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Hybrid approach to reducing estimating overfitting and collinearity

Abstract: 

Purpose: The purpose of this paper is to present an approach to address the overfitting 

and collinearity problems that frequently occur in predictive cost estimating models for 

construction practice. A case study, modelling the cost of preliminaries is proposed to 

test the robustness of this approach.

Design/methodology/approach: A hybrid approach is developed based on the Akaike 

information criterion (AIC) and principal component regression (PCR). Cost 

information for a sample of 204 UK school building projects is collected involving 

elemental items, contingencies (risk), and the contractors’ preliminaries. An application 

to estimate the cost of preliminaries for construction projects demonstrates the method 

and tests its effectiveness in comparison with such competing models as: alternative 

regression models, three artificial neural network data mining techniques, case-based 

reasoning, and support vector machines.

Findings: The experimental results show that the AIC-PCR approach provides a good 

predictive accuracy compared with the alternatives used, and is a promising alternative 

to avoid overfitting and collinearity.

Originality/value: This is the first time an approach integrating the Akaike information 

criterion (AIC) and principal component regression (PCR) has been developed to offer 
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an improvement on existing methods for estimating construction project Preliminaries. 

The hybrid approach not only reduces the risk of overfitting and collinearity, but also 

results in better predictability compared with the commonly used stepwise regression 

models and traditional PCR approach under the sum of squares error (SSE) criterion.

Keywords: Akaike information criterion, principal component regression, overfitting, 

collinearity, construction cost estimation.

Introduction

Estimates for such variables as scope, cost, and schedule are needed for most 

construction projects and many papers have demonstrated the use of estimation 

methods such as multiple linear regression (MLR) for this purpose (Cheung and 

Skitmore, 2006b; Li et al., 2005; Skitmore and Patchell, 1990). Two main problems 

involved in the use of such methods are overfitting and collinearity, as the existence of 

either can produce significantly biased results. Overfitting occurs when too many 

independent variables are incorporated into the developed (training) model. An extreme 

example is where there are as many variables as cases so that, although a perfect fit is 

obtained with the sample data, the model has little prospect of representing the 

population and making accurate predictions. Collinearity occurs when the 

independence assumption is violated, i.e., when the independent variables are strongly 
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intercorrelated and can be largely represented by fewer variables. In response, some 

studies have sought such other methods as artificial neural networks (ANN), case-based 

reasoning (CBR), and support vector machines (SVM) for solutions. 

Unlike these black box or indirect approaches, however, MLR can produce the 

desired parameter estimates directly and accurately if collinearity and overfitting are 

dealt with properly. The collinearity problem in ordinary least squares (OLS) regression 

was recognised several decades ago (Skitmore and Marston, 1999), for instance, and 

many treatments have been developed. Although it is possible to improve a model by 

simply deleting one or more predictors with a high  (see Eq. (8)) (O’brien, 2007), 𝑅2
𝑖

keeping or removing a variable should depend on the theoretical underpinning involved 

(Andersen and Bro, 2010). Ridge regression (RR), partial least squares regression 

(PLS), and principal component regression (PCR) (see Liu et al. (2003)) are three 

popular methods developed to deal with collinearity and avoid loss of information when 

deleting variables (Næs and Martens, 1988; Vigneau et al., 1997). Despite these 

methods being comparable in predictive ability, RR and PLS still produce biased 

estimates of the regression coefficients of the predictor variables (O’brien, 2007). PCR, 

on the other hand, is more consistent with stepwise MLR and collinearity diagnostics. 

In addition, although PCR does not necessarily lead to improved predictions relative to 

OLS, such improvements do nevertheless occur quite often in practice (Næs and 

Martens, 1988), and the currently recommended method of overcoming collinearity 

problems is therefore to use it to correct parameter estimates (Liu et al., 2003). This 
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involves the application of the default stepwise regression approach in selecting 

predictor variables by simultaneously minimizing the sum of squares error (SSE) and 

maximizing adjusted R2 in principal component selection.

To deal with overfitting problems, it is necessary to invoke the principle of 

parsimony in variable selection (Andersen and Bro, 2010). Including too many 

variables in the model leads to a high variance in parameter estimates and an overfitted 

model with poor predictability, while too few variables lead to the lack of necessary 

information and a decreased model fit (Johnson and Omland, 2004). For overfitting 

problems, the Akaike information criterion (AIC) is an asymptotically unbiased 

estimator of the expected relative Kullback-Leibler information quantity (Kullback and 

Leibler, 1951), and has been recommended for choosing suitable predictor variables 

(Akaike, 1974). This statistic represents the amount of information lost in the model fit 

when adding predictor variables, to help avoid overfitting with a comparatively small 

sample size (Posada and Buckley, 2004) and is given by

(1)𝐴𝐼𝐶 = ―2𝜄 + 2𝐾

with maximized log-likelihood ( ) and  estimable parameters. Despite the 𝜄 𝐾

“superficial” form of the AIC formula, it is well founded in information theory and with 

a non-arbitrary “penalty term”  (Burnham and Anderson, 2002). 2𝐾

This paper aims to provide a solution to the situation where estimation collinearity 

and overfitting exist simultaneously. As pointed out by Xu (1994), using traditional 

PCR to counter multicollinearity problems increases the risk of overfitting, while using 
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the SSE and adjusted R2 criteria for variable selection in OLS regression models can 

result in some irrelevant variables being input. The AIC is the most commonly used 

information theoretic approach to measuring how much information is lost between a 

selected model and the true model. It has been used widely as an effective model 

selection method in many scientific fields, including ecology (Johnson and Omland, 

2004) and phylogenetics (Sullivan and Joyce, 2005). Compared with the use of adjusted 

R2 to evaluate the model solely on fit, AIC also takes model complexity into account 

(Johnson and Omland, 2004). In addition, AIC has several important advantages over 

the likelihood ratio test (Posada and Buckley, 2004). 

Research framework

Acknowledging the effectiveness of AIC in model development, this paper presents a 

hybrid Akaike Information Criterion-Principal Component Regression (AIC-PCR) 

approach to deal with the problems of overfitting and collinearity that frequently occur 

in OLS regression. The following sections illustrate the literature review, descriptions 

of the approach, its experimental results, and a general estimation process. The relevant 

literature, especially that focusing on estimation techniques, is firstly reviewed. Then, 

the procedure involved in the hybrid approach is described in detail. Thirdly, an 

experimental evaluation of the hybrid approach is conducted with an application in 

modelling the preliminaries of construction projects. The results of the hybrid approach 

are further compared with those of other estimation methods, including an artificial 
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neural network (ANN), case-based reasoning (CBR), and support vector machines 

(SVM). Finally, a standard estimation process is proposed for future applications.

Literature review

Construction cost estimation

The increasing scrutiny of construction costs by both clients and contractors has led to 

a strong desire for better utilisation of data and analytics (Ahmed et al., 2018). The term 

“building cost modelling”, formally introduced in a Building Cost Research Conference 

held in 1982 (Newton, 1991), highlights the importance of the accuracy of early stage 

construction cost estimates in project decision making, and their large impact on 

downstream life-cycle stages (Ahmed et al., 2018; Lowe et al., 2006; Skitmore et al., 

1990). Understanding the properties of a cost model is therefore vital for the effective 

control and development of future techniques (Skitmore and Marston, 1999). Although 

the accuracy of cost estimating is expected to improve as more information is released 

as the design evolves (Skitmore, 1987), clients still require accurate cost advice before 

design work to assist in assessing the feasibility of different development proposals. 

For such organizations as government authorities and real estate developers, inaccurate 

early estimates can result in the inefficient use of money, missed development 

opportunities, and unsuccessful project management (Oberlender and Trost, 2001). 

Furthermore, it has become increasingly common for the final cost of projects to exceed 
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the estimated costs and by an increasing margin (Williams et al., 2005). For example, 

Flyvbjerg et al.’s (2003) analysis of 258 transportation infrastructure projects worth 

US$90 billion found 90 percent of cost overrun projects to be a direct result of 

inaccurate estimation in the early project stages. Similarly, Merrow et al. (1979) found 

that 74% of the cost growth of projects undertaken by the chemical, oil, and minerals 

industries in North America is also caused by underestimation in the early project stages. 

Traditional early stage estimation for building construction projects is by floor 

area models, the main difficulty of which is that a building’s floor area is not always 

representative of the overall cost. Similar to the floor area approach, some researchers 

and practitioners propose using the storey enclosure method and cost-duration model 

as an alternative method for simplicity (Cheung and Skitmore, 2006a; Dang and Long, 

2018; Xiao et al., 2018). However, factors such as drawings and specification, pricing 

experience, project complexity, clear scope definition, site constraints (access, storage, 

and services), material availability, financial capabilities of the client, and availability 

of relevant cost information are also critical for achieving an accurate cost estimate 

(Muhammad et al., 2018). Estimates made in this way are therefore very much 

dependent on the knowledge and experience of the estimator in making the necessary 

subjective adjustments for these other factors; the floor area method, for example, being 

said to have a coefficient of variation around the true cost of 20-30% (Skitmore and 

Patchell, 1990). Moreover, including risk-related factors in cost estimation modelling 

is also important for reducing cost overruns (Ökmen and Öztaş, 2015).
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Applications of MLR, CBR, ANN and SVM

Gaining cost certainty and reduction is a key driver to applying data mining in the AEC 

sector (Ahmed et al., 2018). The regression method has been used as an effective tool 

in the estimation of project performance for decades. For example, Williams (2003) 

employs regression models developed using data from five transportation agencies in 

the U.S. to predict the final cost of highway projects. Li et al. (2005) construct 

regression estimate models for office buildings in Hong Kong. To optimize predictive 

ability within the sample, the stepwise regression approach can be applied to meet the 

principle of parsimony. For example, Masrom et al. (2013) apply forward and backward 

stepwise regression to identify key items from 95 possible factors of contractor 

satisfaction and Guerrero et al. (2014) use stepwise regression modelling to predict the 

construction time of 168 Spanish building projects. Despite its applicability in many 

situations, the unthinking use of stepwise regression can make the method relatively 

weak. Son et al. (2012), for instance, use the full variable rather than stepwise 

regression in comparison with the SVM method in a dataset with severe collinearity. 

Applications of Artificial Neural Networks (ANN) and Case-Based Reasoning 

(CBR) methods accounted for less than 5% of 56 publications related to construction 

cost estimation during 1960-1988 (Newton, 1991), but have developed rapidly since 

then with the aid of improved computer techniques (Chou and Tseng, 2011). ANN 

simulates the learning process of the human brain by representing variables as input-
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output nodes in a weighted network trained on data, and has been used to make 

predictions in a variety of fields (Kim et al., 2004; Kim et al., 2005). ANN models 

produce reasonable predictions with nonlinearity in the data (Hassim et al., 2018). In 

applications to construction projects, Kim et al (2004), for example, develop an ANN 

for cost estimation using data from 530 projects in Korea, showing its accuracy to be 

slightly higher than that provided by regression; Cheung et al. (2006) use ANN to 

predict project performance based on information available at the bidding stage from 

the Hong Kong Housing Authority; while Ajibade et al. (2015) propose the use of ANN 

as a viable alternative to regression for predicting the costs of electrical services 

components during the building design stage. However, ANN is a “black box” method 

and suffers the potential drawback of having to retrain the model completely with all 

data whenever a new case is added. Additionally, ANN studies have difficulties of 

generalization because of their overfitting nature (Min and Lee, 2005). 

CBR is a method that uses previous experience to solve new cases (Aamodt and 

Plaza, 1994; Xu, 1994). It is particularly suited to: (1) obtaining a solution with partial 

understanding; (2) providing a reasonably close match to actual human reasoning; and 

(3) providing more explanation of its working (Xu, 1994). The inherent logic of CBR 

is consistent with Skitmore’s (1985) finding that construction experts predict by 

recalling the estimating details of previous projects and then adjusting these to suit new 

requirements. The number of publications applying CBR to construction related 

problems during the last decade is also increasing (Kim and Kim, 2010). For example, 
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Kim et al (2005) use both ANN and CBR to model the construction cost of 540 Korean 

apartment buildings, finding that CBR performs particularly well; while Kim et al 

(2004) examine the estimating capabilities of MLR, ANN, and CBR using data from 

530 projects to find that CBR outperforms both MLR and an average of 75 alternative 

ANN models.

Support vector machines (SVM) are developed mainly by Vapnik (2000) based on 

structural risk minimization, and have been shown to ensure good generalization 

(Movahedian Attar et al., 2013); An et al. (2007b) apply SVM to classify the accuracy 

of cost estimations for 62 Korean building projects and for regression purposes; and 

Movahedian Attar et al. (2013) use support vector regression (SVR) to forecast how far 

contractors deviate from client expectations during contractor prequalification, and find 

that SVR performs better than ANN.  Son et al. (2012) use PCA-SVR, a SVM 

approach aided by principal component analysis (PCA) to reduce dimensions, to predict 

the construction costs of 84 building projects. However, that study ignores the severe 

collinearity of the 64 predicting variables used in their dataset, and any overfitting 

resulting from using so many variables/principal components given such a relatively 

small sample size. In fact, there has been little study generally in construction research 

of how effectively such methods handle data where the risk of overfitting and 

collinearity is significant. 
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Description and procedure of the hybrid approach

The treatment of modelling problems is usually considered in terms of detection and 

correction (Farrar and Glauber, 1967). Various diagnoses need to be considered 

before an appropriate approach can be proposed to solve collinearity and overfitting 

problems. 

Collinearity diagnosis

When several variables/predictors in a multivariate regression model are highly 

correlated, one variable can be linearly and largely explained by the other variables. 

The coefficient estimates of a multiple regression with this problem may change 

erratically in response to small changes in the model or the data, rendering the 

coefficient estimates unreliable. The variance inflation factor (VIF) is commonly used 

as a standard way to detect collinearity, with larger VIF values indicating more severe 

correlation. In an ideal situation, when the predictors are not correlated, all  and 𝑅2
𝑖 = 0

the VIF values of all variables have a minimum value of 1. A larger  (dependency 𝑅2
𝑖

on other predictors) leads to a larger VIF. A VIF larger than 10 is usually used to 

indicate significant collinearity (Neter et al., 1989). However, high VIF values do not 

necessarily worsen the regression analysis, and the influence of other factors on the 

variance of regression coefficients should also be considered (O’brien, 2007). 
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Two questions are particularly important in collinearity diagnostics: (1) how many 

dimensions in the predictor space are nearly collinear; and (2) which predictors are most 

strongly implicated in each of those dimension (Friendly and Kwan, 2009). To address 

these questions, Belsley et al. (2005) propose a strategy involving PCA, known as 

Belsley collinearity diagnostics. The strategy seeks to identify collinearity by 

introducing two statistics: a condition index (CI) and coefficient variance proportion 

(CVP). CI is defined as  where is the Eigenvalue in collinearity 𝐶𝐼k = 𝜆1/𝜆k 𝜆𝑘

diagnostics. Belsley et al. (2005) recommend caution with >10, while Friendly and 𝐶𝐼

Kwan (2009) regard <5 as “ok”, 5< <10 as “warning”, and > 10 as “danger”. 𝐶𝐼k 𝐶𝐼k 𝐶𝐼k

CVP indicates the proportion of variance of each variable associated with each principal 

component as a decomposition of the coefficient variance for each dimension (Belsley 

et al., 2005; Friendly and Kwan, 2009). Caution is needed with two or more >0.5.𝐶𝑉𝑃k

Overfitting diagnosis

Leave one out cross validation (LOOCV) is a commonly used method in model 

selection to detect overfitting and compare predictive ability (Xu, 1994). Compared 

with the insufficient data utilization and unreliability of traditional separate holdout-set 

in-out sample performance, LOOCV does not waste data and has better reliability in 

model predictive ability comparisons (Moore, 2001). LOOCV is easy to understand in 

that the th model is developed by training the remaining dataset without the th case, 𝑖 𝑖

then using this model to predict the th case, and calculating the mean error after 𝑖
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repeating this exercise N (i.e. sample size) times with replacement. Although widely 

applied in model development and selection in many other scientific areas (such as 

chemistry) this technique is comparatively new to the construction management and 

economics field. For example, Cheung and Skitmore (2006b) used the technique to 

compare the efficiency of the storey enclosure area method and four other traditional 

methods in very early design stage cost forecasting. 

Despite having wide application and well-known predictive properties, however, 

LOOCV is often criticized for being time-consuming and performs comparatively 

poorly in selecting linear models when compared with more classical statistical 

methods (Rivals and Personnaz, 1999). For this reason, LOOCV is only used here to 

compare regression models developed by other statistical linear model development 

criteria (i.e. SSE, adjusted R2, and AIC). 

AIC-PCR procedure and formulas

If a MLR has overfitting problems and the model with the lowest AIC still suffers from 

collinearity problems, then the AIC-PCR procedure could be a useful alternative. AIC-

PCR is described in eight steps, as follows:

Step 1: Proceed with the AIC criterion stepwise regression, with a column 

containing the actual values of the dependent variable Y and a matrix X comprising all 

the independent variables to obtain a model with the lowest AIC. The logic is to add 
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the one variable that is most critical in reducing the AIC of the model, and then repeat 

by adding another variable or removing an existing variable. Whichever action most 

helps reduce AIC is made until the lowest AIC with k predictors is achieved. Software 

such as MATLAB has an automatic command for this task. Note that, while SPSS can 

provide the AIC values of a stepwise regression model using Syntax programming, 

these models are still selected according to the SSE criterion.

Step 2: Proceed to obtain collinearity diagnostics including VIF, CI, and . The 𝐶𝑉𝑃

variance inflation factor (VIF) of the th predictor variable, indicating its collinearity 𝑖

with other predictors is given by:

(2)𝑋𝑖 = 𝛼 + 𝛽1𝑋1 +… + 𝛽𝑛𝑋𝑛 +𝑒𝑟𝑟𝑜𝑟 (𝑋𝑖 𝑖𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒) 

(3) 𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑇𝑆𝑆) =  ∑𝑛
1(𝑋𝑖 ― 𝑋𝑖)

2

(4)𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝐸𝑆𝑆) =  ∑𝑛
1(𝑋𝑖 ― 𝑋𝑖)

2

(5)𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑅𝑆𝑆) =  ∑𝑛
1(𝑋𝑖 ― 𝑋𝑖)

2

(6) 𝑇𝑆𝑆𝑖 = 𝐸𝑆𝑆𝑖 + 𝑅𝑆𝑆𝑖

(7) 𝑅2
𝑖 = 𝐸𝑆𝑆𝑖/𝑇𝑆𝑆𝑖

(8) 𝑉𝐼𝐹 =
1

1 ― 𝑅2
𝑖

= 𝑇𝑆𝑆𝑖/𝑅𝑆𝑆𝑖 

where,  is the mean value of , and  is the estimated value of . TSS is the  𝑋i 𝑋i 𝑋i 𝑋i

sum of the squared differences between each observation and the overall mean; ESS is 

the sum of the squared deviations between the estimated values and mean values of 

Page 14 of 42

http://mc.manuscriptcentral.com/ecaam

Engineering, Construction and Architectural Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering, Construction and Architectural M
anagem

ent

15 | P a g e

each variable; and RSS is the sum of the squared residuals. CI and CVP can be 

determined by applying the collinearity diagnostics command in software such as 

MATLAB and SPSS, or calculated using equations 2-8 as provided.

Step 3: Apply the PCA with software such as MATLAB and SPSS to transform 

the k correlated variables to a set of uncorrelated principal components . All , 𝐶i

components should be extracted at this stage, and they should account for 100% of the 

variance. 

Step 4: Compute the standardized dependent variable, the  standardized 𝑝

independent variables, and the values of the  principal components respectively in 𝑝

preparation for establishing  standardized PCR equations:𝑝

(9)𝑌 ′ = (𝑌 ― 𝑌)/𝑆𝑌   

(10)𝑋𝑖
′ =

𝑋𝑖 ― 𝑋𝑖

𝑆𝑋𝑖
  (𝑖 = 1,….,𝑘) 

 (11) 𝐶𝑗 =  𝑎1𝑗𝑋 ′
1 + 𝑎2𝑗𝑋 ′

2 +… +  𝑎𝑘𝑗𝑋𝑘′ (𝑖 = 1,….,𝑘; 𝑗 = 1,….,𝑝)

where,  denotes the standardized dependent variable;  the dependent variable; 𝑌 ′ 𝑌

 the standard deviation of the dependent variable; the mean of the dependent 𝑆Y 𝑌 

variable; the th standardized independent variable;  the th independent 𝑋i
′  𝑖 𝑋i 𝑖

variable; the mean of the th independent variable; the standard deviation of the 𝑋i 𝑖 𝑆Xi

th independent variable,  the th principal component and  the coefficient of the 𝑖 𝐶j 𝑗 𝑎ij

principal component matrix (the matrix consists of  and ).𝐶j  𝑋i
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Step 5: Proceed with the AIC criterion stepwise regression of principal components 

to estimate  in MATLAB and, if not all principal components are significant, select 𝑌 ′

the lowest AIC regression equation, as in:

(12)𝑦 ′ = ∑𝐵 ′  
𝑗  𝐶𝑗(j = 1,…, 𝑞 ≤ 𝑝) 

Step 6: Transform Eq. (12) with Eq. (11) to obtain:

(13)𝑦 ′ = ∑𝑏 ′
𝑖 𝑋 ′

𝑖  (𝑖 = 1,…𝑘)

where is the estimate and  the th standardized coefficient of the standardized 𝑦 ′  𝑏 ′
i 𝑖

linear regression equation (Liu et al., 2003).

Step 7: Calculate the regression coefficients and constant, and transform the 

standardized linear regression equation into a general linear regression equation

(14)𝑏𝑖 = 𝑏 ′
𝑖 (

𝐿𝑦𝑦

𝐿𝑥𝑖𝑥𝑖
)

1/2

(15)𝑏0 = 𝑌 ― ∑𝑏𝑖𝑋𝑖 (𝑖 = 1,…, k) 

(16) 𝑦 = 𝑏0 + ∑𝑏𝑖𝑋𝑖 (𝑖 = 1,…, k)  

where,  is the regression coefficient of the th variable;  the sum of squares of 𝑏i 𝑖 𝐿yy

dependent variable Y;  the sum of squares of the ith independent variable ; and 𝐿xixi 𝑋i

 is the constant of the new linear model.𝑏0

Step 8: Calculate the mean squared error (MSE) of the final model from

(17)𝑀𝑆𝐸 =
1
𝑛∑𝑛

1(𝑌𝑖 ― 𝑌𝑖)
2
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Experimental evaluation of the hybrid approach

This section introduces the detailed evaluation of the approach through an 

application in estimating construction preliminaries. In addition to the proposed 

approach, such alternative approaches as ANN and SVM are also applied to gauge the  

relative usefulness of the approach. 

Target cost-preliminaries

The elemental cost analysis technique has been widely used by consultant quantity 

surveyors for decades as a base for their early stage predictions. According to a survey 

conducted by Scotos and Lowe (2011), The Standard Form of Cost Analysis (SFCA) 

developed by the Building Cost Information Service (BCIS) of the Royal Institution of 

Chartered Surveyors (RICS) is the most popular model. In the SFCA, construction 

costs comprise eight components: substructure, superstructure, internal finishes, fittings, 

services, external works, contingencies, and preliminaries. The quantity of the items 

involved in most of these cost components are relatively straightforward to determine 

given the level of information typically available at an early project stage, and the value 

of contingencies is decided by the clients/consultants prior to tendering with specific 

consideration of risks. 

The CIOB’s Code of Estimating Practice defines preliminaries as the cost of 

administering a project and providing general plant, site staff, facilities, and site based 

services and other items not included in prior rates. Their actual allocation by the 
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contractor is influenced by a complex combination of past and recent experience on the 

part of the contractor, the current workload of the contractor, market conditions, and 

project characteristics often determined by the contractor, such as contract duration 

(Akintoye, 2000; Tah et al., 1994). The cost of subcontractor rework is another 

expenditure component generally included as a component of the preliminaries (Love 

and Li, 2000). Preliminaries are regarded as a key competitive component not 

determined until the tendering stage. Since the mark up strategy for preliminaries is 

different to that of other cost components, it can be used to achieve an unbalanced 

tender that significantly improves the cash flow of a contractor (Kaka, 1996). On this 

basis, the preliminaries can be particularly problematic to estimate using standard cost 

estimating techniques, and for that reason, the preliminaries is used as the targeted cost 

estimate in this research. 

Sample projects

The sample cases comprise 204 UK school building projects completed during 2000-

2012, selected from a large commercial cost database. Project differences due to 

geographical location, construction year, and rate of inflation are addressed by rebasing 

all prices to the same date (fourth quarter, 2012) and location (Greater London district), 

using the BCIS Construction Price Index. Some important characteristics of the sample 

cases are presented in Tables 1 and 2. The left hand column provides the categories, or 
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cost drivers. These are blank in places for some projects due to a lack of complete 

information concerning such features as building height and contract type.

--------------------------------------------------

Please Insert Table 1 here

--------------------------------------------------

--------------------------------------------------

Please Insert Table 2 here

--------------------------------------------------

Framework of elemental cost items and sample descriptions

The 2012 4th edition of the Elemental Standard Form of Cost Analysis is used as the 

reference to construct the analysis framework. The elemental cost items in the first 

column of Table 3 refer to the variables used for model development in the MLR 

process, and those in the second code column refer to the selected variables in the PCR 

process.

--------------------------------------------------

Please Insert Table 3 here

--------------------------------------------------
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Experimental results

Four models were developed in the model development phase by stepwise regression 

modelling under the criteria SSE (model 1), adjusted R square (model 2), AIC (model 

3) and by directly entering all the predictor variables (model 4), as presented in Table 

4. The overfitting and collinearity diagnoses follow. 

In this case, using LOOCV to detect overfitting involved developing 204x4=816 

sub-models to evaluate their predictive ability. The MSELOOCV values for each model 

are presented in parentheses in Table 4. Although the MSE values of all four models 

are comparable, the model overfitting varies greatly. For example, Model 2 has the 

lowest MSE and highest adjusted R2 but its predictive ability is weaker, while Model 3, 

developed under the AIC, has the lowest MSELOOCV. As the collinearity diagnoses for 

the four models indicate, collinearity is a common problem, with more than one VIF 

larger than 10, CI larger than 10, and CVP larger than 0.5. That is, even the overfitting-

reduced Model 3 suffers from collinearity. Although both MATLAB and SPSS can help 

handle such diagnoses, MATLAB programming is selected here for its ability to 

visualize the collinearity diagnostics (Friendly and Kwan, 2009). Figure 1 provides a 

visual illustration of the diagnostics for Model 3. For clarity, only the principal 

components with CI values larger than five are shown.

--------------------------------------------------

Please Insert Table 4 here
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--------------------------------------------------

--------------------------------------------------

Please Insert Figure 1 here

--------------------------------------------------

Figure 1: Collinearity diagnostics for Model 3.

According to diagnoses of overfitting and collinearity, this dataset is suitable for 

testing the AIC-PCR approach as it displays both features. Following the AIC-PCR 

approach, Model 3, with the lowest overfitting and best predictability, is obtained by 

applying the PCR under AIC. Table 4 gives the MSE results of the four models for 

comparison with Model 1 representing a stepwise regression under SSE; PCR, 

representing the traditional PCR approach developed under SSE; Model 3 representing 

the stepwise regression under AIC; and AIC-PCR representing the approach proposed 

in this study. The results show that the AIC-PCR approach not only avoids overfitting 

(by applying the AIC criterion) and collinearity (by applying PCR) but also improves 

predictability (with 7.73% less MSE than the default stepwise regression model) and 

accuracy (with 1.74% less MSE than the traditional PCR approach using the SSE 

criteria).

Page 21 of 42

http://mc.manuscriptcentral.com/ecaam

Engineering, Construction and Architectural Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering, Construction and Architectural M
anagem

ent

22 | P a g e

Comparisons with other methods

The AIC-PCR approach is compared with other data mining techniques of ANN, PCA-

SVR, and K-Nearest Neighbour (KNN) as a basic type of CBR, to see how well it 

performs. Two absolute evaluation criteria of root mean squared error (RMSE) and 

mean absolute error (MAE), and a scaled indicator of mean absolute percentage error 

(MAPE), are used in common with similar studies (e.g. Dang and Le-Hoai; 2018; Kim, 

2005), where

                                        (18)𝑅𝑀𝑆𝐸 =
1
𝑛∑𝑛

1(𝑌𝑖 ― 𝑌𝑖)
2

                                           (19)𝑀𝐴𝐸 =
1
𝑛∑𝑛

1| 𝑌𝑖 ― 𝑌𝑖|

                                            (20)𝑀𝐴𝑃𝐸 =
1
𝑛∑𝑛

1|
𝑌𝑖 ― 𝑌

𝑌𝑖
|

--------------------------------------------------

Please Insert Table 5 here

--------------------------------------------------

The results presented in Table 5 confirm the effectiveness of AIC-PCR, its error rate 

being the same or lower than the other four methods whichever criteria are used.
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Proposed estimation process for practical applications

A proposed estimation process, incorporating the research design and AIC-PCR model 

development steps, for practical applications is illustrated in Figure 2. The main feature 

of this process is that, once the model is constructed, the overfitting and collinearity 

tests are applied and adjustments made as necessary by the AIC-PCR hybrid approach. 

Ideally, this would involve several models for comparison by the LOOCV method to 

obtain their likely performance and hence the selection of the best method to use. 

--------------------------------------------------

Please Insert Figure 2 here

--------------------------------------------------

Figure 2: Estimation modelling framework and AIC-PCR procedure.

Implications

The study enables the application of the AIC-PCR approach to deal with overfitting 

and collinearity problems. For the first time, the developed approach is applied to 

model the cost of preliminaries using a significant sample of building construction 

projects. An acceptable level of predictability is obtained in comparison with other 

alternatives. The estimation modelling framework and AIC-PCR procedure together 
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offer a practical and effective paradigm for researchers and practitioners to predict 

even the most complex elements of a construction project cost estimate.

Limitations

Some limitations should be acknowledged. Firstly, the sample tested in the study is 

from construction projects. Whilst the experimental application presented should be 

taken cautiously in wider generalization, it does demonstrate the capability of the 

hybrid approach in avoiding overfitting and collinearity problems and gaining 

accurate estimates. Additionally, there is not yet a standard cut-off study for 

determining the appropriate linear level needed for applying the proposed approach or 

such other approaches as SVM. From a practical perspective, the overall approach 

would benefit from simplification given practitioners may be unfamiliar with the likes 

of Matlab and SPSS. However, the proposed approach is no more difficult to apply 

than other cost models commonly built using ANN, LBR or SVM, for example. In 

spite of these limitations, the research proposes an estimation framework 

incorporating the AIC-PCR approach that offers interesting and prospective ground 

for further research and practice. Future studies could benefit from testing the 

applicability of the approach in other contexts such as to other estimate components, 

other building types, other/smaller/larger data sources, and other aspects of 

construction management and economics research entirely.
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Conclusions

The main aim of this study is to build an alternative approach to deal with the 

preponderance of overfitting and collinearity problems that typically occur in 

construction research. A hybrid AIC-PCR method is developed and tested using cost 

data for the Preliminaries of 204 construction projects. The tests show that the hybrid 

approach not only reduces the risk of overfitting and collinearity, but also results in 

better predictability compared with the commonly used stepwise regression models and 

traditional PCR approach under the SSE criterion. The study also validates its 

applicability by comparison with other conventional methods including ANN, CBR, 

and SVM. The proposed approach provides a promising alternative for equivalent 

situations where overfitting and collinearity can be problematic, especially when the 

linear form offers a reasonable approximation to describe the relationships between the 

independent and dependent variables.
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Figure 1: Collinearity diagnostics of Model 3
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Figure 2: Estimation modelling framework and the AIC-PCR procedure
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Table 1. Sample descriptions - part 1. 
Category Type Frequency Percentage

Primary schools 86 42.26%
Secondary 
schools 64 31.4%

Nursery schools 29 14. 2%

Special schools 13 6.4%

Building 
function

Sixth 
form/tertiary 
colleges 12 5.9%
Brick 
construction 70 34.3%

Steel framed 115 56.4%

Timber framed 15 7.4%

Concrete framed 3 1.5%

Structure

Unspecified 1 0.5%
Selected 
competition 164 80.4%

Open competition 10 4.9%
Design and build 
- competitive 12 5.9%
Two stage 
tendering 12 5.9%

Selection 
method

Unspecified 6 2.9%
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Table 2: Sample descriptions - part 2.
Category Description

Gross floor 
area (m2)

Range from 64 to 19670; M=1471.64; 
SD=2209.57

Stories Range from 1 to 4; M=1.41; SD=0.60

Unspecified: 87Schedule 
(months) Remaining: range from 5 to 32; M=10.83; 

SD=4.27

Unspecified: 23Ground 
condition Bad(1)-Moderate(3)-Good(5); M=3.74; 

SD=1.42

Unspecified: 21
Work space Highly restricted(=1)-Restricted(=3)-

Unrestricted(=5); M=3.92; SD=1.24

Unspecified: 17
Site access Highly restricted(1)-Restricted(3)-

Unrestricted(5); M=3.71; SD=1.20

Unspecified: 49
Market 

condition
Low competitive(1)-Less competitive(2)-
Average(3)-Competitive(4)-Highly 
competitive(5); M=3.99; SD=0.79

Air 
Conditionin

g 
Yes=1; No=0; 26 cases are 1; 178 cases are 
0

Preliminarie
s (£)

Range from 0 (1 case) to 3,391,713; 
M=318,448; SD=443,345

Preliminarie
s/GFA

Range from 0 (1 case) to 702; M=251; 
SD=116
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Table 3: Elemental cost items framework.
Elemental cost 
items Code Elemental cost items Code
1 Substructure x1 5F Space heating and 

air treatment
x19

2A Frame x2 5G Ventilating 
systems

x20

2B Upper floors x3 5H Electrical 
installations

x21

2C Roof x4 5I Gas installations x22

2D Stairs x5 5J Lift and conveyor 
installations

x23

2E External 
walls

x6 5K Protective 
installations

x24

2F Windows and 
external doors

x7 5L Communications 
installations

x25

2G Internal walls 
and partitions

x8 5M Special 
installations

x26

2H Internal 
doors

x9 5N Builder's work in 
connection

x27

2 Superstructure 5O Builder's profit 
and attendance

x28

3A Wall finishes x10 5 Services

3B Floor finishes x11 6A Site works x29

3C Ceiling 
finishes

x12 6B Drainage x30

3 Internal 
finishes 

6C External services x31

4 Fittings x13 6D Minor building 
works

x32

5A Sanitary 
appliances

x14 6 External works

5B Services 
equipment

x15 7 Contingencies x33

5C Disposal 
installations

x16 8 Preliminaries y

5D Water 
installations

x17

5E Heat source x18
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Table 4: Developed regression models.

Models Equations MSE 
(1010)

1 𝑦 = 25220.000 + 0.396x1 ― 0.373x6 ― 0.915x8 ― 1.381x10 + 2.391x12 + 1.069x14 + 2.621x17 + 0.604x19
+ 0.760x21 ― 4.892x22 + 0.690x24 + 1.497x25 ― 1.586x27 ― 1.299x31 + 0.135x32

1.410
(2.160)

2 𝑦 = 27296.000 + 0.322x1 + 0.276x2 + 0.103x4 ― 0.390x6 ― 0.920x8 ― 0.602x9 ― 1.558x10 + 0.292x11
+ 2.413x12 + 0.837x14 ― 0.511x15 + 3.050x17 + 0.528x19 + 0.725x21 ― 7.454x22 + 0.382x24
+ 1.336x25 ― 1.692x27 ― 3.903x28 + 0.082x29 ― 1.354x31 + 0.118x32 + 0.186x33

1.355
(2.643)

3 𝑦 = 22722.000 + 0.418x1 ― 0.385x6 ― 0.885x8 ― 1.364x10 + 2.407x12 + 0.937x14 + 2.748x17 + 0.576x19
+ 0.738x21 ― 5.893x22 + 0.568x24 + 1.453x25 ― 1.665x27 ― 1.396x31 + 0.136x32 + 0.200x33

1.391
(2.118)

4 𝑦
= 36079.000 + 0.239x1 + 0.313x2 + 0.397x3 + 0.132x4 ― 0.148x5 ― 0.402x6 ― 0.069x7 ― 0.943x8 ― 0.587

x9 ― 1.468x10 + 0.245x11 + 2.210x12 ― 0.051x13 + 1.151x14 ― 0.613x15 + 0.088x16 + 2.908x
17 ― 0.440x18 + 0.539x19 + 0.205x20 + 0.743x21 ― 7.191x22 + 0.665x23 + 0.375x24 + 1.239x
25 + 0.186x26 ― 1.129x27 ― 4.189x28 + 0.081x29 + 0.015x30 ― 1.400x31 + 0.119x32 + 0.159x
33

1.414
(4.090)

PCR 𝑦 = 28152.762 + 0.366x1 ― 0.390x6 ― 0.804x8 ― 1.531x10 + 2.439x12 + 1.320x14 + 2.463x17 + 0.607x18
+ 0.753x21 ― 4.395x22 + 0.444x24 + 1.612x25 ― 1.764x27 ― 1.241x31 + 0.110x32

1.324

AIC-
PCR

𝑦
= 26801.134 + 0.430 x1 ― 0.387 x6 ― 0.857 x8 ― 1.314 x10 + 2.426 x12 + 1.010 x14 + 2.643 x17 + 0.587 x19
+ 0.718 x21 ― 6.337 x22 + 0.473 x24 + 1.700 x25 ― 1.881 X27 ― 1.419 x31 + 0.102 x32
+ 0.132 x33

1.301
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Table 5: Comparison of results for Application 1, price estimating.

Models RMSE MAE MAPE

AIC-PCR 114061.7251 74954.31441 0.419

PCR 115064.3467 76398.0302 0.425

ANN 194183.5763 89780.4847 0.623

KNN 260417.2453 128660.2191 0.419

PCA-SVR 211449.8781 103757.67 0.621
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