 % white Gaussian noise, respectively, derived from 

(a) and (b) mode 1, (c) and (d) mode 4, and (e) and (f) mode 5. 
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7.2.2. Individual neural network outcomes of the experimental model 

 

The outcomes of the individual networks trained with experimental beam data are 

quite different to those trained with numerically generated data. The performances of 

the training, validation and testing set of the individual networks of modes 1 to 7 are 

listed in Table 3.   

 
Table 3.  Neural network performances (in absolute mean of normalised error (AMNE)) of experimental 

beams to identify damage locations and severities.   

 

For the experimental beams, damage localisation is successful for all damage cases 

of the networks trained with PCs of Zj values derived from mode 1, mode 2, mode 3 and 

mode 4, as displayed in Figure 10 (a) for the network of mode 2. The testing set 

outcomes of the network of mode 5 show seven wrongly located damage cases (out of 

the 80 testing samples); mode 6 and mode 7 networks have false localisations for 13 and 

19 damage cases, respectively. For the localisation of experimental damage cases, issues 

associated with damage cases that are situated at node points of mode 2 and mode 4 

seem to have been overcome. (All damage cases at the node points of mode 2 and 

mode 4 are correctly identified.) This phenomenon can be explained by the fact that the 

experimental beam set up is not perfect. The beam supports may not have ideal pin-pin 

conditions, and the damage locations may not be situated at the exact division points. 

These imperfections may thereby avoid the singularities at the node points and 

associated damage identification issues are hence overcome. The false identifications of 

the networks of mode 5, mode 6 and mode 7 are due to difficulties faced with the 

determination of these higher modes during the process of experimental modal analysis. 

The individual networks trained to identify the quantities of the experimental damage 

cases, correctly identify all severe defects. Many extra-light, light and medium damage 

cases, however, are falsely quantified by all seven individual mode networks, as shown 

for the network of mode 2 in Figure 10 (b). The wrongly identified damage cases are 

not consistent across the individual networks, i.e. each individual mode network falsely 

quantifies different damage cases, which shows the complexity of dealing with 

experimental data.  
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 (a) damage localisation – mode 2 network  (b) damage quantification– mode 2 network 

Figure 10.  Training set outcomes of individual neural networks trained with PCs of DI values derived 

from mode 5 of experimental beam data to (a) locate and (b) quantify damage. 

 

7.3. Neural network ensemble outcomes 

 

To determine the damage characteristics based only on the outcomes of the 

individual networks is not reliable as results of damage estimations differ a lot 

depending on individual mode characteristics, damage locations and severities, as 

shown in the previous two sections. To obtain reliable damage identification, a 

conclusive, intelligent fusion of the network outcomes is necessary. This is achieved by 

a neural network ensemble, which combines the outcomes of the individual networks. 

For the network ensembles trained with numerical data, the damage localisation 

outcomes of the networks trained with different noise pollution levels are presented in 

Figure 11. From the figures, it can be observed that for a noise pollution level of 1 % 

and 2 % only one or two extra-light damage cases are wrongly identified. The networks 

trained with data of 5 % and 10 % noise intensity precisely locate all medium and 

severe defects. For the quantification of numerically simulated damage cases, the 

network ensembles of 1 %, 2 % and 5 % noise polluted data give correct identification 

of all defects. The network ensemble trained with 10 % noise polluted data falsely 

quantifies one extra-light and two light damage cases. For the experimental beams, the 

localisation network ensemble precisely identifies all damage cases. The network 

ensemble that aims to determine the damage extent correctly quantifies all light, 

medium and severe damage cases; five extra-light defects are falsely identified. These 

results clearly show the effectiveness of the neural network ensemble. Furthermore, it 

was observed that the ensemble outcomes are more accurate than any of the outcomes 

of the individual neural networks. 

 
 (a) network ensemble – 1 % noise  (b) network ensemble – 2 % noise 

 (c) network ensemble – 5 % noise  (d) network ensemble – 10 % noise 

Figure 11  Outcomes if neural network ensemble trained with numerical data of (a) 1 %, (b) 2 %, (c) 5 % 

and (d) 10 % noise pollution to estimate the location of damage. 
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(a) network ensemble – experimental data for 

damage localisation 
(b) network ensemble – experimental data for 

damage severity estimation 
Figure 12.  Outcomes of neural network ensemble trained with experimental data to estimate (a) the 

location and (b) the severity of damage. 

 

 

 

 

8. Conclusions 

 

This paper presents a vibration-based damage identification method that utilises the 

advantage of damage index method in combination with PCA and neural network 

techniques to identify location and severity of single damage. With the use of ANN with 

PCA, problems of the conventional DI method are overcome and real-life testing issues 

associated with limited number of sensor arrays, measurement noise and incomplete 

data sets are addressed. By transferring DI values into the principal component space 

and disregarding PCs of low power, the effects of noise are further reduced and neural 

network training optimised. The neural network ensemble approach is utilised in order 

to intelligently fuse outcomes of individual NNs for an optimised solution. The 

individual neural networks take advantage of distinct features of separated DI values in 

each individual mode shape for better pattern recognition. To simulate field-testing 

conditions, different intensities of white Gaussian noise are added to numerical data. 

The developed method is verified by two models. The first model is based on numerical 

simulations, which are polluted with white Gaussian noise; and the second model is 

experimental, simulating a real test. The results of the individual networks show that the 

individual characteristics of the different modes of the damage indices have a major 

influence on the network outcomes, which highlights the importance to separate the DI 

values by modes before the network training. The network outcomes also demonstrate 

the effectiveness of the noise filtering capacity of PCA and neural networks. The final 

damage predictions of the neural network ensembles are found to give results that are 

more accurate than any of the outcomes of the individual neural networks; and it is 

shown that the presented damage identification approach is effective and reliable in 

dealing with issues of real life testing. 
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Figure 1.  Model of a two-stage neural network ensemble. 
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Figure 2 

 
 

 
  

(a) (b) 

Figure 2.  Finite element modelling of (a) pin-pin supported steel beam and (b) light size damage with a 

width of 1 mm and a height of 4 mm. 
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Figure 3 

 

 

 

(a) (b) 

Figure 3.  (a) Laboratory test set up and (b) experimental saw cut damage of light size. 
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Figure 4 

 

 

Figure 4.  Schematic diagram of experimental modal testing and analysis. 
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Figure 5 

 

 

Figure 5.  Cumulative contribution of PCs obtained from Zj derived from mode 1 of numerical data. 
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Figure 6 

 

 
(a) (b) (c) 

Figure 6.  Damage indicators of noise-free numerical simulations derived from mode 1. (a) Zj of a 

damage situated at location ‘5’. (b) and (c) αj of a damage situated at location ‘4’ of medium and severe 

severity, respectively. 
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Figure 7 

 

 
(a) (b) (c) 

Figure 7.  Zj values of noise-free numerical simulations derived from (a) mode 4 of a beam damaged at 

location ‘4’, (b) mode 3 of a beam damaged at location ‘5’ and (c) mode 1 of a beam damaged at 

location ‘7’. 
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Figure 8 

 

 
(a) (b) (c) 

Figure 8.  Zj values of numerical simulations polluted with three different signals of 2 % white Gaussian 

noise derived from mode 1 of a beam damaged at location ‘5’. 
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Figure 9 

 

 
(a) mode 1 network – 1 % noise (b) mode 1 network – 10 % noise 

 
(c) mode 4 network – 1 % noise (d) mode 4 network – 10 % noise 

 
(e) mode 5 network – 1 % noise (f) mode 5 network – 10 % noise 

Figure 9.  Testing set outcomes of individual neural networks trained with PCA-compressed Zj values 

from numerical simulations polluted with 1 % and 10 % white Gaussian noise, respectively, derived from 

(a) and (b) mode 1, (c) and (d) mode 4, and (e) and (f) mode 5. 
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Figure 10 

 

 
(a) damage localisation – mode 2 network 

 
(b) damage quantification– mode 2 network 

Figure 10.  Testing set outcomes of individual neural networks trained with PCs of DI values derived 

from mode 2 of experimental beam data to (a) locate and (b) quantify damage. 
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Figure 11 

 

 
(a) network ensemble – 1 % noise 

 
(b) network ensemble – 2 % noise 

 
(c) network ensemble – 5 % noise 

 
(d) network ensemble – 10 % noise 

Figure 11.  Testing set outcomes of neural network ensemble trained with numerical data of (a) 1 %, (b) 

2 %, (c) 5 % and (d) 10 % noise pollution to estimate the location of damage. 
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Figure 12 

 

 
(a) network ensemble – experimental data for 

damage localisation 

 
(b) network ensemble – experimental data for 

damage severity estimation 

Figure 12.  Testing set outcomes of neural network ensemble trained with experimental data to estimate 

(a) the location and (b) the severity of damage. 
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Table 1 
Table 1.  Chessboard selection for laboratory beam data. 
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D4 Train Train Test Train Val 

D5 Val Train Train Test Train
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Table 2 

 
Table 2.  Neural network performances (in absolute mean of normalised error (AMNE)) of noise-polluted 

numerical beam simulations to identify damage locations and damage severities.   

 

 Damage localisation Damage quantification 

Network 
Training 

performance 
(AMNE [%]) 

Validation 
performance
(AMNE [%])

Testing 
performance 
(AMNE [%])

Training 
performance 
(AMNE [%])

Validation 
performance 
(AMNE [%]) 

Testing 
performance 
(AMNE [%])

Mode 1 8.05 9.29 10.03 15.47 18.09 17.61 
Mode 2 4.10 6.52 6.63 10.13 11.22 11.76 
Mode 3 3.71 5.27 5.15 1.40 4.07 5.12 
Mode 4 3.85 6.68 6.63 12.32 14.17 13.30 
Mode 5 1.62 2.96 2.84 0.20 0.22 0.52 
Mode 6 3.99 5.48 4.91 8.89 9.94 8.55 
Mode 7 1.70 3.94 2.75 0.03 1.79 2.05 

Ens 1.08 2.42 1.89 0.13 0.21 0.44 
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Table 3 

 
Table 3.  Neural network performances (in absolute mean of normalised error (AMNE)) of experimental 

beams to identify damage locations and severities.   

 

 Damage localisation Damage quantification 

Network 
Training 

performance 
(AMNE [%]) 

Validation 
performance
(AMNE [%])

Testing 
performance 
(AMNE [%])

Training 
performance 
(AMNE [%])

Validation 
performance 
(AMNE [%]) 

Testing 
performance 
(AMNE [%])

Mode 1 0.01 0.04 0.04 4.04 7.20 7.25 
Mode 2 0.11 0.27 0.24 2.85 5.64 3.94 
Mode 3 0.02 0.03 0.02 1.17 4.12 2.02 
Mode 4 0.01 0.01 0.01 2.95 4.06 3.96 
Mode 5 1.30 2.66 2.24 6.78 9.25 9.22 
Mode 6 2.51 3.34 3.35 5.47 7.43 8.25 
Mode 7 3.26 5.36 5.01 6.71 8.56 8.30 

Ens 0.01 0.01 0.01 1.02 3.21 1.74 
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Appendix:  Notation 

 

Lmax the total length of the beam  
E      the Elastic Young’s modulus 
Enorm the normalised error of either the localisation or the quantification outcomes 
I      the moment of inertia of section 
Zij    the normalised damage indicator in standard normal space 
sj     the standard derivation of the jth column xj 
Smax the maximum severity of a damage 

jx     the mean of the jth column xj 

ijx   statistically normalised xij  
αij   the damage severity estimator 
βij    the damage index 
λi     the ith eigenvalue  
{Pi} the corresponding eigenvector of λi     
φi     ith mode shape 
φi″    the second derivative of mode shape  
 


