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Abstract— Electroencephalograph (EEG) is a highly 
nonlinear data and very difficult to be classified. The EEG signal 
is commonly used in the area of Brain-Computer Interface 
(BCI). The signal can be used as an operative command for 
directional movements for a powered wheelchair to assist people 
with disability in performing the daily activity. In this paper, we 
aim to classify Electroencephalograph EEG signals extracted 
from subjects which had been trained to perform four Motoric 
Imagery (MI) tasks for two classes. The classification will be 
processed via a Convolutional Neural Network (CNN) utilising 
all 22 electrodes based on 10-20 system placement. The EEG 
datasets will be transformed into scaleogram using Continuous 
Wavelet Transform (CWT) method. We evaluated two different 
types of image configuration, i.e. layered and stacked input 
datasets. Our procedure starts from denoising the EEG signals, 
employing Bump CWT from 8-32 Hz brain wave. Our CNN 
architecture is based on the Visual Geometry Group (VGG) 
network. Our results show that layered image dataset yields a 
high accuracy with an average of 68.33% for two classes 
classification. 

 

I. INTRODUCTION 

A Brain-Computer Interface (BCI) decode EEG signal and 
transform it into useful messages [1]. One application of such 
signal translation is for a control system to move a powered 
wheelchair for people who have lost the motoric ability. For 
instance, joystick control using the subject’s chin movement 
as a control mechanism can be implemented. However, this 
method is deemed difficult to use and non-attractive [2]. EEG 
signal provides hands-free access to control a device for 
people with severe motor disabilities simply by imagining 
motor movements of their body limbs.  

By imagining limb movement, the brain cortex 
experiences oscillation of actives which can be captured by 
non-invasive EEG electrodes placed on the subject’s scalp. 
This overall brain activities can be classified to determine the 
underlying motor imagery tasks being performed by a pattern 
recognition method involving a neural network.  
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The versatility of Artificial Neural Network had been 
utilised in various fields commonly for data modelling, pattern 
recognition or classification purpose to analyse complex data 
[3]. Wavelet transform has been widely used to detect 
correlations in the EEG signals [4] and [5]. The Continuous 
Wavelet Transform (CWT) can be used to analyse the EEG 
signal and is revealed to be a good model for EEG signal 
feature extraction [5]. Deep learning has gained popularity in 
the computer vision field due to the more powerful graphics 
processing unit in recent time. There has not been any 
significant improvement in EEG classification using deep 
learning methods in recent years [6].  

Most MI classification involved two classes which were 
classified with preselected EEG channels based on 10-20 
International system placement. For example, both [7] and [8] 
classified Left and Right movements with only C4, Cz and C3 
electrodes. These electrodes are located in the motor area of 
the brain. In [7], the EEG signal was processed via Short-time 
Fourier transform (STFT) to create a 2D image. Meanwhile, 
CWT was used in [8]. A Convolutional Neural Network 
(CNN) was then employed to classify their EEG images which 
were configured in stacked formats.   

Using a higher number of electrodes have been observed 
to provide an advantage in identifying significant oscillation 
in brain activities. In adults, the use of a higher number of 
electrodes, i.e. 64-256 electrodes, allow visual brain activity 
down to the sub-lobar precision. A higher number of 
electrodes also shows to lower the possibility of spatial 
aliasing [9].  

Hence, in this study we present the approach to use all 22 
channels based on 10-20 International system of electrode 
placement to classify two classes of MI. Our contribution can 
be summarised that using all 22 channels we evaluated a 
strategy of splitting the EEG datasets into layered and stacked 
image configuration. Instead of having the 2D images being 
stacked and fed into CNN, we propose to generate the EEG 
images into its electrode image – creating 22 layered images 
as a data input for the network. 

II. METHODOLOGY 

A. Dataset 

We used EEG raw data 2a four class MI from BCI 
competition IV [10] by Graz University of Technology, 
Austria. There were nine subjects participated during the 
experiment. Each subject performed four MI tasks, namely 
left hand, right hand, tongue and feet movements. Each MI 
data is extracted from the 22 electrodes based on 10-20 system 
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placement. Sampling rate frequency was set at 250 Hz. A 
notch filter at 50 Hz was applied and a bandpass filter applied 
between 0.5 and 100 Hz.  

The experiment was conducted in two sessions. The EEG 
extraction process is shown in Fig. 1. At T = 0, a monitor in 
front of the subject displays a fixation cross. At T = 2, an 
image of an arrow pointing to either of the four directions 
appears, corresponding to the motor imagery tasks. Then, the 
mental tasks start from T = 3 to T = 6. At T > 6, the fixation 
arrow disappears. Each session contains nine runs, and in total 
there were 288 trials collected from each subject. 

 
Fig. 1.EEG data extraction model [10] 

B. EEG signal processing 
The EEG datasets in [10] contained Training and 

Evaluation. In this study, Evaluation datasets were selected to 
be analysed. The signal processing and images generation 
were conducted in Matlab environment. We extracted the data 
from all 22 channels for every task from each subject and 
applied the CWT to the EEG motor images data using a Bump 
wavelet. Then, we generate an image reconstruction of the 
EEG signal as shown in Fig. 2 with the dimensions of 875 x 
1167 x 3, where the y-axis represents frequency in Hertz (Hz), 
and the x-axis represents time in seconds(s). The parabolic 
dashed line denotes cone of influence. It shows where the edge 
effects of the CWT become significant. 

Since EEG signals are known for its non-stationary and 
non-linear characteristic, the CWT can preserve the 
information in the time-frequency domain by using a 
windowing technique with variable-sized regions for the 
analysing function [4]. Long-time intervals are used at low 
frequencies, and shorter regions are used at higher 
frequencies. The CWT mathematical formula is given by the 
expression 

    (1) 

where  is the wavelet,  is the scaling and s the shifting 
parameter [8]. 

 
Fig. 2. CWT reconstruction of the EEG signal 

C. EEG scaleogram processing 
From the image reconstruction obtained illustrated in Fig. 

2, the image is then converted from an RGB image to 
grayscale [0 255], where 0 is black, and 255 is white. 
Therefore, each image for each channel for a task will be 
represented by a matrix of 875 x 1167, reducing the number of 
parameters by a factor of 3. Further, we reduce the image size 
by 80% to allow a faster performance with the CNN.  With 
this, we have a matrix of 175 x 234 for each channel for each 
task. A study by [11] suggests that 8-13 Hz and 15-38 Hz band 
of frequencies are the most relevant for this type of brain 
activity. An event-related desynchronization (ERD) is the 
decrease of the power spectral density in the frequency band 
(8-13 Hz) which occurs during an MI task. In contrast, there is 
an increase in the frequency band (15-38 Hz) which is called 
an event-related synchronization (ERS). As a result, the image 
is cropped so that it contains only range of frequencies 8-38 
Hz. Therefore, we have a final image represented in Fig. 3 for 
one channel for one task with the dimensions of 53 x 166. For 
each subject, we have a 4-dimensional matrix with the size of 
288 x 22 x 53 x 166. 

 
Fig 3. Final size of the CWT reconstruction of the EEG signal 

Two types of EEG image generated from here, i.e. layered 
and stacked version as shown in Fig.4. Each version contains 
the EEG data from the 22 channels.  Fig. 4 (a) shows the 
illustration of the layered images containing 22 images being 
layered in a 3D alike format. Each image represents each 
electrode. Fig. 4 (b) is an example of the 2D image of 
scaleogram of the EEG being stacked as one image. The size 
of each image in the layered version is 53 x 166. The size of 
the stacked image is 583 x 83.  These images will be the input 
dataset for the CNN learning scheme. 
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Fig 4. Scaelogram derived from CWT (a) 22 layered image version 

(b) a stacked image version from 22 channels  

D. CNN structure 
The use of CNN architecture in this project was based on 

the Visual Geometry Group (VGG) Network. The two types 
of image configurations were tested: layered and stacked, 
creating 3D and 2D datasets, respectively. Our CNN 
configuration is illustrated in Fig. 5.  

 
Fig. 5. An illustration of our 1D Convolutional Neural Network 

This configuration consists of five hidden layers, each of 
which contains two convolutional and one pool layers. The 
filter (or kernel) size was kept at 3 x 3. A pooling layer 
downsamples the input data along spatial dimensions, 
resulting in an image with a smaller volume. Our pooling 
layers require two hyperparameters: the spatial extent and 
stride, both of which were set at 2 x 2, which is one of the most 
common configurations of these layers [12]. 

The input dataset was divided into 70% for training and 
30% for testing. To avoid overfitting, the number of images 
set for training was augmented by rotating each image 180 
degrees and then concatenated it to the original data, which 
artificially increases the number of samples. The network was 
trained for 100 epochs each time, and the batch size of the 
dataset was set to 40. A total of three dropout layers to lessen 
the number of neurons to a given percentage to avoid their 
reliance with others, were also implemented with 80%, 50% 
and 50%, respectively, in our Neural Network structure. 

The CNN processing was completed via the University of 
Technology Sydney ARCLab Supercomputers, using Atlas 
and Orion clusters. Among their specifications, Atlas consists 
of an Intel Xeon 2x 3.1 GHz CPU with 2 x 8GB NVIDIA 
Quadro P4000 GPU. On the other hand, Orion counts with an 
Intel Xeon 2.9 GHz CPU and from 5 to 8GB NVIDIA Quadro 
M4000/P4000 GPUs, depending on which node was used. 

III. RESULTS 

The process of testing the dataset was repeated three times 
and the average was calculated. However, the testing was 
conducted only once if the trend of the result was very obvious 
such that the network constantly randomly distributed the 
classification accuracy. This is very noticeable when testing 
stacked image configuration displaying a very low 
classification accuracy result.  

Table 1 and Table 2 show the result of binary classification 
between the layered and stacked images using 22 channels. 
The average accuracy for layered image overall is on average 
of 68.33%. The highest accuracy is for Left and Tongue 
classes at 74.32%. The next best accuracy is recorded for 
Right and Tongue movement at 69.46%. The highest average 
accuracy is recorded for subject nine with an average of 
85.98%. For the same subject, highest accuracy recorded is 
for Left and Tongue movement with an average of 96.97%. 
The Left and Right movement for subject nine is also 
reasonably distinguishable by the network with a 
classification accuracy of 87.12%. 

For comparison purpose, we also tried to classify only using 
three channels of C3, Cz and C4 with layered image 
configuration for Left and Right classes for all subjects as 
shown in Table 2. The overall average accuracy is at 63.43%. 
The accuracy at subject level varies with subject three being 
the highest accuracy yield at 87.50% followed by subject nine 
at 86.57%. The use of 22 channels for Left and Right classes 
still shows that 22 channels yield a slightly higher accuracy 
average at 68.32% compared to the preselected three channels 
described here.  

Based on our result, it appears that the accuracy of the 
movement classification heavily depends on the integrity of 
the input dataset which corresponds to [13]. At the subject 
level, it is obvious that some subjects correspond to the MI 
tasks better than others. This is reflected in the result for 
subject two, five and six where classification between three 
preselected channels and 22 channels show low accuracy for 
these three subjects. The result of the stacked image 
configuration appears to be randomly distributed, and no 
pattern can be detected by the network. Stacked images may 
be more applicable to a low number of channels. This strongly 
suggests that with the increasing number of electrodes, it is 
best to employ a layered version of image configuration with 
CNN scheme to achieve higher classification accuracy. 

Classification research by [14] used two types of datasets, 
and one of the datasets was from the same BCI dataset 2a. 
Although it shows high classification accuracy by employing 
the regularized approach for Filter bank Common Spatial 
Pattern, it appears that their datasets were augmented with 
another dataset from Wadsworth physiobank data. Hence, the 
datasets were sourced and combined from two different 
datasets. Previous studies such as [9], [10] had only been 
performed with a low number of channels. Thus, to our 
knowledge, this is the first study ever conducted with 22 
channels utilising layered image configuration. 
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Table 1. Comparison of accuracy (%) and standard deviation of two classes 
MI classification for all subjects with 22 channels – Layered Images. 

Subject 

2 Classes Layered Images Accuracy % 
(mean ± standard deviation) 

Left vs 
Feet 

Left vs 
Right 

Left vs 
Tongue 

Right vs 
Feet 

Right vs 
Tongue 

Feet vs 
Tongue 

Subject 
average 

1 86.68 68.18 92.04 90.91 96.59 56.81 81.87 
2 45.45 63.64 65.91 52.27 54.55 56.81 56.44 
3 85.23 82.96 78.41 87.50 87.50 64.78 81.06 
4 55.17 64.58 68.06 55.56 69.70 57.57 61.77 
5 52.27 47.72 52.27 50.00 50.00 47.72 50.00 
6 63.89 52.27 60.60 59.26 59.26 58.34 58.94 
7 
 

65.28 69.69 74.07 60.65 64.35 58.80 65.47 
8 63.89 78.70 80.55 62.04 75.00 80.30 73.41 
9 96.21 87.12 96.97 83.33 68.18 84.09 85.98 

Average 68.23 68.32 74.32 66.83 69.46 62.8 68.33 
SD 17.33 13.21 14.43 15.89 15.1 11.86 12.75 

 
Table 2. Comparison of accuracy (%) and standard deviation of two classes 

MI classification for all subjects with 22 channels – Stacked images. 

Subject 

2 Classes Stacked Images Accuracy % 
(mean ± standard deviation) 

Left vs 
Feet 

Left vs 
Right 

Left vs 
Tongue 

Right vs 
Feet 

Right vs 
Tongue 

Feet vs 
Tongue 

Subject 
average 

1 54.54 50.00 52.27 50.00 40.91 52.27 50.00 
2 50.00 56.82 52.27 47.73 52.27 47.73 51.14 
3 47.73 53.41 52.27 47.73 48.86 57.96 51.32 
4 50.76 49.24 50.76 53.03 48.49 50.76 50.50 
5 45.45 50.00 46.59 53.41 43.18 46.97 47.60 
6 53.41 53.41 53.41 52.27 44.32 47.73 50.76 
7 
 

47.73 48.87 53.41 44.32 50.00 46.59 48.48 
8 56.82 51.14 54.55 50.00 50.00 59.57 53.68 
9   52.27 50.76 51.14 46.59 55.68 46.59 50.15 

Average 50.97 51.52 51.85 49.45 48.19 50.68 50.44 
SD 3.66 2.57 2.29 3.11 4.65 4.99 1.73 

 
Table 3. Accuracy (%) and standard deviation of MI Classification 

of Left and Right movements for all subjects 
3 Channels (C3, Cz and C4) 
Left vs Right Classification 
(mean ± standard deviation) 

Subject Layered 
1 53.24 
2 48.15 
3 87.50 
4 61.11 
5 44.91 
6 51.39 
7 63.89 
8 74.07 
9 86.57 

Average 63.43 ± 16.04 

IV. CONCLUSION 

Improvement in computer graphics processing unit in recent 
time allows the opportunity to classify complex EEG data 
using deep learning scheme. In this study, binary classes 
classification was conducted for EEG signal extracted for MI 
movements. This study has shown that the layered image 
configuration method is appropriate for binary classes 

classification with 22 channels. It has also been observed that 
stacked image configuration takes approximately 400 to 500 
seconds to train the network while layered configuration could 
be half of that time. This presents a potential of using deep 
learnings scheme with layered image configuration for fast 
online training adapting it quickly for a new user. Finally, the 
novelty presented in this study can potentially be used as a 
stepping stone for four class classification. 
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