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ABSTRACT. Bayesian Markov chain Monte Carlo explores tree space slowly, in
part because it frequently returns to the same tree topology. An alternative
strategy would be to explore tree space systematically, and never return to the
same topology. In this paper, we present an efficient parallelized method to
map out the high likelihood set of phylogenetic tree topologies via systematic
search, which we show to be a good approximation of the high posterior set of
tree topologies. Here “likelihood” of a topology refers to the tree likelihood for
the corresponding tree with optimized branch lengths. We call this method
“phylogenetic topographer” (PT). The PT strategy is very simple: starting in
a number of local topology maxima (obtained by hill-climbing from random
starting points), explore out using local topology rearrangements, only contin-
uing through topologies that are better than than some likelihood threshold
below the best observed topology. We show that the normalized topology
likelihoods are a useful proxy for the Bayesian posterior probability of those
topologies. By using a non-blocking hash table keyed on unique representa-
tions of tree topologies, we avoid visiting topologies more than once across all
concurrent threads exploring tree space. We demonstrate that PT can be used
directly to approximate a Bayesian consensus tree topology. When combined
with an accurate means of evaluating per-topology marginal likelihoods, PT
gives an alternative procedure for obtaining Bayesian posterior distributions
on phylogenetic tree topologies.
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INTRODUCTION

Phylogenetic trees remain difficult to sample in a Bayesian framework despite
decades of effort. Some of the challenge is due to the dual nature of trees: they
are composed of a discrete component, namely the tree topology, and a closely
intertwined continuous aspect, such as branch lengths and substitution model pa-
rameters. This complex model structure means that much of the recent methods

1



2 WHIDDEN, CLAYWELL, FISHER, MAGEE, FOURMENT, MATSEN IV

developments for advanced statistical samplers in high dimensions, developed for
real spaces, are difficult to apply to the phylogenetic case (Dinh et al.,|[2017). Thus,
for exploring phylogenetic trees, we are left with uninformed random modification
proposals. Although these random methods can be carefully tuned to modify trees
“the right amount” to get an appropriate acceptance rate (Lakner et al.,|2008)), this
can lead to timid Metropolis-Hastings moves and consequent slow progress through
tree space. Such slow progress using random modifications is a natural consequence
of the fact that there are many tree topologies, yet for informative data sets the
posterior is concentrated on a small fraction of them.

Indeed, there are many more ways to make a reasonable tree topology quite
bad than there are to make it better or maintain the same level of optimality. As
a simple example, in the dataset DS1 (detailed below) the maximum a posteriori
(MAP) topology has 2256 neighboring topologies reachable via a single standard
subtree prune-and-regraft (SPR) operation. Only 36 of these topologies are in the
MrBayes 95% credible set, so the vast majority of proposed random modifications of
the MAP topology fall outside the credible set. These issues are inherent in having
a very large number of possible topologies, yet not having an efficient means of
sifting through the bad topologies a priori to find the good ones. To make matters
worse, multiple modes separated by low posterior topologies are frequently present
in real data (Whidden and Matsen IV| |2015)).

MCMC is inefficient for the purpose of visiting every topology in the credible
set. Typical credible sets have hundreds of topologies (or more) that contribute
significantly in aggregate to the posterior, even if each one has significantly less
posterior mass than the MAP topology. To find all of these topologies, we need to
visit the MAP topology many times. For example, in one dataset (DS1, detailed
below) the MAP topology has 7.36% of the posterior probability while the least
likely topology in the 95% credible set has 0.00299% of the posterior probability.
The MAP topology must be sampled 2465 times more often than non-trivial unlikely
topologies; adding nearly-M AP topologies into consideration further emphasizes the
point.

The power to quickly identify a set S of tree topologies that neatly contain the
credible set would enable new efficient strategies for Bayesian phylogenetics. A
simple MCMC approach to use S would be to make bold topology proposals within
S, which will have a high probability of acceptance, and maintain the rest of the
standard MCMC machinery for continuous parameters. An alternate approach
would be to bypass MCMC altogether and evaluate continuous aspects of tree
models separately using methods dedicated to the task of per-topology marginal
likelihood estimation (Fourment et al., 2018]).

In this paper, we develop an efficient parallelized method to find a collection of
high-likelihood topologies, which we call phylogenetic topographer or PT for short.
Here “likelihood” of a topology refers to the tree likelihood for the correspond-
ing tree with optimized branch lengths. The PT strategy is very simple: starting
in a number of local tree topology maxima (obtained by hill-climbing from ran-
dom starting points), explore out using local tree rearrangements, only exploring
topologies that are better than than some threshold below the best observed topol-
ogy. By using a non-blocking hash table keyed on unique string representations of
tree topologies, we avoid visiting topologies more than once across all concurrent
threads exploring tree space. Here we focus on the core development of PT and
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FicUrRE 1. A high level overview of Phylogenetic Topographer.
Starting with a set of high likelihood topologies (filled black cir-
cles), PT tests their NNI neighbors. Given a negative threshold T,
the search explores all topologies above the threshold ¢y, +7" (hol-
low solid circles) while topologies below the threshold are rejected
(hollow dashed circles).

consequent observations about topology likelihoods rather than applications, but as
a first application show good concordance between the results of PT and MrBayes
on standard test data sets. We call the set of tree topologies explored by PT the
high likelihood set, or HLS, in analogy to the high posterior density set (HPDS).

MATERIALS & METHODS

Methods Overview. The goal of Phylogenetic Topographer (PT) is to identify
the collection of phylogenetic tree topologies with a likelihood above a given thresh-
old from the maximum, which we call a high likelihood set (HLS, Fig. . It
does so via direct and systematic exploration, which we implemented in C++
(https://github.com/matsengrp/pt) using the libcuckoo (Li et al., 2014)) non-
blocking distributed hash table and libpll (Flouri et al., |2018) Phylogenetic Like-
lihood Library. PT begins with initial set of topologies and add them to a queue.
PT then visits every tree topology obtainable via NNI operations from the queued
topologies. Visiting a topology consists of optimizing branch lengths (and option-
ally model parameters) to maximize its log-likelihood. Topologies within a user-
specified negative threshold T from the highest found log-likelihood ¢, are added
to the queue and other topologies are rejected.

We tested PT on 9 empirical datasets that have become standard for evaluating
MCMC methods and compare each HLS to MrBayes credible sets. We also com-
pared split frequencies estimated from the HLS and credible sets and visualized
exploration of the credible sets as a graph.


https://github.com/matsengrp/pt
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Maximum Likelihood Estimation of Local Maxima. To generate the ini-
tial set of PT topologies for further exploration, we inferred maximum likelihood
topologies using RAXxML (Stamatakis, 2014). If there are multiple local modes, also
known as phylogenetic islands (Maddisonl [1991)), then we want to include topologies
from each mode in the set of starting topologies. Although RAxML does randomize
the addition order when building an initial topology via stepwise addition of taxa
to maximize the parsimony score, this does not always find multiple modes in tree
space.

To find a diverse set of topologies covering multiple phylogenetic islands, we ran
RAxML 200 times for each dataset with random starting topologies generated us-
ing a birth-death process. These topologies were generated using DendroPy (Suku-
maran and Holder, 2010) with birth and death rates both set to 1.0. We used the
Jukes and Cantor| (1969)) substitution model with the gamma model of rate varia-
tion across sites to optimize the random starting topologies (RAxML commands:
--JC69 -m GTRGAMMA). We compared the results of running PT with 200 such op-
timized random starting points and one single maximum likelihood starting point
generated with stepwise addition.

Phylogenetic Topographer. The input to PT is a phylogenetic tree or set of
trees in Newick format, a RAxXxML info file containing the desired phylogenetic
model parameters, and a desired negative log-likelihood threshold offset 7. PT
searches for every tree topology with a maximum log-likelihood within T log units
of the highest log-likelihood /¢,.x encountered. Again, we used the Jukes-Cantor
plus gamma substitution model in this paper and single starting trees or sets of
starting trees as described above. However, more complex models such as the
general time-reversible model (Lanave et al., [1984; Tavaré, [1986) are supported by
PT, as are any other models supported by libpll.

The key idea of PT is to visit tree topologies in the general neighborhood of the
starting trees that have a high maximum likelihood, specifically at least .5 + T
The set of neighboring topologies are defined by the nearest-neighbor interchange
(NNI) operation. NNI operations are a subset of SPR operations and are also
commonly used in phylogenetic methods. A topology with n leaves has O(n) NNI
neighbors as opposed to O(n?) SPR neighbors so NNI operations provide a quicker
but more local search. We compensate for the local nature of NNI operations by
having many starting points.

We maintain three distributed datastructures. The todo queue stores the possi-
ble high likelihood topologies which have not yet been visited. Partial optimization
determines whether topologies go onto the todo queue. Every topology in the todo
queue will eventually be visited, i.e. will have its branch lengths fully optimized.
The wisited hash table stores every topology for which branch lengths have been
fully optimized. The good hash table stores the high likelihood topologies. Tree
topologies are stored using an SDLNewick string representation (Whidden and Mat-
sen IV] 2018)), a left/right sorted variant of the Newick string format that ensures
the same string representation for identical tree topologies.

The todo queue is initialized with a set of input topologies; PT performs the
following steps for each topology in the todo queue until it is exhausted:

(1) Add the topology to the visited hash table and remove it from the todo
queue.
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(2) Optimize the branch lengths of the corresponding tree to maximize its
likelihood.
3) If the tree likelihood is less than £,.x + T then discard the tree.
4) Otherwise, add the topology with its likelihood to the good hash table.
5) Update £y if the tree likelihood is greater than it.
6) For each unvisited NNI neighbor of the tree:
(a) Optimize the branch length of the new tree branch and optionally
other tree branches.
(b) Discard the neighbor if its partially-optimized likelihood is less than
gmax +T.
(¢) Otherwise, add the neighbor tree topology to the todo queue.

(
(
(
(

By default, PT applies single branch optimization when proposing neighboring
trees, that is, PT only optimizes the length of the new tree branch. PT can op-
tionally optimize branches at a certain radius around the new branch with the
--radius r option. As defined by libpll, this radius optimization first selects an
arbitrary neighboring node of the new branch. Edges at most distance r from the
selected neighbor are optimized. For example r = 0 is single branch optimization,
r = 1 optimizes the new branch and two of its neighbors, and so on. Finally, r = —1
specifies full branch optimization when proposing a neighbor tree. Note that full
branch optimization is always used before judging if a tree topology belongs in the
good hash table and thus for the final reported log likelihood values.

We implemented a multithreaded wanderer framework for PT to explore the
high likelihood set in parallel. A central authority thread controls the assignment
of topologies from the todo queue to wanderer threads. When a wanderer thread
exhausts its local region of tree space, the authority steals topologies from the neigh-
borhood of another wanderer to ensure that every wanderer thread is constantly
working.

PT can either use the inferred maximum likelihood model parameters from
RAxML or spend significantly more time optimizing model parameters to maxi-
mize the likelihood of each visited topology. In our simplified case, for example,
model optimization means optimizing the shape of gamma distributed rate hetero-
geneity. PT can also optionally incorporate an exponential branch length prior and
optimize MAP topologies instead of maximum likelihood topologies.

Data and Run-time Parameters. We investigated the ability of PT to find
high posterior density sets by applying PT and MrBayes 3.2 (Ronquist et al., 2011)
to 9 empirical data sets. These data sets, which we call DS1-DS8 and DS10, are
standard data sets for evaluating MCMC methods (Lakner et al. [2008; [Hohna
and Drummond, 2012; [Larget], 2013} Whidden and Matsen IV} 2015). The data
sets consist of sequences from 27 to 67 eukaryote species (Table , and are fully
described in [Lakner et al.| (2008)).

Single-threaded tests were run on Intel Xeon E3-1270 Processors running Ubuntu
14.04 with 32GB of RAM. Multithreading tests were run on Intel Xeon E5-2697
Processors running Ubuntu 14.04 with 768 GB of RAM.

To determine the high posterior density sets in these datasets we computed large
“golden run” posterior samples for each data set using MrBayes. In other words, we
sampled far more topologies than typically used for such analyses: for each data set,
10 single-chain MrBayes replicates were run for one billion iterations and sampled
every 100 iterations. We used the|Jukes and Cantor| (1969) substitution model with
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TABLE 1. The data sets used in this study, DS1-8 and DS10 of
eukaryote sequences. N = number of species; Cols = number of
nucleotides; rDNA = ribosomal DNA; rRNA = ribosomal RNA;
mtDNA = mitochondial DNA; COII = cytochrome oxidase subunit
II; NPC = Nuclear protein coding.

Data N Cols Type of data Study Treebase
DS1 27 1949 rRNA; 18s Hedges et al. (1990) M2017
DS2 29 2520 rDNA; 18s Garey et al.|[(1996) M2131
DS3 36 1812 mtDNA; COII; and cytb |Yang and Yoder| (2003) Mi127
DS4 41 1137 rDNA; 18s Henk et al.| (2003) M487
DS5 50 378 NPC; wingless Lakner et al.| (2008]) M2907
DS6 50 1133 rDNA; 18s Zhang and Blackwell| (2001) M220
DS7 59 1824 mtDNA; COII; and cytb [Yoder and Yang| (2004) M2449
DS8 64 1008 rDNA; 28s Rossman et al.| (2001) M2261
DS10 67 1098 rDNA; 18s Suh and Blackwell (1999) M2152

the gamma model of rate variation across sites (MrBayes version 3.2.5 commands:
lset nst=1 rates=gamma; prset statefreqpr=fixed(equal)). We used a uni-
form prior on topologies and an unconstrained Exponential(10) prior on branch
lengths. These replicates were not Metropolis-coupled. We discarded the first
25% of samples as “burn-in” for a total of 7.5 million posterior samples per data
set, assuming the long burn-in period implied stationarity. Following Hohna and
Drummond! (2012) and Whidden and Matsen IV| (2015), we assumed these runs
accurately estimated split frequency distributions because of the extreme length of
the Markov chains in comparison to our data size. The estimated split frequency
error was below 0.015% for each of our data sets, suggesting that the various golden
runs sampled the same split frequencies. Moreover, commonly applied diagnostics
implemented in the MrBayes sumt and sump tools satisfied common thresholds,
including having a standard error of log-likelihood at most 0.8, maximum standard
deviation of split frequencies at most 0.006, maximum Gelman-Rubin split PSRF
values of 1.000, and the effective sample size for the treelength parameter exceeding
470,000. We use the 95% credible set of tree topologies from the golden runs as our
assumed high posterior density set. Despite the length of these runs, we cannot
assume that the golden runs have accurately estimated the posterior probability of
all topologies for all data sets. Following previous work (Whidden and Matsen IV,
2015) we can, however, reasonably assume that the golden runs accurately estimate
the posterior probability of high probability topologies.

In one set of comparisons considering the proportion of the high posterior density
set found by PT runs, we normalized the covered density to exclude the topolo-
gies only sampled once out of all 10 golden runs; we call this the “nonsingleton
covered posterior probability.” For example, suppose PT found topologies covering
60% of the posterior probability, only 80% of the posterior probability of the 95%
credible set topologies were from topologies sampled twice or more, and none of
the topologies found by PT were singletons. Then the nonsingleton covered poste-
rior probability would be 0.6/0.8 = 0.75 for such a run. This allowed us to better
evaluate an HLS for datasets where even golden runs were insufficient to fully esti-
mate the probability of the entire 95% credible set. Note that we did not evaluate
our methods on the datasets DS9 and DS11 from previous studies because of the
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difficulty in obtaining good posterior probability estimates of tree topologies for
comparison on these datasets, even through extraordinarily long MrBayes golden
runs. Indeed, in previous studies (Whidden and Matsen IV} 2015) no tree topology
in these datasets was ever sampled twice even in long MrBayes golden runs.

Split Frequency Comparison. Researchers are often interested in summary
measures such as consensus trees rather than the marginal probabilities of indi-
vidual topologies. Towards this end we computed PT split frequency estimates
for an HLS as the sum of the probability-normalized maximized likelihood of each
tree topology containing a given split (here by mazimized likelihood we mean the
likelihood of the topology with optimized branch lengths). We compared these
estimates to the split frequencies inferred by MrBayes probability estimates using
the same amount of computational time. Comparisons were both quantitative by
computing the root mean square deviation (RMSD) from the assumed golden run
ground truth split frequencies and qualitative via scatter plots and by comparing
the inferred majority rule consensus trees. The root mean square deviation is sim-
ilar to the average standard deviation of split frequencies (ASDSF) convergence
diagnostic commonly used as a stopping criterion when comparing independent
Markov chain Monte Carlo chains. As such, we consider a 0.05 RMSD to be a good
estimate of the split frequency distribution. It is difficult to estimate the frequency
of rare splits so, following common methods of calculating ASDSF values, we only
compared the RMSD on nontrivial splits with at least 10% frequency in the golden
runs.

SPR Tree Space Graphs. We visualized exploration of the tree space of Bayesian
phylogenetic posteriors using subtree prune-and-regraft (SPR) graphs constructed
by the software package sprspace (Whidden and Matsen IV] |2015). This software
constructs a graph in which the vertices represent the phylogenetic tree topologies of
the 95% credible set or, if that is too large, the 4096 most probable tree topologies.
The edges of these SPR, graphs connect topologies which can be obtained from each
other with one subtree prune-and-regraft operation. Note that NNI operations are
a subset of SPR operations so these graphs connect topologies that may not be
easy to traverse by PT. The graphs were visualized with the open-source Cytoscape
platform (Shannon et al.,[2003). We used a force-directed graph layout which repels
nodes but pulls edges. Node sizes (area) were scaled in proportion to their posterior
probability. The largest node was the most probable tree topology. We colored
nodes on a dark blue to light blue scale (grey in the print version) with increasing
PT thresholds. The darkest nodes were found with the smallest threshold. Yellow
nodes were not found by PT with the tested thresholds.

REsuULTS

PT Can Quickly Find High Posterior Density Sets. PT finds Bayesian high
posterior sets of topologies by evaluating log likelihoods with a fixed gamma rate
distribution (Fig. . As expected, PT finds more of the MrBayes 95% credible set
as the search threshold increases (Fig. . For datasets with a smaller credible set
(DS1,DS3-DS4 and DST), a threshold of -10 log-likelihood units was sufficient to
capture the entire 95% credible set. Dataset DS2 has a few topologies with a partic-
ularly high relative likelihood which necessitated expanding the threshold to -15 to
capture the entire 95% credible set. For datasets with a moderately sized credible
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FIGURE 2. (a) The cumulative posterior probability of HLSs ex-
plored by PT at different log-likelihood thresholds. (b) The covered
PP (from MrBayes) with increasing time on a subset of datasets.

set (DS6, DS8), a threshold of -6 or -7 log-likelihood units captured topologies with
the majority of the credible set posterior probability. These datasets exhausted the
available 32GB memory and failed with larger thresholds. In datasets with a wide,
flat posterior (DS5, DS10), and thresholds of -3 and -5, PT captured only the small
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FIGURE 3. (a) The mean running time improvement from mul-
tithreading on DS1 with 200 starting points and a threshold of 10
log-likelihood units. (b) The running time improvement from op-
timizing branch lengths on DS1 with a limited radius of 0 (solid),
1 (dashed), 2 (dotted), and full branch optimization (dotdashed).

proportion of the credible set posterior probability focused on topologies with a
relatively high posterior probability.

Using multiple starting points is important when exploring peaky datasets with
multiple modes. Previous work (Whidden and Matsen 1V, 2015)) identified DS,
DS4, DS6, and DS10 as having multiple modes. Using 200 starting points captured
a much larger proportion of the credible set on DS1 and DS4 at the same threshold.
When using a single starting point these datasets showed a characteristic “bump”
in the covered probability at the threshold which allowed PT to find a second mode.
However, PT showed no or little difference when exploring DS6 and DS10 with one
or multiple starting points, nor was this bump evident. Multiple starting points
also aided the exploration of the flat dataset DS5.

The time required to explore the HLS to a given threshold varies with the shape
of the posterior distribution (Fig. full results in online supplemental Fig. . In
general, the time required grew exponentially as the negative threshold decreased.
Using multiple starting points carries only a small performance penalty beyond
their initial calculation time. As such, multiple starting points greatly reduced the
time required to cover a given proportion of the credible set on peaky datasets.

The number of visited topologies inside and outside of the credible set both
increase with the likelihood threshold (online supplemental Fig. . The majority
of HLS topologies found under a small threshold were also in the credible set. In
most of our tests the number of low probability topologies that must be visited to
fully explore the 95% credible set is of the same order of magnitude as the number of
visited high probability topologies. However on datasets with large flat posteriors,
such as DS5, the number of low probability topologies was within two orders of
magnitude of the number of high probability topologies at the tested thresholds.

Our implementation of direct topology exploration scales well with multiple
threads (Fig. . Over 10 replicated tests on DS1 with a threshold of -10, the
mean speedup with 8 threads was 4.46x.
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DS4 (200 starting trees)

bl DS6 (1 starting tree) DS6 (200 starting trees)
FIGURE 4. SPR graphs built from MrBayes credible sets of DS1,
DS4, and DS6 and colored according to PT exploration. Topolo-
gies found by PT with successively more negative log-likelihood
thresholds are shown on a dark to light blue scale. Scales vary
per dataset with respect to the most negative computed threshold.
Yellow means not found.

Single branch optimization of tested trees outperformed full branch optimization
by a large margin (Fig. . Profiling showed that the majority of PT computation
is optimizing the branch lengths of tree topologies to maximize their likelihood and
single branch optimization. Recall that we fully optimize the branch lengths of
visited topologies, so using single branch optimization only runs the risk of missing
a topology that belongs in the HLS. Indeed, full branch optimization recovered a
small number of extra topologies at a given threshold. However, given the extra
time required to fully optimize the large number of neighboring tested topologies
with small likelihoods, it was more beneficial to simply decrease the threshold rather
than optimize the length of every tree branch or even every tree branch at a distance
of 1 or 2 from the newly introduced branch.

SPR graphs showed that a single starting topology often began exploration from
a smaller mode in peaky datasets (Fig@ online supplemental Fig.. These graphs
of the MrBayes credible sets with overlayed PT HLS demonstrate the expansion
of the HLS at different likelihood thresholds. In DS1, a search threshold of -7 log-
likelihood units is required to bridge the gap between the starting topology and the
second peak. In DS4, the RAXxML starting tree was stuck in a poor local optima
and a search threshold of -8 log-likelihood units was required to find the majority of
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the high likelihood topologies. In both cases, using multiple starting points greatly
improved exploration of the HLS at small thresholds: PT runs with 200 starting
points have darker blue, showing in more detail how multiple starting points get
more good topologies with a higher likelihood threshold. Surprisingly, none of our
200 starting points landed in the smaller mode of DS6.

SPR graphs of the other six datasets showed a clear expansion of the HLS out-
ward from the most likely topologies (Fig. . As expected from Figure the
expansion was similar with 1 or 200 starting points.

PT quickly found the majority of the nonsingleton posterior probability (Fig. @
Restricting our comparisons to topologies in the credible set which were sampled at
least twice showed that PT found all or most such topologies, even on difficult flat
datasets like DS5. We were surprised to find that only 13.6% of our computed “95%
credible set” for DS5 was composed of topologies sampled more than once in our 10
different golden run replicates. On such datasets the HLS may be a small fraction
of the MrBayes credible set, complicating the comparison of HLS and credible sets.
This suggests that, even with golden runs, the posterior probabilities of singleton
topologies are estimated poorly.

Using MAP in place of maximized likelihood or optimizing the gamma parameter
of the JC+I" model for each visited topology had little effect on which topologies
were found for a given threshold (Fig. @ Model optimization, in particular, re-
quired a large amount of extra computation that would be better spent exploring
to a greater depth with a larger threshold.

Normalized Likelihoods Approximate Topology Posteriors. The probability-
normalized likelihoods (i.e. likelihoods divided by their sum) of branch-length-
optimized tree likelihoods were a surprisingly good indicator of their posterior prob-
ability (Fig.[7). This relation was strongest on datasets with a small credible set.
Moreover, there was a close correspondence between the sum of the maximized
likelihoods and the sum of the posterior probabilities of an HLS.

Our three different methods of estimating topology likelihoods showed similar
patterns relative to posterior probabilities (online supplemental Fig. . Using a
fixed gamma parameter with standard maximum likelihood, MAP, or optimizing the
gamma parameter with maximum likelihood made little difference in the datasets
we studied.

Split frequencies estimated using maximized likelihood to approximate the mar-
ginal likelihood of the HLS rapidly approached the golden run split frequencies
(Fig. |8, online supplemental Fig. . Here we compare the RMSD between PT
split frequencies and the golden run split frequencies over time, as well as the RMSD
between single run MrBayes split frequencies and the golden run split frequencies
over time. On datasets with a small credible set the RMSD of PT split frequencies
reached our goal of 0.05 more quickly than the RMSD of single run MrBayes split
frequencies. On datasets with larger credible sets PT required more time than Mr-
Bayes and approached the golden run split frequencies but did not meet our goal
of 0.05. PT would require more time or memory to fully explore these datasets
using maximum likelihood for the topology posterior probability estimate. We also
wished to understand if the deviation to ground truth was because PT exploration
strategy was missing trees, or if our use of maximized likelihood to approximate
posterior probability was too coarse. For this reason we also calculated split fre-
quencies using the golden run posterior probabilities attached to the trees in the
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DS2 (200;;tarting trees)

DS5 (200 starting trees)

DS8 (200 starting trees)
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FiGURE 5. SPR graphs of the credible sets of the remaining
datasets with 200 starting points. Topologies found by PT with
successively more negative log-likelihood threshold are shown on a
dark to light blue scale. Yellow means not found.
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FIGURE 6. The nonsingleton covered PP (from MrBayes) with
increasing time. Default (solid), MAP (dotted), and model testing
(dashed) runs were evaluated with 200 starting points.

HLS. Computing split frequencies in this way was sufficient to reach an RMSD of
0.05 in every dataset except DS5 (dotted lines, Fig. , emphasizing the need for
good marginal likelihood estimation procedures beyond maximized likelihood.

Split frequencies estimated using maximized likelihood and the HLS were gen-
erally similar to the golden run split frequencies for most of our tested datasets
(Fig. |§|, online supplemental Fig. |[S6). However, they did not always agree: one
nearly ubiquitous two-taxon split was estimated with a frequency of less than 50%
in DS7, possibly a result of that dataset’s lattice-like structure. Several splits with
> 50% frequency in DS5 were estimated as having very high probability, possibly
indicating a failure to find topologies with conflicting splits or a difference in the
branch length probability landscape of those trees lost with a simple maximized
likelihood estimate.

Consensus topologies estimated using maximized likelihood and the HLS were
also generally similar to those estimated using the golden run split frequencies
(Table . Four of the 10 datasets showed slight disagreement (SPR distance <
2 and RF distance < 4) of at most two edges per topology with poor support
(frequency < 0.75 using both methods). Six of the 10 datasets resolved a small
number of edges which remained unresolved in the other topology. Figure[10|shows
an example of the differences for DS1 generated using Dendroscope 3.5.9 (Huson
and Scornavacca, [2012)).
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topologies using 200 starting points. Runs are taken at the most
negative log-likelihood threshold completed for standard, MAP,
and model testing runs.

DiscussiON

We have shown that systematic exploration of phylogenetic tree space using
maximum likelihood is a viable strategy for approximating Bayesian posterior dis-
tributions. For the data sets examined, simple maximized likelihood point estimates
of topology probability were a quick and useful estimate of marginal topology prob-
ability. The majority of the topologies in the 95% credible sets identified by MCMC
sampling with MrBayes were reachable by starting with a relatively small number of
high likelihood topologies and exploring all topologies within up to 10 log-likelihood
units. On datasets with a large number of poorly sampled topologies, PT could not
find many of the singleton topologies but did find most of the topologies sampled
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TABLE 2. Differences between consensus topologies generated us-
ing split frequencies from MrBayes golden runs and PT HLS with
marginal probabilities approximated by maximized likelihood. We
recorded the SPR distance (SPR), RF distance (RF), MrBayes
resolved edges (MB-Res), and PT resolved edges (PT-res). The
resolved edge columns count the unique compatible edges of each
topology (due to multifurcations in the opposing topology).

SPR

=
e5|

Dataset MB-Res | PT-Res
DS1
DS2
DS3
DS4
DS5
DS6
DS7
DS8

DS10

=== = O = O OO
O oo NEHEO OO

ON = OO OO NN
O NO O OO RN

at least twice by MrBayes. Moreover, the high likelihood sets identified by phyloge-
netic topographer had similar split frequency distributions to long MrBayes golden
runs, obtaining an RMSD less than 0.05 on all but our flattest dataset. We tested
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FIGURE 10. A tanglegram showing differences between MrBayes
(left) and PT (right) Consensus topologies for DS1.

several search strategies. Using multiple randomized starting points was a useful
strategy on multi-modal datasets which also worked well on single-mode datasets,
with little speed penalty. We observed a good parallelism speed-up of 4.46x with 8
cores using distributed data structures and a work-stealing strategy. Single branch
length optimization of candidate trees followed by full branch optimization of the
most promising trees was much quicker than always using full branch optimization
with little risk of missing high likelihood topologies. However, neither applying
a prior and estimating MAP values or optimizing the gamma parameter for each
visited topology proved useful for finding high likelihood topologies and the latter
came with a substantial performance tradeoff. These strategies may prove more
useful under more complex phylogenetic models and are worth further study. It
may also be interesting to try other tree rearrangements, such as SPR. Searching
with SPRs may allow using a smaller negative threshold T because PT could jump
between peaks without going through low likelihood topologies. The tradeoff is that
employing SPR rearrangements would slow down computation due to a substantial
increase in the number of neighbors, so practical usage of SPR with PT may require
novel algorithms or optimization.

We believe that the HLS identified by PT will be useful for a number of ap-
plications. The most direct application, to obtain approximate Bayesian posterior
distributions, will be enabled by better estimates of the marginal probability of
HLS tree topologies. We have recently developed efficient such methods (Fourment
et al., |2018]) that we show work well for common models, and hope to show that
they work well for more complex phylogenetic models in the future. One could also
develop proposal distributions for MCMC samplers which draw topologies directly
from the HLS set (Pollard et al., [2018]), or use an importance-sampling approach.
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Another related application is to rapidly obtain a consensus tree along with ap-
proximate split frequency estimates. In our tested datasets, the HLS explored by
PT provided a useful estimate of the split frequencies in minutes and the estimated
consensus topologies differed only slightly from those estimated using long MrBayes
golden runs.

Although the PT strategy as we have formulated it is novel, it shares goals and
strategies with previous work. This line of work begins with , who
had the goal of finding “islands” of most-parsimonious topologies using hill-climbing
by using many starting points. However, this work focused on finding these islands,
rather than collecting all topologies that have a given level of optimality around
them as we do here. [Salter| (2001) extended this work from parsimony to likeli-
hood, while others (Salter and Pearl, 2001} 2003} [Zwickl, [2006; [Nguyen et al.
have developed strategies to find maximum-likelihood trees in the presence
of multiple likelihood peaks. Our work is distinguished from this previous work
by our goal of approximating tree topology posterior distributions using likelihood
methods, and by our methods of parallelized systematic exploration of suboptimal
topologies. Another vein of work uses a collection of trees obtained using boot-
strapping as a proxy for a posterior distribution (Rodrigo et al., 2009} [Syme and|
|Oakleyl, 2012; Pankey et al., 2014; Pollard et al., [2018]). That work uses different
methods and has not shown the level of agreement that we obtain between our
approximation and the true posterior.

The PT approach also has precedent in other areas of statistics. One connection
is with the idea of Bayesian model averaging (Hoeting et al. [1999)), in which here
the model to be averaged over is the phylogenetic tree topology. If we restrict
parameter estimation in Bayesian phylogenetics to the PT set, this becomes the
“Occam’s window” strategy of Madigan and Raftery| (1994). Furthermore,
[and Massam| (2010) propose MOSS, a local search strategy over log-linear models
with conjugate priors to find the set in the Occam’s window; like PT it also records
models to avoid revisiting them. However, in our setting, we do not have easy
access to marginal likelihoods through conjugacy. Also, MOSS is a stochastic search
procedure to avoid being stuck in local optima, whereas we identify local optima
ahead of time using hill-climbing and have a search that does not include any
explicit stochasticity in the design.

PT is part of a larger trend in Bayesian statistics away from sampling-based
methods such as MCMC and towards optimization-based methods such as varia-
tional Bayes . Here we find an approximate posterior distribution
on a discrete collection of items using direct search. Much remains to be done to
build on this starting point. Our current search strategy is not smart— it simply
tries every NNI at every location and must consider paths of equivalent moves such
as moving a taxon A and then a taxon B or moving B first and then A. Also, to
be viable in the general case, PT needs to overcome the challenge posed by very
diffuse posteriors; because such diffuse posteriors appear to result from unresolved
splits (Whidden and Matsen IV] 2015) we may look to collapse ambiguous splits or
express topology posteriors in a factored form (Larget, |2013; Zhang and Matsen),
. More advanced techniques and search strategies such as deep reinforcement
learning (Mnih et al.,|2015; |Silver et al 2016), combined with better marginal like-
lihood estimates, may form the basis for fast new Bayesian phylogenetic methods.
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i

DS8 (1 starting tree) DS10 (1 starting treé)

FicUre S2. SPR graphs of the credible sets of the remaining
datasets with 1 starting point. Topologies found by PT with suc-
cessively more negative log-likelihood thresholds are shown on a
dark to light blue scale. Yellow means not found.
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