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 Abstract 

In a single-degree-of-freedom weakly nonlinear oscillator subjected to periodic external 

excitation, a small-amplitude excitation may produce a relatively large-amplitude 

response under primary resonance conditions. Jump and hysteresis phenomena that 

result from saddle-node bifurcations may occur in the steady-state response of the 

forced nonlinear oscillator. A simple mass-spring-damper vibration absorber is thus 

employed to suppress the nonlinear vibrations of the forced nonlinear oscillator for the 

primary resonance conditions.  The values of the spring stiffness and mass of the 

vibration absorber are significantly lower than their counterpart of the forced nonlinear 

oscillator. Vibrational energy of the forced nonlinear oscillator is transferred to the 

attached light mass through linked spring and damper. As a result, the nonlinear 

vibrations of the forced oscillator are greatly reduced and the vibrations of the absorber 

are significant. The method of multiple scales is used to obtain the averaged equations 

that determine the amplitude and phases of the first-order approximate solutions to 

primary resonance vibrations of the forced nonlinear oscillator. Illustrative examples are 

given to show the effectiveness of the dynamic vibration absorber for suppressing 

primary resonance vibrations. The effects of the linked spring and damper and the 

attached mass on the reduction of nonlinear vibrations are studied with the help of 

frequency response curves, the attenuation ratio of response amplitude, and the 

desensitisation ratio of the critical amplitude of excitation. 
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1.  Introduction 

In a forced single-degree-of-freedom weakly nonlinear system, nonlinear resonances 

may occur if the linearized natural frequency of the system and the frequency of an 

external excitation satisfy a certain relationship. A small-amplitude excitation may 

produce a relatively large-amplitude response under primary resonance conditions 

when the forcing frequency is in the neighbourhood of the linearized natural frequency. 

Additionally, the steady-state forced response of the nonlinear system may exhibit 

nonlinear dynamic behaviours including saddle-node bifurcations, jump and hysteresis 

phenomena [1]. These behaviours along with large-amplitude resonant vibrations are 

undesirable in many applications because they can result in unacceptable levels of 

vibration and discontinuous dynamic behaviour.  The nonlinear vibrations and jump 

phenomena should thus be attenuated by appropriate approaches from the perspective 

of vibration control and disaster prevention. 

 

Over the past decade, active control methods have been developed to suppress the 

nonlinear resonance vibrations of weakly nonlinear systems with parametric or external 

excitations. These methods include time-delayed feedback control [2-6], a linear-plus-

nonlinear feedback control [7,8], and a nonlinear parametric feedback control [9].  The 

application of such feedback control schemes to the control of nonlinear vibrations and 

bifurcations does not add an extra degree-of-freedom system into the nonlinear 

systems to be controlled.  Introduction of an ‘auxiliary system’ into the existing linear 

structures to be controlled has also been considered using nonlinear coupling and 

internal resonances between the auxiliary system and the linear primary structure. An 

internal resonance control technique has been developed by creating a linear second-

order controller coupled to a linear vibration system via quadratic terms [10-12]. The 

controller was implemented by making use of the saturation phenomenon which may 

exist in a weakly non-linear system with quadratic nonlinearities and under one-to-two 

internal resonance between two linearized natural frequencies [1].  Under internal 

resonances, the quadratic nonlinear terms act as a bridge for energy exchange 

between the linear system and the controller.  It should be noted that the use of active 

controllers for attenuation of vibrations is not feasible in many applications, for reasons 

including cost or the need of an independent energy supply. A passive control 

approach is an alternative under these circumstances [13]. Additionally, a passive 

vibration control system may be required as a back-up to prevent complete disaster in 

the event of the failure of active control methods. 
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In the context of the passive vibration control of linear mechanical systems, one of the 

well developed approaches for reducing vibration levels is to add a secondary linear 

oscillator to the existing linear system or structure. This secondary oscillator, commonly 

called a dynamic vibration absorber [14, 15], may be a simple mass-spring-damper 

system attached at a single point of a linear mechanical system or structure. The main 

purpose of adding the secondary oscillator is to move the resonant frequency of the 

mechanical system away from the operating frequency of the vibratory force. The 

original single-degree-of-freedom system becomes a two-degree-of-freedom system 

with two resonant frequencies, neither of which will coincide with the operating 

frequency. The dynamic vibration absorber is usually tuned in such a way that two 

natural frequencies of the resulting two-degree-of-freedom linear system are away from 

the excitation (operating) frequency [14-17].  When a dynamic vibration absorber is 

incorporated into a linear mechanical system, vibrations of the mechanical system at its 

operating frequency can be reduced to negligible proportions and no peak in 

amplitudes of the response is reached. Instead, two peaks appear at frequencies below 

and above the fundamental frequency of the original system. 

 

Dynamic vibration absorbers have found extensive applications in reducing the 

amplitudes of vibrations of linear systems excited near a resonant frequency [14-20]. 

Linear dynamic vibration absorbers are an effective way of attenuating vibrations of the 

primary linear system provided that the operational frequency of the primary linear 

system is constant.  It was found that better performance of dynamic vibration 

absorbers can be achieved by introducing nonlinear absorber springs. It has been 

shown that the nonlinear vibration absorber incorporating a nonlinear coupling spring 

element could offer performance advantages in both narrow- and broad-band 

applications over its linear counterpart [21-25]. But, unfortunately, the presence of 

nonlinearities may introduce dynamic instabilities and result in amplification rather than 

reduction of the vibration amplitudes [26-28].  Such situations can generally occur in 

two cases.  The first case is when the nonlinear vibration absorber is tuned in such a 

way that the desired operating frequency is approximately the mean of the two 

linearized natural frequencies of the system [26,27].  Thus a combinational resonance 

may result in near-periodic vibrations having large amplitudes.  The other case is when 

the two linearized natural frequencies of the resultant system are under one-to-one 

internal resonance conditions [28]. Loss of stability of the periodic response and quasi-

periodic oscillations with much higher amplitudes may happen for the primary 
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resonance response of the nonlinear system under certain combinations of system 

parameters. 

 

In addition to the use of either linear or nonlinear vibration absorbers to suppress the 

vibrations of linear systems, linear vibration absorbers can also be applicable to 

controlling the nonlinear vibrations of nonlinear mechanical systems. An experimental 

study by Bonsel, Fey and Nijmeijer [29] showed that a linear dynamic vibration 

absorber is capable of suppressing the first harmonic resonance as well as super- and 

sub-harmonic resonances of a piecewise linear beam. 

 

The main purpose of the present paper is to suppress the primary resonance vibrations 

of a weakly nonlinear system with a periodic excitation using a linear vibration 

absorber. The linear vibration absorber referred to here is a mass that is relatively light 

in comparison with the mass of the nonlinear primary system and is attached to the 

nonlinear primary system by a linear spring and a linear damper (also called coupling).  

The damping coefficient and the spring stiffness of the absorber are much lower than 

their counterpart, as such the vibration absorber can be considered as a small 

attachment to the nonlinear primary system. The addition of an absorber to the 

nonlinear primary system (one-degree-of-freedom weakly nonlinear system) results in 

a new two degree-of-freedom weakly nonlinear system. The characteristics of the 

nonlinear primary system attached by the linear absorber change only slightly in terms 

of the values of its new linearizied natural frequency, damping coefficient and 

frequency interval for primary resonance, because the vibration absorber is a small 

attachment and does not contribute significantly to the change of these parameters 

(linear stiffness and damping coefficient). Two ratios, namely attenuation ratio and 

desensitisation ratio, will be defined in the present paper to indicate the effectiveness of 

the linear absorber in suppressing the primary resonance vibrations.  The attenuation 

ratio will be defined by the ratio of the maximum amplitude of vibrations of the nonlinear 

primary system after and before adding the linear vibration absorber under a given 

value of the amplitude of excitation. The desensitisation ratio will be given by the ratio 

of the critical values of the amplitude of external excitations presented in the nonlinear 

primary system after and before the linear vibration absorber is attached. The critical 

value of the excitation amplitude refers to here as a certain value of external excitation 

that results in the occurrence of saddle-node bifurcations and jump phenomena in the 

frequency-response curve.  Below this critical value, the frequency-response curve of 

the primary resonance vibrations does not show saddle-node bifurcations (and jump 

phenomena) and will exhibit saddle-node bifurcations and jump phenomena if the 



 5

amplitude of excitation exceeds the critical value.  It will be shown that the linear 

vibration absorber is effective in attenuating the primary resonance vibrations of the 

nonlinear primary system. The underlying mechanism is that the addition of linear 

absorber to the nonlinear primary system modifies the coefficients in the averaged 

equations (as will be shown in Section 3) that determine the amplitude and phase of 

the first-order approximate solution and thereby modifying the frequency-response 

curve of the nonlinear primary system under primary resonance conditions. 

 

The present paper is organised into six sections. Section 2 presents the mathematical 

modelling of the vibrations of a nonlinear primary system attached by a linear vibration 

absorber. Perturbation analysis is performed in Section 3 to obtain the averaged 

equations that determine the amplitude and phase of the first-order approximate 

solution of a two-degree-of-freedom nonlinear system. Section 4 introduces the 

attenuation ratio and desensitisation ratio to indicate the effectiveness of linear 

vibration absorber. Illustrative examples are presented in Section 5 and conclusion is 

given in Section 6. 

 

2.  Mathematical Modelling 

It is assumed here that a single degree-of-freedom weakly nonlinear system may be 

described as one which consists of a mass subjected to a periodic excitation. The 

mass 1m  is attached to a rigid boundary through a viscous damper and a spring of 

linear-plus-nonlinear characteristic, as shown in Figure 1.  A significantly lighter mass 

2m  (in comparison with the main mass 1m ), which will be referred to here as a small 

attachment, is connected to the nonlinear system (also called nonlinear primary 

system) through a massless damper and a massless spring.  The addition of the small 

attachment to the nonlinear primary system results in a new two degree-of-freedom 

nonlinear system. 

 

By applying Newton’s second law of motion, two equations of motion for the new 

system composed of the nonlinear primary system incorporated by a small attachment 

may be written as: 

    )cos()()( 012212311
3
121111 tfxxcxxkxcxkxkxm   , 

    )()( 12212322 xxcxxkxm   , (1) 
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where 1m  denotes the mass of the nonlinear primary system and 2m  the mass of the 

small attachment. 1k , 2k  and 1c  represent the linear, nonlinear stiffness and damping 

coefficient in relation to mass 1m , respectively. The coupling stiffness and damping 

coefficient are 3k  and 2c . The displacements of the nonlinear primary system and the 

small attachment, as shown in Figure 1, are denoted by 1x  and 2x . An overdot 

indicates the differentiation with respect to time t. 

 

Dividing 1m  on both sides of the first equation and dividing 2m  on both sides of the 

second equation and then rewriting the resultant equations yields the following 

equations: 

  )cos(3
12

2
2221

2
1111 tfxxmxmxxx    , 

         0)()( 12
2
21222  xxxxx   , (2a,b) 

where 2101211 /)(  mmcc  , 2
2

2
10131

2
1 /)(  mmkk  , 12 / mmm  , 

222 / mc , 23
2
2 / mk , 12 / mk , 10 / mff  , 1110 / mc , 11

2
10 / mk . Here, 

parameters 10  10  are used to represent the damping coefficient and the linearized 

natural frequency of the weakly nonlinear oscillator alone. 

 

Equation (2) can be interpreted in the context of nonlinear oscillations as a two degree-

of-freedom weakly nonlinear system subjected to a periodic excitation. The forced 

oscillations of a two-degree-of-freedom nonlinear system having cubic nonlinearities 

have been studied by many researchers [1, 28]. The attention of these studies has 

focused on the case of internal resonances when 21    or 12 3  .  Specifically, 

Nayfeh and Mook [1] considered the forced oscillations of cubically nonlinear systems 

without linear coupling terms under internal resonances 12 3  . Natsiavas [28] 

studied the steady-state oscillations and stability of the nonlinear system having cubic 

nonlinearities under one-to-one internal resonances (i.e. 21   ). It was shown that 

the presence of one-to-one internal resonances in the nonlinear system of dynamic 

vibration absorber may result in instability of the periodic response and quasi-periodic 

oscillations with much higher amplitudes.  The mathematical modelling considered in 

the present paper represents a two degree-of-freedom nonlinear system that consists 

of a one-degree-of-freedom weakly nonlinear oscillator linearly coupled with a linear 

oscillator.  The focus of the present paper is on the use of linear vibration absorber to 

suppress the primary resonance response of a weakly nonlinear oscillator in the 
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absence of internal resonances, rather than steady-state solutions and stability of the 

system under one-to-one internal resonances.  The natural frequency of the linear 

absorber alone and the linearized natural frequency of the nonlinear oscillator are not 

under internal resonances including one-to-one and three-to-one resonances. 

 

It is noted that nonlinear resonances may occur in the forced response of the resultant 

system when the forcing frequency   and the linearized natural frequency 1  satisfy a 

certain relationship. The primary resonance response of the nonlinear system given by 

equation (2) will be discussed in subsequent section using a perturbation method, as 

the closed form of the solutions to equation (2) cannot be found analytically. 

 

3.  Perturbation analysis 

A brief discussion on the order of the coefficients in Equation (2) is necessary before 

performing perturbation analysis.  It should be mentioned that the main purpose of the 

present research is to investigate the suppression of the nonlinear vibrations of a 

nonlinear primary oscillator using a small attachment without adversely affecting the 

performance of the nonlinear primary oscillator. The connection between the nonlinear 

primary system and small attached mass is via linear damper and spring.  The small 

attached mass and the damping and spring stiffness of coupling can be considered as 

a perturbation to the nonlinear primary oscillator, in a sense that the nonlinear primary 

system is weakly coupled with the small attachment. As a result, the linear stiffness 

and mass of the nonlinear primary oscillator should be much larger than the stiffness of 

the linked spring and the mass of the small attachment. For the attachment, though its 

stiffness and mass are small in comparison with those of the nonlinear primary system, 

the linear stiffness of the attachment is comparable with its mass and thus is assumed 

to be leading terms in equation (2b). In particular, all damping terms and nonlinear term 

are assumed to be small and in the order of O( ) in equation (2a) and the damping 

term is considered to be in the order of O( ) in equation (2b). Then the perturbation 

analysis will result in the leading linear terms in the first-order equations, the small 

linear and nonlinear terms in the second-order equations. As the values of the coupled 

stiffness and damping for the nonlinear primary oscillator is much smaller than those of 

its own stiffness and damping, the property of the nonlinear primary system does not 

change significantly. 

 

On the basis of the above discussions on the order of the coefficients, equation (2) can 

be rewritten as 
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  )cos(3
12

2
2221

2
1111 tfxxmxmxxx    , 

         1
2
2122

2
2222 xxxxx    , (3a,b) 

where   is a dimensionless parameter with 1 , the coefficients of the damping 

term and nonlinear term, 1 , 2  and   in equation (2) have been re-scaled in terms of 

11    , 22    , and   , and the overbars in 1  , 2  and   have been 

removed for brevity. The amplitude of the excitation has been re-scaled in terms of 

ff   to account for the primary resonances and the overbar in f  has been removed 

for the sake of brevity.  Equation (3) can be regarded as a weakly nonlinear system 

with an external excitation being coupled by a linear system. 

 

It is noted that two terms: 12 x  and 1
2
2 x  that appear on the right hand side of 

equation (3b), act as external excitations to the attached oscillator (linear vibration 

absorber).  The majority of vibrational energy of the nonlinear primary system is then 

transferred to the linear absorber through the coupling terms between the nonlinear 

primary oscillator and vibration absorber.  The vibrational energy flowing from nonlinear 

primary system to absorber results in a reduction of primary resonance vibration of the 

nonlinear primary system. 

 

The method of multiple scales is employed to obtain a set of four averaged equations 

that determine the amplitudes and phases of the steady state solutions on a slow scale 

[1]. For the sake of simplicity, only the first-order approximate solutions will be sought 

in subsequent analysis. It is assumed that the solutions of equation (3) in the 

neighbourhood of the trivial equilibrium are represented by an expansion of the form: 

     )(),(),();( 2
101110101  OTTxTTxtx  , 

     )(),(),();( 2
102110202  OTTxTTxtx  ,  (4) 

where   is a non-dimensional small parameter, tT 0  is a fast scale associated with 

changes occurring at the frequencies 1  and  , and tT 1  is slow scale associated 

with modulations in the amplitude and phase caused by the non-linearity, damping and 

resonances. The derivatives of 1x  and 2x  with respect to t then become expansions in 

terms of partial derivatives with respect to 0T  and 1T  given by: 

     
1

1

0

0

Tdt

dT

Tdt

dT

dt

d








 10 DD  , 
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     )(2)(2 2
10

2
0

2

10

2

2
0

2

2

2

 ODDDO
TTTdt

d


















 . 

It should be noted that equation (3b) is a linear differential equation and thus its 

solution can be expressed in a closed form as long as solutions 1x  and 1x  are 

available. The solution to equation (3b) consists of general and particular solutions 

depending on the solutions 1x  and 1x  that can be obtained from Equation (3a).  As 

defined by equation (4), the solution 1x  cannot be expressed in a closed form.  Here it 

has thus been assumed that the solution 2x  is also expressed as an approximate 

solution comprising of two parts. 

 

Substituting the approximate solutions (4) into equation (3), taking into consideration 

the new multiple independent variables of time, and then balancing the like powers of 

 , results in the following ordered perturbation equations: 

 0    010
2
110

2
0  xxD  ,   10

2
220

2
220

2
0 xxxD   , (5) 

    )cos(2 0
3
1020

2
220021001101011

2
111

2
0 TfxxmxDmxDxDDxxD   , 

        11
2
210022002201021

2
221

2
0 2 xxDxDxDDxxD   . (6) 

The general solutions to equation (5) can be expressed in complex form as 

       ccTiTAx  )exp()( 01110  ,  

      ccTiTBTiTAFx  )exp()()exp()( 021011020  , (7) 

where )( 1TA  and )( 1TB  are an arbitrary function at this level of approximation. 

)/1/(1 2
2

2
10 F , and cc  stands for the complex conjugate of the preceding terms. 

)( 1TA  and )( 1TB  will be determined by imposing the solvability conditions at the next 

level of approximations. 

 

For the case of primary resonances, the forcing frequency is assumed to be almost 

equal to the linearized natural frequency of the nonlinear primary system according to 

    1 , (8) 

where   is an external detuning parameter to express the nearness of   to 1 . 

 

Substituting solution (7) into equation (6) yields 

   )3exp()exp()exp()(2 01
3

1012
1

011111
2
111

2
0 TiATiTifTiADixxD   

                            )exp()3( 0101211
2

0
2
2 TiAFimAiAAAFm   
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                           ccTiBimBm  )exp()( 0222
2
2  , (9a) 

    )exp()exp()(2 022211
2
2021221

2
221

2
0 TiBixTiBDixxD   

                           ccTiADFiAFiAi  )exp()](2[ 0110101212  , (9b) 

where  )( 1TA  is the complex conjugate of )( 1TA . For the sake of brevity, )( 1TA , 

)( 1TB  and )( 1TA  have been expressed by A , B  and A , respectively.  

 

Solution 21x  can be obtained from equation (9b) only after solution 11x  to equation (9a) 

is available. It should be made aware that only the term with argument )exp( 02Ti  in 

solution 11x  will make contributions to the secular terms in equations (9b). In 

eliminating the terms that lead to secular terms from equation (9b), the particular 

solution 11x  of equation (9a) can be written as 

    ccTiKBx  NST)exp( 0211  ,  (10) 

where )/()( 2
2

2
122

2
2   immK , and NST stands for the terms that do not 

produce secular terms in seeking solution 21x . 

 

Then, eliminating the terms that lead to secular terms from equation (9) yields 

       023)()exp(
2

1
11

2
012110

2
21  ADiAAAFimiFmTif  , 

      02 1222
2
2  BDiBiKB  . (11) 

The functions A and B (i.e. )( 1TA  and )( 1TB ) can be expressed in the polar form as 

      )](exp[)(
2

1
11 TiTaA  ,    )](exp[)(

2

1
11 TiTbB  ,  (12) 

where )( 1Ta , )( 1Tb , )( 1T  and )( 1T  are real functions of time 1T . 

Substituting equation (12) into equation (11) and then separating real and imaginary 

parts gives rise to 

       )sin(11 eaga  , 

       )cos()( 3
22210  eagaga  , 

      bhb 11 , 

      bhb 21 , (13) 

where for notation purpose four functions )( 1Ta , )( 1Tb , )( 1T  and )( 1T  have been 

expressed by a , b ,   and  , respectively, 1T  , 2/)( 02111 Fmg   , 
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)2/( 1fe  , )2/( 10
2
2210  Fmg  , )8/(3 122 g , 2/)1( 0211 mFh   , 

2/0221 Fmh  .  

The steady-state solutions to the primary resonance response can be studied by 

finding the solutions to the first three algebraic equations which can be obtained by 

letting 0 ba   and 0  in equation (13).  Elimination of the trigonometric terms in 

the first two algebraic equations gives rise to 

      2222
22210

22
11 )( eaaggag   , 

      011 bh . (14) 

This is the so-called frequency response equation. Real positive solutions of this 

equation that can be obtained numerically may lead to the frequency-response curve. It 

is easy to notice that the two equations are not coupled and the solution to the second 

equation is 0b .  Equation (14) indicates that the amplitude of the first-order 

approximate solution to the free-oscillation term of the vibration absorber admits trivial 

solutions only. The response of the absorber consists of only forced vibrations resulting 

from the nonlinear primary system. The amplitude of the first-order approximate 

solution of the nonlinear primary system is determined by the first equation only, which 

is of the similar form to that of Duffing oscillator but with modified coefficients 11g  and 

22g . The addition of a small attachment can thus change the amplitude of the first-

order approximate solution and the frequency-response curve.   The stability of the 

solutions can be examined by computing the eigenvalues of the Jacobian matrix 

corresponding to the first three equations of equation (13).  It is found that three 

eignenvalues determining the stability of the steady-state solutions are given by 

22
22210

42
22112,1 )2( aggagg   , 113 h . The steady-state solutions that 

can be obtained numerically from Equation (14) are stable only if the three eigenvalues 

have negative real parts. 

 

Generally speaking, the frequency-response curve may exhibit saddle-node 

bifurcations, jump phenomena, and the coexistence of multiple solutions, when the 

coefficients in the first equation of (14) satisfy certain conditions.  The saddle-node 

bifurcation points are at the locations of vertical tangency of the frequency response 

curve.  Differentiation of the first equation of equation (15) implicitly with respect to 2a  

and setting 0/ 2 dad  leads to the condition: 

    0)(2)( 2
11

2
210

2
2222

2
210

2
22  gagagggag  , (15) 
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with solutions being 2
11

42
22210

2
222 gaggag  .   For 2

11
42

22 gag  , there exists 

an interval     in which three real solutions a  of equation (14) exist. In the 

limit 2
11

42
22 gag  , this interval shrinks to the point 210

2
222 gag  , indicating no jump 

phenomena occurring in the frequency-response curve. The critical amplitude of 

excitation (denoted by crite  ) that can be obtained from Equation (14) is written as 

|/|2 22
3
11crit gge  .  For critee  , there is only one solution for the amplitude a  in the 

neighbourhood of the primary resonances, while for critee  , there are three solutions 

for the amplitude a  in the interval    . 

 

The peak amplitude (denoted by pa ) of the forced response for the nonlinear primary 

system with attached vibration absorber can also be obtained from equation (14) and is 

given by ||/ 11geap  . The peak amplitude is the maximum amplitude of the primary 

resonance vibrations under a given set of external excitations. 

 

4.  Attenuation ratio and desensitisation ratio 

For the purpose of comparison, the equation of motion for the nonlinear primary 

oscillator without attached mass (see Figure 1) can be written as: 

     1
2
101101 xxx    )cos(3

1 tfx  , (16) 

where 010   , 1110 / mc , 11
2
10 / mk , as introduced after equation (2) in 

Section 2. 

The frequency-response equation is then given by: 

      2
0

2
0

22
02200

2
0

2

10

2
eaaga 






 

 (17) 

where 0a  denotes the amplitude of the primary resonance response of the nonlinear 

primary system without attachment, )2/( 100 fe  , )8/(3 10220 g . 

 

The corresponding critical amplitude of excitation for the nonlinear primary oscillator 

alone, denoted by crit0e ,  is given by  |)|4/( 220
3
10crit0 ge  .  Similarly, the 

corresponding peak amplitude of the forced response for the nonlinear primary 

oscillator alone, denoted by pa0 , is found to be  000 /2 ea p  . 
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The performance of the vibration absorber on the reduction of nonlinear vibrations 

cannot be studied using a similar procedure to that for the linear system by discussing 

the ratio of response amplitude and the amplitude of excitation because the response 

amplitude cannot be found analytically for a nonlinear system (see equation (14)). 

Additionally, at certain frequencies of excitation, the nonlinear primary system may 

have two stable responses depending on the initial conditions of the system.  Therefore 

a different method has to be developed here to study the performance of vibration 

absorber.  In suppressing the primary resonance vibrations of the nonlinear primary 

oscillator, the performance of the vibration absorber will be examined in the present 

paper by defining two ratios, namely, the attenuation ratio of the peak amplitude of the 

primary resonance response, and the desensitisation ratio of the critical amplitude of 

the external excitation. 

 

The attenuation ratio of the peak amplitude of primary resonance response is defined 

by the ratio of the peak amplitude of primary resonance vibrations of the nonlinear 

primary system with and without the attachment. By this definition the attenuation ratio, 

denoted by R , can be expressed as  

  
102210

1010

1021

1010

10

0

110 ||||
)

2
/()

||
(







 FmmFm

e

g

e

a

a
R

p

p





 .  (18) 

As can be seen from the definition given by equation (18), under a fixed value of the 

amplitude of excitation, a small value of the attenuation ratio R  indicates a large 

reduction in the nonlinear vibrations of the nonlinear primary system. Given the fact 

that the damping coefficients ( 10 , 1 , 2 ), mass ratio (m), and the linearized natural 

frequencies ( 10 , 1 ) are positive in values, it is easy to note that parameter 0F  should 

be negative in order to achieve a large reduction ratio and get better performance of 

vibration suppression. An analysis of the value of )/1/(1 2
2

2
10 F  reveals that 

00 F  for 21   , and 10 F  for 21   . A negative 0F  requires the linearized 

natural frequencies of the nonlinear primary system and vibration absorber satisfying 

21   , indicating the natural frequency of the vibration absorber should be smaller 

than the new linearized natural frequency of the nonlinear primary system attached by 

the vibration absorber. 

 

The desensitisation ratio (denoted by E ) of the critical amplitudes of the excitation is 

defined by the ratio of the critical amplitudes of the excitations presented in the 
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nonlinear primary system with and without attached vibration absorber, which is given 

by 

   
10

3
10

1
3

021

crit0

crit
)(



 Fm

e

e
E




10
3
10

1
3

02210 )(



 Fmm 
 . (19) 

A large desensitisation ratio ( 1E ) corresponds to a large critical amplitude of the 

excitation. A larger desensitisation ratio indicates that saddle-node bifurcations and 

jump phenomena will be eliminated in the primary resonance response of the nonlinear 

primary system with the attachment of vibration absorber, for a given value of the 

amplitude of excitation where saddle-node bifurcations and jump phenomena can 

appear in the frequency-response curve of the nonlinear primary system alone. The 

vibration absorber cannot only suppress the nonlinear vibrations but can also eliminate 

the saddle-node bifurcations which otherwise appear in the primary resonance 

response of the nonlinear primary system before the linear vibration absorber is 

attached.  Given that damping coefficients, mass ratio, and frequencies ( 0101   ) 

are all positive in values, it is easy to note that a negative 0F  results in a larger E , 

which means better performance can be achieved by ensuring two linearized natural 

frequencies satisfying 21   .  A negative value of 0F  ensures that 1E .  The 

smaller 0F  , the larger E .  

 

It should be mentioned that a negative 0F  will lead to a better performance of reduction 

of primary resonance vibrations.  The smaller negative 0F , the better performance of 

vibration reduction.  As given in the equation )/1/(1 2
2

2
10 F , a much smaller 0F  

can be obtained when 2  is approaching to 1  under 21   . However, numerical 

simulations have suggested the primary resonance vibrations cannot always be 

attenuated but rather magnified under certain combination of system parameters and 

initial conditions if 2  is too close to 1 .  As such, the internal resonances of one-to-

one type occur in the primary resonance response of the two degree-of-freedom 

nonlinear system consisting of the nonlinear primary system and vibration absorber.  

The interaction of one-to-one internal resonances would lead to an increase of the 

amplitudes of primary resonance vibrations under certain combinations of system 

parameters. The numerical results confirmed the theoretical predictions of the 

nonlinear interaction of nonlinear systems given in the literature. For example, 

Natsiavas [28] studied steady-state oscillations and stability of nonlinear dynamic 
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vibration absorbers under one-to-one internal resonances (i.e. 21   ) and found the 

loss of stability of the periodic response and the onset of quasi-periodic oscillations with 

much higher amplitudes. The vibrations of the two-degree-of-freedom nonlinear system 

under one-to-one internal resonances are outside the scope of the present paper. 

Though no analytical evidence is available in the literature, it is fairly safe to assume 

that 2  should be less than 19.0   in order to avoid the one-to-one internal resonances.  

For the purpose of vibration reduction, the frequency 2  should be away from 

frequency 1  but can still ensure a smaller negative 0F . 

 

In suppressing the vibration of a linear system, the addition of a secondary mass-

spring-damper system to the main linear system will create a combined system with 

two resonant frequencies.  Resonances will occur if the excitation frequency is close to 

one of the natural frequencies and thus the combined system exhibits two peaks in the 

response [13-17].  For a weakly nonlinear oscillator attached by a linear vibration 

absorber, as discussed in the present paper, it is natural to assume that an extra peak 

will appear in the forced response resulting from the introduction of a new resonant 

frequency (i.e. the natural frequency of the absorber).  It is expected that a peak in 

amplitude will appear around this frequency.  Mathematically the combined system of 

the nonlinear primary oscillator and linear absorber can be considered as a synthesis 

of a weakly nonlinear oscillator and a linear oscillator through linear coupling.  It should 

be noted that for a single-degree-of-freedom nonlinear oscillator under non-resonant 

hard excitations, the steady-state response consists of the forced solution only, as in 

the linear case [1]. In this regard, the effect of weekly nonlinear terms on the steady-

state response can be neglected as long as the frequency of the excitation   is away 

1 , 13
1  , and 13 , which correspond to the primary resonances, super-harmonic 

resonances and sub-harmonic resonances, respectively.  In the absence of internal 

resonances the steady-state motions of the combined system in the neighbourhood of 

the absorber frequency are linear and can be obtained from the corresponding 

linearized system. 

 

It is assumed that the steady-state solutions to the corresponding linearized equation of 

equation (2) have the form: 

    )sin()cos( 12111 tXtXx  ; 

    )sin()cos( 22212 tXtXx  .  (20) 
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The four unknown constants 11X , 12X , 21X , 22X  can be obtained by substituting 

equation (20) into equation (2) and by using Cramer’s method. Substitution of equation 

(20) into equation (2) results in a system of four linear equations expressed in matrix 

form as 

         pAy   (21) 

where A is a 44  matrix and the vector TXXXXy ),,,( 22211211  is the column vector 

of the variables.  The solutions are given by 

    )det(/)det( AAy ii   4,3,2,1i  (22) 

where iA  is the matrix formed by replacing the ith column of A by the column vector p, 

and the elements of matrix A and vector p are not given here for the sake of brevity.  

 

5.  Illustrative examples and discussion 

This section presents illustrative examples to show the effectiveness of the linear 

vibration absorber for suppressing the nonlinear vibrations of the nonlinear oscillator 

under primary resonance conditions. The performance of linear vibration absorber on 

attenuation of nonlinear vibrations will be interpreted by the frequency-response 

curves, time histories of the forced response, the attenuation ratio of the maximum 

amplitudes of vibrations and the desensitisation ratio of critical amplitudes of the 

excitation of the nonlinear primary system before and after the absorber is attached. 

 

Numerical simulations have been performed under the following values of the system 

parameters: kg 0.101 m , kg 6.02 m , Ns/m 1.01 c , Ns/m 08.02 c , 

N/m 0.441 k , 3
2 N/m 0.8k , N/m 0.23 k , unless otherwise specified.  This 

combination of system parameters indicates that the mass ratio is 6% (i.e., the quotient 

of 12 / mm , 06.0m ) and the coupling stiffness is approximately 4.55% (which is 

obtained by the quotient of 13 / kk ) of the linear stiffness of the nonlinear primary 

system. This set of system parameters confirms a small mass attachment to the 

nonlinear primary system. The linearized natural frequencies of the nonlinear primary 

system before and after being attached by the vibration absorber are found to be 

approximately rad/s 0976.210  , rad/s 1448.21  , and the natural frequency of the 

vibration absorber be rad/s 8257.12  .  The linearized natural frequencies of the 

nonlinear primary system before and after the addition of vibration absorber change 

slightly, only at approximately 2.19%. The selection of the parameters of linear 
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vibration absorber made in the present paper is thus distinct from the one for 

controlling the linear vibrations of linear systems in the sense that for controlling linear 

vibrations, the natural frequencies of the resulting system composed of the linear 

system attached by vibration absorber are designed to be away from the excitation 

frequency.  For the nonlinear system considered in the present paper, due to its distinct 

nature in primary resonances from the dynamics of linear system, there is no need to 

shift the linearized natural frequency of the nonlinear primary system away from the 

excitation frequency. The nonlinear vibrations of the nonlinear oscillator under primary 

resonance conditions can be significantly reduced by adding a small attachment, which 

is expected to be feasible in practical applications. 

 

It is noted from the definitions of attenuation ratio and desensitisation ratio that the 

nonlinear stiffness of the nonlinear primary system has no effect on these two ratios as 

the parameter   is not included in the expressions of the two ratios.  The absorber 

mass, stiffness and damping of coupling have significant effects on these two ratios. 

Figure 2 shows the variations of the attenuation ratio and desensitisation ratio with the 

damping, stiffness and mass of absorber.  For fixed stiffness and mass of the absorber, 

increase of absorber damping 2c  leads to an increase of desensitisation ratio and a 

decrease of attenuation ratio, as shown in Figure 2a.  As can be seen from equations 

(18) and (19), the parameter 2  that corresponds to the absorber damping 2c  is 

involved in the term )( 02210 Fmm   , where the parameters 10 , m , 2  are 

positive and 0F  is negative, thereby the term )( 02210 Fmm    will be negative. 

An analysis of the two ratios by taking derivatives with respect to 2  indicates that 

there is no optimal value of 2  for a minimum value of attenuation ratio R and a 

maximum value of desensitisation ratio E. This suggests that there is no optimal value 

of the absorber damping for attenuation of the nonlinear vibrations of the nonlinear 

oscillator, which is distinct from the suppression of vibrations of linear systems.  For 

linear systems, an optimal value of the absorber damping can be found.  A larger value 

of coupling damping results in a better performance of vibration reduction. The ratio of 

the linearizied natural frequencies of the resultant system, defined by 12 /  , is 

8512.0  for the curves corresponding to N/m 0.23 k  and 7372.0  for the 

curves corresponding to N/m 5.13 k . Better performance of vibration reduction can 

be enhanced by a larger ratio of natural frequencies, as shown by the curves 

corresponding to N/m 0.23 k  in Figure 2a.  
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For fixed damping and mass of the absorber, the desensitisation ratio increases and 

the attenuation ratio decreases as the stiffness of the absorber spring 3k  increases, as 

shown in Figure 2b. This is because an increase of absorber stiffness 3k  will increase 

the natural frequency 2  of the vibration absorber, thereby increasing the ratio of the 

two linearized natural frequencies  .  A larger ratio   will lead to a smaller negative 

value of 0F , and the smaller negative value of 0F  will result in a smaller value of the 

attenuation ratio and a larger value of the desensitisation ratio.  The ratio of the two 

linearized natural frequencies   increases its value from 0.3002 to 0.7735 for the 

curves related to kg 0.12 m  and from 0.3356 to 0.8648 for the curves related to 

kg 8.02 m .  A higher value of stiffness 3k  will lead to a better performance of 

vibration suppression, in essence, a higher value of frequency ratio   will result in 

better performance of vibration attenuation.  On the contrary, for fixed damping and 

stiffness of vibration absorber, the desensitisation ratio decreases and the attenuation 

ratio increases with an increase of the absorber mass, as shown in Figure 2c. The 

underlying reason for this is that the natural frequency 2  decreases with an increase 

of absorber mass 2m  under a constant stiffness 3k . The frequency ratio   decreases 

its value from 0.8891 to 0.6287 for the curves corresponding to N/m 0.23 k  and from 

0.8559 to 0.5475 for the curves related to N/m 5.13 k , which leads to a larger 

negative 0F  with an increase of the absorber mass 2m .  This indicates that a small 

absorber mass 2m  leads to a better performance of vibration attenuation. 

 

As indicated in Equations (18) and (19), the attenuation ratio is inversely proportional to 

the term || 021 Fm   while the desensitisation ratio is cubically proportional to the 

term. A larger value of || 021 Fm   means a better performance of vibration 

reduction, which requires a smaller negative 0F  for given values of damping 

coefficients and mass ratio. Recall from Section 3 that )/1/(1 2
2

2
10 F , being 

inversely proportional to the ratio of the square of the two linearized natural 

frequencies, 12 /  .  It is fairly safe to suggest that vibration absorber should be 

designed in such a way that the frequency ratio   is a certain value out of an interval 
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of 0.7 to 0.9, which corresponds to 0F  being a certain value of the region between -

0.961 and -4.263. 

 

The performance of a vibration absorber on attenuation of nonlinear vibrations of 

nonlinear oscillator can be clearly demonstrated with the help of frequency-response 

curves. Figure 3 shows the frequency-response curves of the nonlinear primary system 

before and after the addition of the vibration absorber for the amplitude of excitation 

N 42.0f , which are obtained by perturbation analysis. The horizontal axis 

represents an interval of external detuning rad/s ]2.0 ,2.0[ , which corresponds to 

a small interval of forcing frequency rad/s ]3448.2 ,9448.1[ . Without adding the 

absorber, the peak amplitude of the nonlinear primary system is cm 75521.0  and 

saddle-node bifurcations occur in the frequency-response curve. In the interval 

rad/s ]06.0 ,02.0[ , two stable solutions coexist with a unstable solution in 

between. Jump-up phenomenon happens at  rad/s 02.0  when decreasing forcing 

frequency from rad/s 2.0 , and jump-down phenomenon occurs at rad/s 06.0  

when increasing forcing frequency from rad/s 2.0 . After adding the absorber to 

the nonlinear primary system, the peak amplitude of the nonlinear system has been 

greatly reduced to cm 022796.0 . The interval of the multiple coexisting solutions 

disappears and the jump phenomena are eliminated. The primary resonance vibrations 

of the nonlinear primary system have been significantly attenuated.  As shown in 

Figure 3, the frequencies at which the amplitudes of primary resonance vibrations 

reach their maximum have shifted from rad/s 06.0  for the nonlinear primary system 

alone to rad/s 155.0  for the nonlinear primary system with absorber.  In terms of 

the frequency of excitation, the maximum amplitudes of primary resonance vibrations 

occur at rad/s 2048.2  for the nonlinear primary system without absorber, and at 

rad/s 2998.2  for the nonlinear primary system with vibration absorber. 

 

Figure 4a shows the frequency-response curves for a large interval of the frequency of 

excitation rad/s ]8.2 ,2.1[  of the nonlinear oscillator before and after adding 

absorber.  Dashed and solid lines are used to represent the amplitudes of stable 

solutions of the nonlinear oscillator alone and of the nonlinear oscillator with vibration 

absorber attached, respectively.  In the neighbourhood of primary resonances, the 

amplitude of nonlinear vibrations of the nonlinear primary oscillator has been greatly 

attenuated by adding the linear vibration absorber. The vibration of the nonlinear 

oscillator with attached vibration absorber is not zero, but its amplitude is very small in 
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comparing with the amplitude of vibrations of the nonlinear oscillator alone. Outside of 

the interval of frequency rad/s ]19.2 ,76.1[ , the addition of a linear vibration 

absorber has slightly increased the amplitude of vibrations of the nonlinear primary 

oscillator except in the neighbourhood of two new linearized resonant frequencies.  

Therefore the performance of the absorber can be regarded as satisfactory.  There are 

two resonant peaks appearing on the frequency-response curve of the nonlinear 

primary oscillator with absorber attached, which correspond to two resonant 

frequencies of the combined system.  One is the natural frequency of the vibration 

absorber alone and the other is the new linearized natural frequency of the nonlinear 

primary oscillator incorporated with the vibration absorber.  The peak at the lower 

frequency results from the resonances at the natural frequency of absorber and the 

peak at the higher frequency corresponds to the primary resonance response at the 

new linearized natural frequency of the nonlinear primary oscillator.  The comparison of 

perturbation analysis (analytical predictions) and numerical integration is also shown in 

Figure 4a where circles represent analytical predictions on the amplitudes of nonlinear 

vibrations in the neighbourhood of primary resonances at 1 .  Only small differences 

between the approximate and numerical integration solutions are found.  The first-order 

approximate solutions match well with the numerical integration solutions. While the 

first-order approximate solutions obtained using the method of multiple scales give 

slightly larger values than the numerical integration solutions.  The discrepancies are 

caused by the first-order truncation of the expansion solution. A more accurate 

approximation could be obtained if an additional term of the second order is included in 

the approximate solution, but seems unnecessary as the first-order approximations are 

already good representations of the primary resonance response.  

 

Figure 4b shows the frequency-response curves of the nonlinear oscillator with 

vibration absorber attached under different damping coefficients of the absorber.  

Increase of absorber damping leads to reduction of peak amplitude at resonant 

frequencies. Figure 4c shows the variation of the amplitude of vibrations of nonlinear 

oscillator attached by absorber under different nonlinear stiffness of the nonlinear 

oscillator.  Though the nonlinear vibrations of the nonlinear oscillator alone under 

different nonlinear stiffness are significant, addition of the absorber having a relatively 

light mass to the nonlinear oscillator can greatly decrease amplitude of nonlinear 

vibrations. The vibration absorber is effective in attenuation of the nonlinear vibrations 

irrespective of the nonlinear stiffness of the weakly nonlinear oscillator.   Figure 4d 

shows the amplitude of vibrations of the nonlinear oscillator attached by absorber 



 21

under different values of absorber mass.  It is noted that for a given set of system 

parameters, increase of absorber mass results in an increase in amplitude in the 

neighbourhood of primary resonance frequencies.  The two peaks in amplitude shift to 

the left with an increase of absorber mass.  The main reason for this is that the natural 

frequency of absorber decreases with an increase of absorber mass, thereby leading to 

a small attenuation ratio and a shift in peak amplitude to the left. 

 

The performance of vibration absorber on vibration suppression is also evident in the 

vibrational signals of the nonlinear oscillator with and without absorber, as shown in 

Figure 5, for a combination of N/m 5.23 k , N 45.01 f , rad/s 13.2 . The 

amplitude of vibration of the nonlinear primary oscillator with attached vibration 

absorber is much smaller than that of the nonlinear oscillator without absorber. On the 

contrary, the amplitude of vibration of the absorber is much higher than that of the 

nonlinear primary oscillator, indicating that the majority of vibrational energy of the 

nonlinear primary oscillator is transferred to the vibration absorber. This suggests the 

absorber can effectively suppress the primary resonance vibrations of the nonlinear 

oscillator. 

 

6. Conclusion 

The primary resonance response of a nonlinear oscillator can be suppressed by a 

linear vibration absorber which consists of a relatively light mass attached to the 

nonlinear oscillator by a linear damper and a linear spring.  The small attachment of 

light mass can absorb vibrational energy without significantly modifying the nonlinear 

oscillator and adversely affecting its performance. The stiffness of the linked spring is 

much lower than the linear stiffness of the nonlinear oscillator itself. The contributions 

of the absorber stiffness and damping to the linear stiffness and damping of the 

nonlinear primary system can be considered as a perturbation. Thus the linearized 

natural frequencies of the nonlinear primary oscillator before and after addition of 

vibration absorber change only slightly. It is found that significant reduction of primary 

resonance vibrations can be achieved by using an absorber mass corresponding to 6% 

of the mass of the nonlinear oscillator and an absorber spring corresponding to 4.5% of 

the linear stiffness of the nonlinear oscillator.  Saddle-node bifurcations and jump 

phenomena can also be eliminated through the application of a linear vibration 

absorber. The effects of the parameters of the mass-spring-damper absorber on the 

vibration suppression of the nonlinear oscillator have been studied.  It has been found 

that a larger coupling damping results in a larger reduction of primary resonance 
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vibrations. The ratio of two linearized natural frequencies of the resulting nonlinear 

system that is formed by the nonlinear primary system attached by the absorber is 

crucial for a higher desensitisation ratio and a lower attenuation ratio. The ratio of the 

two linearized natural frequencies is dependent on the absorber stiffness and mass. An 

increase of absorber stiffness will result in a larger ratio of the two linearized natural 

frequences however an increase of the absorber mass will decrease the ratio of the 

two linearized natural frequencies.  It is suggested that the frequency ratio can be a 

certain value between 0.7 and 0.9, which prevents the resultant two degree-of-freedom 

nonlinear system from one-to-one internal resonances and which can lead to a better 

performance of vibration reduction. 

 

There are several distinct features in the suppression of the nonlinear vibrations of 

nonlinear systems using linear vibration absorber from the suppression of the 

vibrations of linear systems.  For the nonlinear system considered in the present paper, 

due to its distinctive nature in primary resonance response from the dynamics of linear 

system, there is no need to shift the linearized natural frequency of the nonlinear 

primary system away from the excitation frequency, whereas the natural frequencies of 

the resulting system composed of the linear system attached by vibration absorber are 

generally tuned to be away from the excitation frequency.  Furthermore, it is a common 

practice from the linear theory of vibration absorbers that the vibration absorber should 

be tuned to the resonance frequency of the linear primary system when suppressing 

the vibrations of linear systems.  However, when using linear vibration absorber to 

suppress the nonlinear vibrations of nonlinear systems, the frequency of the absorber 

should not be tuned to the resonance frequency of the nonlinear primary system. This 

will avoid one-to-one internal resonances that otherwise may happen in the primary 

resonance response of the resultant nonlinear system.   The presence of one-to-one 

internal resonances in a nonlinear system may result in instability of the periodic 

response and higher-amplitude quasi-periodic oscillations. Lastly, unlike the use of 

linear vibration absorber to suppress the vibrations of linear systems, there is no 

optimal value of the absorber damping for suppressing the nonlinear vibrations of 

nonlinear systems using linear vibration absorber. 

 

Perturbation analysis suggested that the nonlinear vibrations of the nonlinear primary 

oscillator act as an external excitation to excite the vibrations of the absorber oscillator 

formed by the light mass. Most of the vibrational energy of the nonlinear primary 
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oscillator is then transferred to the absorber through coupling spring and damper. The 

vibration absorber can effectively suppress the amplitude of oscillations of the 

nonlinear oscillator. Hence, by properly choosing the mass of absorber and stiffness of 

the linked spring and damping of the linked damper, the primary resonance response 

of the nonlinear oscillator can be reduced to a relatively small amplitude, while the 

excessive oscillatory energy is transferred to the small mass attachment. As such, the 

vibration absorber provides a promising alternative to the application of active vibration 

control of nonlinear system under conditions when active control is not feasible. 
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Figure 1. The combined two degree-of-freedom nonlinear system composed of 

nonlinear primary oscillator and linear vibration absorber.  
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Figure 2 (c) 

 
Figure 2: Variations of attenuation ratio and desensitisation ratio with damping, 
stiffness and mass of the absorber; (a) with absorber damping 2c , (b) with absorber 

stiffness 3k , (c ) with absorber mass 2m . 
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Figure 3  The frequency-response curves of the nonlinear primary oscillator before and 

after vibration absorber is attached.  Solid lines denote stable solutions and dash-dot 

line represents unstable solutions. 
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Figure 4 (a) 
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Figure 4(d) 

Figure 4: Frequency-response curves of the nonlinear oscillator in a large interval of 
the frequency of excitation. 
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Figure 5 (b) 

Figure 5: The time histories of primary resonance response of the nonlinear primary oscillator 

and vibration absorber for the combination of N/m 5.23 k , N 45.01 f , rad/s 13.2 ; a) 

nonlinear primary system before and after vibration absorber is attached, b) nonlinear primary 
system and vibration absorber after vibration absorber is attached to the nonlinear primary 
oscillator. 


