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Abstract 13 

Occupant behaviors are one of the dominant factors that influence building energy use. Traditional building energy 14 

modeling programs use typical occupant schedules that often do not reflect actual situations. Robust occupant behavior 15 

modeling that seamlessly integrates with building energy models will not only improve simulation performance, but 16 

also provide a deeper understanding of occupant behaviors in buildings. This paper presents a development and 17 

validation approach to a novel occupant behavior model in commercial buildings. A robust agent-based modeling 18 

(ABM) tool, namely Performance Moderator Functions server (PMFserv), is used as the basis of the occupant behavior 19 

model. The ABM considers various occupant perceptions and interactions with window, door, and window-blinds 20 

based on the environmental conditions. An elaborate agent-based model that represents an office space in an existing 21 

building is developed. This is followed by a validation study of the ABM through the use of embedded sensors that 22 

capture the indoor ambient conditions and a survey to record actual occupant behaviors. By comparing the recorded 23 

behavior data with ABM output, this paper discusses the proposed ABM’s prediction ability, limitations, and 24 

extensibility. Finally, the paper concludes with the potential of integrating the occupant behavior model with building 25 

energy simulation programs.  26 
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1. Introduction 30 

In the United States, buildings consume about 40% of the total energy use annually [1]. Therefore, abundant 31 

opportunities exist for energy savings associated with the building sector. In the life cycle of a building, six driving 32 

factors were identified by International Energy Agency (IEA) that will influence building energy consumption 33 

including climate, building envelope, building systems and equipment, building operation and maintenance, indoor 34 

environmental quality, and occupant behaviors [2]. From the past decades, research efforts have addressed some of 35 

the aspects for building energy efficiency [3-5]. However, among all the controllable factors above, building occupants 36 

are considered as a dominant factor that affects variability in energy use, while the studies pertaining to occupant 37 

behaviors in buildings for realizing energy-efficient buildings are still emerging. In addition, as one of the main 38 

functions of buildings is to provide comfortable context and services to the building occupants, research on the topic 39 

of occupant behavior modeling is helpful to develop a “smarter” built environment which is able to improve the 40 

occupant’s comfort level and reduce building energy use at the same time [6].   41 

Occupant behaviors influence building energy use in a various and stochastic manner [7-9]. As a consequence, 42 

occupant behavior information could serve as a crucial auxiliary element for improving building energy management 43 

in multiple aspects. On one hand, incorporating occupant behavior information into building simulation tools will 44 

potentially enhance energy simulation performance; on the other hand, occupant behavior information could be 45 

involved in managing building operations for system optimization and design of behavior interventions. Furthermore, 46 

occupant behavior is a key factor to evaluate building design and retrofit technologies [8, 10], as different occupant 47 

behavior patterns require corresponding technical solutions. A thorough understanding of how occupants interact with 48 

buildings and behave in buildings plays an important role in the building’s life cycle energy performance.  49 

A number of studies have shown that the uncertainty brought by occupant behaviors exerts significant fluctuation on 50 

building energy use [8-13]. However, existing building energy simulation programs use a relatively complete 51 

modeling system for physical and external design factors while oversimplifying the internal ones, particularly the 52 

interactions between occupants and building components. These programs have largely ignored occupant behaviors 53 

and instead treat occupants as “static” object. While an occupant interacts with the building depending upon the real 54 

world environmental conditions, these interactions are represented statically over time as opposed to their “dynamic” 55 

behaviors. This leads to large discrepancy between predicted and monitored energy use in most cases [14]. The error 56 



could be as much as 300% according to [15]. Turner and Frankel [16] compared the measured and predicted energy 57 

use for 62 LEED buildings and found obvious differences for all the buildings, and attributed part of the reasons to 58 

the fact that occupants act and interact with building dynamically in response to the changing ambient settings.  59 

Building occupants are the “users” of the building, whose actions vary over external conditions and among different 60 

individuals. In the context of built environment, research focus is mainly on the direct interactions between occupants 61 

and building, which are usually referred as energy-related behaviors [17]. It typically includes the use of a building 62 

component (e.g. window opening/closing) and the control of building systems (e.g. HVAC, lighting, appliance). 63 

Particularly within commercial buildings, physical comfort is the priority of occupants to interact with the building. 64 

Due to the complex mechanism of occupant behaviors, it is difficult to model every single possibility with one 65 

methodology. Hence, the modeling approach of occupant behaviors generally depends on the scope and purpose of 66 

the research, as well as the available technology and methodology support for the model. In fact, this topic has attracted 67 

numerous researchers’ attention in the past few years [18-20]. Among different occupant behavior modeling methods, 68 

agent-based modeling (ABM) was proposed by many researchers as one of the most effective methods. According to 69 

[21-23], ABM has the capability of addressing multiple behaviors together, and can represent both individual- and 70 

group-level interactions of autonomous agents. Particularly, an agent in ABM can simulate humans by incorporating 71 

characteristics of the surrounding environment and adaptation to changes in order to achieve a certain goal. In contrast 72 

with other modeling approaches, ABM begins and ends with the agent’s perspective. Agents have their own 73 

characteristics including sensations and behaviors, and they have the capability of interacting with their environment 74 

and other agents, which is governed by defined rules. The rules are the foundation to model agents’ relationships, 75 

interactions, and behaviors. A standard ABM is comprised of three elements [24]: 1) Agents, along with their attributes 76 

and behavior options; 2) Rules and topology, which defines how and with whom agents interact; and 3) Agents’ 77 

environment, which agents interact with in addition to other agents. 78 

This paper proposes a novel ABM to model building occupants and their interactions with building components. 79 

Because occupant behaviors vary according to building types, occupant types, and accessible behavior options, it is 80 

impractical to integrate all potential scenarios in a generic model. Therefore, this research narrows down the scope to 81 

commercial buildings, and the occupants modeled are all full-time users without long-term absences. Direct 82 



interactions with building components are the targeted behaviors in this research. Personal activities such as reading, 83 

sitting, walking, writing, and other subtle activities are not studied.  84 

The research follows a systematic sequence of development and validation for the occupant behavior model. First, a 85 

human behavior modeling tool based on performance moderator functions, PMFserv, is used to develop an ABM with 86 

a real-world educational building as test bed. This is the first time PMFserv has been used in the building simulation 87 

domain. Next, several rooms in the building were monitored to collect environmental data as ABM inputs, and actual 88 

behavior was recorded for comparison with ABM outputs for model testing and validation. Results showed the 89 

applicability of the model to be integrated with building energy algorithms for improved energy estimation.  90 

The remainder of the paper is organized as follows: Section 2 reviews the previous research on occupant behavior 91 

modeling for building energy efficiency; Section 3 discusses the development of the ABM for the purpose of modeling 92 

occupant behaviors in commercial buildings; Section 4 presents a validation study of the developed ABM; and Section 93 

5 offers a discussion on the limitations of the development and validation approach to the ABM, and concludes with 94 

recommendations for future improvements. 95 

 96 

2. Literature Review  97 

Because of the complexity of occupant behaviors, researchers have attempted to model occupant behaviors in building 98 

through various methodologies [19, 25]. For example, Papadopoulos and Azar [26] divided occupant behavior models 99 

into three parts: white-box (based on physical equations), grey-box (based on statistical and stochastic process), and 100 

black-box (based on machine learning algorithms); Hong et al. [17] classified the models as implicit and explicit, with 101 

the first addressing behavior-related physical systems, and the second one dealing with occupants directly. Based on 102 

a comprehensive survey [19], this paper proposes a classification in terms of whether the model is built on the basis 103 

of data, and thus classified general occupant behavior models into data-driven and simulation-based models. In short, 104 

data-driven modeling approaches require a large volume of data to develop statistical models of studied behaviors, 105 

whereas simulation-based models are based on pre-defined or empirical rules that regulate the behavior patterns.  106 

A larger portion of earlier studies focused on data-driven methods. In [15], the researchers collected data during three 107 

seasons for four indoor and five outdoor environmental factors along with the window position from 15 buildings. 108 

The data was fitted using a multivariate logistic regression model to predict the probability of a window opening or 109 



closing event. Zhou et al. [27] studied window operating behaviors in an open-plan office occupied by multiple people. 110 

A combination of questionnaire and field measurements was conducted to acquire subjective and objective 111 

information about the studied behavior. That study discovered three patterns for window operation, and concluded 112 

that outdoor temperature, occupancy schedule, and on-off state of air conditioning are the main influencing factors. 113 

Ren et al. [28] focused on air-conditioning (AC) behavior only, and used a Weibull function to build statistical models 114 

for AC on-off events with the triggers being indoor temperature and house event, respectively. The research covered 115 

34 families among eight different cities, and found the behavior patterns differ in these locations. Ahmadi-Karvigh et 116 

al. [29] proposed a framework of action detection, activity recognition, and associated energy waste estimation. They 117 

used plug meters to measure power usage of appliances and light sensors for lighting intensity, to detect occurred 118 

actions using clustering techniques. Then, semantic reasoning based on an ontology was applied to capture 119 

combination of different activities. According to the ground truth data collected for two weeks, the performance 120 

showed a high accuracy for real-time activity recognition.  121 

In addition, researchers also studied occupancy status modeling using data-driven methods, which is less complicated 122 

than occupant behaviors. Dong and Lam [30] developed a Hidden Markov Model using a complex environmental 123 

sensor network in a workspace. Zhao et al. [31] used data mining techniques with electricity consumption data to train 124 

models of appliance use schedules that reflect passive occupant behaviors. Yang et al. [47, 48] modeled short-term 125 

and long-term occupancy status using classification and time series modeling methods respectively, with a set of 126 

sensor boxes consisted of multiple built environment variables. Similarly, [49] collected data using PIR sensor and 127 

reed switch for binary detection of occupancy in ten offices. More literatures can be referred to [50-52]. The modeling 128 

of occupancy can be considered as the prelude for occupant behavior modeling and, therefore, has been given more 129 

attention in the past.  130 

Data-driven approaches benefit from the variety of data collection and analysis methods. Among others, a statistical 131 

or machine learning model eliminated the effort to discern the causality between occupant behaviors and relevant 132 

stimuli, and provided an opportunity to discover results beyond a specific model. However, the approaches often suffer 133 

from the applicability issue, i.e., that the models may lose their prediction capability if applied to other buildings or 134 

populations [8]. In addition, a long-term and large-scale historical data collection is needed for model development, 135 

which can be intrusive to experiment objects. Last but not least, most studies using data-driven methods usually 136 



focused on one or a few behaviors, therefore, the developed models lack of ability to expand to other behaviors as a 137 

whole.  138 

In contrary to the data-driven models which are normally based on actual buildings, simulation-based models are 139 

established within a virtual environment. Particularly, agent-based modeling has recently become popular as one of 140 

the most powerful simulation-based approaches for occupant behavior modeling in the built environment. Azar and 141 

Menassa [23] presented an ABM that explores the impact among occupants in an office. Three types of energy-142 

consumers with respect to energy use patterns were defined. The study assumed that energy conservation occupant 143 

behaviors would be learned over time so that high energy users will eventually turn to lower energy users. As a result, 144 

total building energy use would decrease by more than 25% compared to traditional static occupancy information. 145 

Alfakara and Croxford [32] simulated occupant behaviors in residential buildings in response to summer overheating. 146 

A probability profile was created to illustrate the impact of ambient temperature change on window and air 147 

conditioning behaviors. By adjusting the profile threshold that represents different user modes, the behaviors were 148 

different under certain temperature ranges. Similarly, Kashif et al. [33] also focused on residential buildings, stated 149 

that usual time and environmental factors are the inputs that cause certain needs, which in turn lead to associated 150 

behaviors. The application example in the study described a fictional household situation. In the research of Lee and 151 

Malkawi [22], an ABM based on three beliefs was proposed. The researchers introduced a cost function that integrates 152 

the beliefs, and defined a goal-oriented system for agents to make behavior decisions. The ABM modeled five 153 

behaviors in an office area and analyzed the behavior impact to comfort level and energy use intensity.  154 

One of the major limitations for most of the studies using an ABM is the lack of actual data involved in the model. 155 

Few researchers validated their models using data collected in-situ. Moreover, in most cases, the model is based on a 156 

sample or simplified prototype which may lead to doubts whether the simulated agent will perform the way actual 157 

occupants do, thereby, leading to deficiency in model reliability. Only a limited number of model validation studies 158 

were observed in the literature. In [21], a validation study was conducted to test the ABM which is based on Perceptual 159 

Control Theory. The model outputs were found to be comparable to the field measurements for individual and 160 

aggregated predictions. However, the model only considered thermally adaptive behaviors, and only selected 161 

behaviors were validated. Putra et al. [34] investigated the impact of load shedding on occupant comfort and behaviors. 162 

The ABM included heterogeneous agents and perception preferences and several simulation scenarios. Yet, only four 163 



of the simulation scenarios were examined with measured data and the test results failed to show an acceptable level 164 

of accuracy.  165 

Table 1 summarized existing studies on building occupant behavior modeling using ABM. It is noted that validation 166 

studies of ABMs for occupant behavior modeling are not prevalent and the suitable testing method is not well 167 

developed. Furthermore, there is no consensus on the theoretical basis for ABM development. There is a need for 168 

further development of new ABM approaches that moves beyond existing occupant behavior models, and collection 169 

of actual occupant behavior data for model validation to support future application of the model (e.g. integration with 170 

building energy simulation).   171 

Table 1. Research on occupant behavior modeling in buildings using ABM. 172 

Refer
ences 

Building 
type 

Modeled behaviors Behavior 
drivers/stimulus 

Key modeling rules 
Platform 

Is validation 
included? 

ABM based 
on real 
building 

[23] Commercial 
buildings 

Blinds, lighting and 
equipment, Hot water 
use 

Energy conservation 
events; word of 
mouth influence 

High energy 
consumers will turn to 
low energy consumers 
over time 

AnyLogic No No 

[33] Residential 
buildings 

Not specified, but a 
generic modeling 

Usual time; 
environmental factor 

Based on belief-
desire-and-intention 
(BDI) architectures 

Brahms No No 

[21] Commercial 
(office) 
buildings 

Clothing adjustment; 
personal fans on/off; 
personal heaters on/off; 
thermostat 
up/middle/down; 
Windows open/closed 

Thermal conditions 
(temperature, 
humidity, air 
velocity) 

Perceptual Control 
Theory (PCT), with a 
complex customized 
modeling rules 

MATLAB Yes Yes 

[22] Commercial 
(office) 
buildings 

Blind use; clothing 
adjustment; door use; 
fan/heater use; window 
use 

PMV value that is 
influenced by 
temperature, air 
speed, RH, etc. 

OODA (observe, 
orient, decide, and act) 
Loop based on three 
beliefs 

MATLAB No No 

[34] Commercial 
buildings 

Adjust clothes; use local 
heater/fan; contact 
manager; adjust 
overhead light, task 
light, and blinds 

Load shedding 
events; 
communication with 
manager 

Building occupant, 
tenant representative, 
and building manager 
have different 
behavior options 

NetLogo Yes One 
building for 
calibration, 
the other for 
verification 

[32] Residential 
buildings 

Window and air 
conditioning (AC) use 

Temperature Probability profiles for 
the modeled behaviors 
based on temperature 
variation 

Repast No Yes 

[17] Office 
buildings 

Lighting control; 
window operation; 
HVAC control 

Temperature; CO2 
concentration; 
daylight level 

A drivers, needs, 
actions, and systems 
(DNAs) schema; 
Weibull functions to 
determine probability 
of behaviors 

obFMU 
(customized 
with 
Functional 
mock-up 
unit) 

No Not 
specified 



This 
paper  

Commercial 
(office) 
buildings 

Open and close of 
blinds, window, and 
door 

External 
perceptions, value 
systems of human 

See section 3 for 
details 

PMFserv Yes Yes 

 173 
2.1 Research aim and contributions 174 
Based on the current research gaps, this research adopted a physiological- and psychological-based tool (PMFserv) 175 

that can be used for in-depth representation of human behaviors. The authors tested the feasibility of using PMFserv 176 

in two preliminary studies [35, 36]. A new and refined ABM using the platform for occupant behaviors in a built 177 

environment context that takes into consideration thermal and visual comforts as well as indoor air quality is discussed 178 

in this paper. The model differs from ABMs of other researchers in two aspects: first, the model adopts a human-179 

oriented mechanism that considers the value systems of a person. In other words, the behavior output of agent is not 180 

solely based on the external factors such as built environment, but also involves how a person evaluates his/her needs 181 

based on the current external conditions. In this way, the model is more comprehensive and closer to the reality, and 182 

can be tuned based on different agent characteristics. Second, the model is developed in parallel with the subsequent 183 

validation study in terms of modeling units. The modeled built environment parameters and behavior options align 184 

with the data collection rooms, which is significantly different from most of the previous research that are usually 185 

based on a hypothetical situation.  186 

The contributions of this paper to the building energy scientific community are two-fold: first, the development of the 187 

novel ABM demonstrated the feasibility of using a tool in the built environment area that was originally built for fields 188 

of social science and system engineering. The tool captures broader aspects of human behavior modeling paradigms, 189 

which may inspire ideas for future model development. More importantly, since most of the studies using ABM were 190 

based on synthetic data and scenarios, this research attempts to fill the gap by proposing a method for validation 191 

studies based on the developed ABM, in terms of data collection and model evaluation approaches. Table 1 also 192 

included this research in comparison with relevant literatures in the past, for the purpose of supporting the intellectual 193 

merits of the proposed work. 194 

 195 

3.  Development of ABM 196 

The proposed ABM has three major parts. First, the agents in the model are building occupants. The model used in 197 

this research considers physical perceptions and mental cognition of individuals as the main features of agents. 198 

Meanwhile, emotion, stress, and physiology status are also included as useful factors for modeling.  199 



Second, the environment which agents interact with in the model is within the thermal zone or room in the building. 200 

The ambient environment is the direct stimulus that influences the agent’s behavioral decisions. Under the current 201 

model, other building properties such as room size, shape, location, etc., are excluded in the ABM as these have less 202 

impact on the occupant behaviors for the purpose of this research. This assumption is demonstrated to be valid and 203 

feasible in most of the cases [15, 17, 21].  204 

Lastly, as the built environment and building component states are identified, it is expected that the agent will possibly 205 

accommodate accessible building components for their individual comfort level when values of environmental 206 

indicators exceed certain amount of the occupant’s acceptable range. However, it should be noted that the ambient 207 

environment is not the only external factor that influences behavior in reality. For example, time, economic concerns, 208 

and other preferences of the agents can also affect the behavior patterns of building occupants [23, 33], especially in 209 

residential buildings. As this study focuses on commercial buildings, the dominant trigger for the agent is its thermal 210 

and visual comfort, and air quality level. 211 

3.1 ABM platform and internal functioning modules 212 

PMFserv is a server of many different Performance Moderator Functions (PMFs) that have been extracted from the 213 

social and human behavioral literature. PMFserv platform and its derivatives are built centered on multi-resolution 214 

agent-based approach [37], while the agents are generic in representing human under user-defined contexts [38]. The 215 

rationale for choosing PMFServ was to capture the realism in human behavior. The modeling platform has been 216 

successfully applied to simulation studies involving social systems [38] and healthcare [54]. Moreover, the value of 217 

PMFserv is not to just return a decision but explore the human behavior behind it, with multi-layer output panels 218 

available related to the agent, which can be extensively utilized for future studies. This research adopts the internal 219 

algorithms and modeling architecture within the platform, and customizes each module based on the modeling target, 220 

which is referred as a “grey-box” modeling method. Although not a fully-developed model using the tool, the occupant 221 

behavior model complies with the functions and rules as briefly described in the following. 222 

Function 1: agent physiology, stress, and coping style  223 

This module stores and maintains the agent’s state of biological systems such as physical energy level in the format 224 

of tank flow, which eventually influence the agent stress status. The agent’s behavior is bounded by the stress status. 225 

This function is the native property of an agent, which can be used for behavior constraint that leads to behavior failure 226 



with some probabilities. However, in this research, it is considered that no behavioral failures will occur under the 227 

modeling circumstances.  228 

Function 2: agent emotions and value systems 229 

The emotion and value systems function is the major determinant of the agent’s cognitive appraisal of the environment, 230 

which can be measured by composite utility of the behavior options for the agent. The value system is characterized 231 

by a Goal, Standard, and Preference (GSP) tree based on utility norm and Bayesian theorem that defines the agent’s 232 

short-term needs, behavior standard, and long-term preferences of the world. 233 

Function 3: agent perception and object affordance 234 

The perception function in PMFserv defines how an agent perceives the objects and other agents surrounded in the 235 

virtual world and thus searches the environment for a potential action to take that affords the agent in terms of needs 236 

satisfaction. In this research, the rules that govern the perceptual types are the focus of the occupant behavior model, 237 

as the application of PMFserv to the built environment area. Customized rules are described in section 3.3 as case 238 

study examples to elaborate the specific implementation of this module. 239 

Other Functions 240 

Besides the major functions above, PMFserv provides sociology module that is able to model socially aware agents 241 

and groups. For example, this module characterizes relationships between different agents in the environment and 242 

how they influence each other’s emotions and decisions. 243 

3.2 Model execution principle 244 

In general, the agent is equipped with three elements: 1) the perception system, determined by the surrounding 245 

environment (object) that provides context information; 2) the value system, which stands for the agent’s cognition 246 

mindset that is represented by the GSP tree; and 3) personal properties, which includes stress, and physiology, that 247 

will be swayed by behaviors. The behavior decision is made based on a factor that measures the importance of each 248 

behavior option – the Decision Utility. This factor is directly associated with value system and personal properties, 249 

and indirectly associated with perception system, and varies at each time step.  250 

The developed model executes the simulation process on a time-step basis. There are no particular time restrictions. 251 

At each time step, the model outputs one behavior that the agent gives priority. From the beginning of each step, 252 



context that consists of the input and other supporting parameters defined by authors provides the micro-context values 253 

which deal with different dimensions of the context (in this case, ambient condition and state of building components) 254 

to the agent. Thus, the agent evaluates the perceived state of the environment based on the context and determines the 255 

current behavior options that are activated under the condition. The activated behavior options, in turn, arouse the 256 

related weighted values of the value system and personal properties, and make the agent appraise these behaviors by 257 

summing up the weight numbers as the Utility for final decision. Following this algorithm, the behavior option of the 258 

highest calculated Utility is decided by the agent (occupant) as the output behavior at each time step [38]. 259 

The decision-making process for the ABM platform is illustrated in Figure 1, which combines the agent’s mental 260 

cognition (represented by the value system) and the physical perception of the environment (represented by the 261 

perception system and influenced by the Object). In the model development formation, the authors focused on the 262 

latter part for accommodation in the application area of built environment. Specifically, by updating input 263 

environmental variables’ values at each time step, three types of perceptions (refer to section 3.3.1 for details) will 264 

possibly be triggered. Meanwhile, the status of the associated building components are in combination with 265 

corresponding built environment indicators to reflect the current overall situation so that the agent will take an action 266 

to improve the situation or stay put if satisfied.  267 

 268 

Figure 1. Decision making process of the agent 269 

3.3 Model development based on a case study building  270 



The ABM platform provides generic functional modeling modules and relevant calculation algorithms for agent 271 

decision-making. For the purposes of this research, a new instance of the ABM was created such that it represented 272 

an actual office space in an educational building situated in the University of Florida (UF) campus. This requires 273 

identification of model components (e.g., indoor ambient environment, building components that the agent interacts 274 

with), modeling rules (e.g., agent comfort levels), etc. It is to be noted that no generic model of a typical office building 275 

exists in the PMFserv platform and, hence, the ABM was developed from scratch.   276 

The case study building is a three-story building on the UF campus. The third story is primarily faculty offices on the 277 

west side, offices for the administrative staff in the north side, research centers along the east side, and graduate student 278 

offices in the core of the building. This building is served by a centralized Heating, Ventilation, and Air Conditioning 279 

(HVAC) system. Conditioned air is supplied to thermal zones via Variable Air Volume (VAV) units, typically, three 280 

adjoining faculty offices constitute one thermal zone, i.e., supplied by one VAV unit. 281 

Office occupants have control to open and close windows, doors, and window blinds. However, these occupants do 282 

not have access to thermostat controls. The lighting systems are fitted with occupancy sensors, yet can be turned off 283 

manually when necessary. A few occupants have personal devices such as heaters or desk lamps that are used for their 284 

individual thermal comfort purposes. 285 

3.3.1 Main functioning modules of the developed ABM 286 

The next step in ABM development is populating data to the main functioning modules to represent the occupant; this 287 

occurs in five sub-steps namely defining (a) occupant characteristics (agent’s emotion, physiology, and stress levels), 288 

(b) object that can be perceived by occupant, in this case, the ambient environment and building components’ states, 289 

(c) occupant goals, standards, and preferences (agent’s mental awareness and cognitive levels), (d) occupant 290 

perceptual types (agent’s level of thermal and visual comfort, and indoor air quality), and (e) occupant actions. 291 

Occupant characteristics: The occupant is a faculty occupying the office space. For this purpose, an agent prototype 292 

referred to as “Professor” was created in the library that has native properties such as emotion, physiology, and stress 293 

levels. Default values were used for the initial condition, assuming that agent simulation process always commences 294 

at the beginning of the day under study. The emotion, physiology, and stress levels are personal to the agent, 295 

essentially, their individual internal status. These are subject to change owing to agent’s personal properties.  296 



Object perceived by the occupant: Agent directly perceives and interacts with the environment modeled. It is 297 

considered that the indoor ambient environment is the major driver that affects the agent’s comfort level and, hence, 298 

its behavior decisions. As a result, the object of “Built Environment” was created. This object consists of what the 299 

agent perceives, i.e., the indoor ambient conditions and what the agent interacts with, i.e., the building components 300 

and their status (Table 2). Besides, the variable occupancy (room occupied status) was also created for the ABM rules 301 

definition, as the model will only be activated when the occupant is staying in the room. The values of all the 302 

parameters were initialized in the model, among which occupancy, building component status and the six 303 

environmental factors (Table 2) were served as model inputs during the simulation process, and the rest were fixed 304 

numbers during the model simulation process. These fixed numbered parameters that provide comfortable ranges of 305 

the agent are also used as arguments for the rules definition, and the values of human comfort level are referred from 306 

[39], i.e. maximum level of CO2 is approximately 1,000 ppm. Table 3 listed the standard comfortable range of different 307 

environmental parameters used in the model.  308 

Table 2. Model parameters related to the agent’s perception of the environment, interaction with building components 309 

and other items. 310 

Items in Object module Parameters in the model 

Agent’s perception of the 
environment  

Outdoor environment: temperature, relative humidity; 

Indoor environment: ambient temperature, relative humidity, CO2 concentration, 
illumination level. 

Agent’s interaction 
component  

Building components: door, window, window blinds 

Status: open, close 

Other auxiliary items Occupancy: whether the room is occupied or not 

Temperature: assumed maximum and minimum indoor and outdoor temperature that 
can be reached (used for perceptual rules definition) 

 311 
Table 3. Standard comfortable range of indoor environmental parameters 312 

Parameters Unit Value 
Temperature (High) Celsius Degree (°C) 26 
Temperature (Low) Celsius Degree (°C) 18 
Relative Humidity (High) Percentage (%) 60 
Relative Humidity (Low) Percentage (%) 25 
Carbon Dioxide Concentration (Max) Parts per million (ppm) 1000 
Illumination (High) Lux (lx) 600 
Illumination (Low)  Lux (lx) 50 
Illumination (Ideal) Lux (lx) 250 

 313 



Occupant Goals, Standards, and Preferences Tree (GSP Tree): The GSP Tree determines the agent’s mental awareness 314 

and cognition. It describes the short-term and long-term goals and value systems of the agent. For example, safety, 315 

economic, and health concerns are some of the typical items in the tree structure. All the items are following a 316 

hierarchical architecture and are given a weight value to reflect the significance of that item. These items are activated 317 

when a behavior is conducted in the simulation process, so that the values of the related items will be used for the 318 

“Utility” calculation for decision-making at the next time-step. In this model, a default structure of GSP Tree of a 319 

generic human’s mindset, as well as the weight values for each tree item were used in the model after consulting with 320 

the platform developers. Refer to Appendix A1 for more details.  321 

Occupant perceptual types: Agent’s perception towards the surrounding objects, in this case, the office space, is a 322 

critical component of the model development. Previous studies [40] have shown that in the context of built 323 

environment, there are three primary types of physical perceptions namely, thermal and visual comforts and indoor 324 

air quality. Therefore, different combinations including a perception type and the state of related building components 325 

were created in this module. For example, the perceptual type of “FreshAirNeeded_Window_Close” refers to the 326 

scenario wherein the window is “closed” and the CO2 level “exceeds a fraction of the comfort level”. Meanwhile, 327 

these perceptual types are bounded by self-defined perception rules that are programmed with parameters defined in 328 

the object “Built Environment” as input arguments. Appendix A2 shows sample code that defined the custom 329 

perception rules for visual comfort perception. Once the current situation (building component states and 330 

environmental factors) satisfies the threshold of certain rules, corresponding perceptual types are activated so that the 331 

agent will have the possibility to conduct relevant behaviors. Therefore, each perceptual type is correlated to at least 332 

one behavior option, which is the last piece of the modeling units.  333 

Occupant actions: The behavior options are the agent’s degrees of freedom relative to the components above. After a 334 

short interview and observation of the targeted occupants/rooms, the most common behaviors are operation of 335 

window, door, and window blinds. Therefore, to build a model that is close to reality, the ABM incorporates six 336 

behavior options which consist of open and closed states for each building component. Moreover, as stated before, 337 

some occupants may have access to other miscellaneous devices (e.g. lamps, heaters) for environment control. 338 

However, behaviors related to ancillary devices were ignored since their use is not prevalent and the goal was to create 339 

a generic behavior model. With the behavior options being modeled, each behavior causes a result and returns the 340 

outcome to update values in the “Built Environment” object. In addition, a connection between each behavior and 341 



corresponding perceptual types was established, and the behavior influence on the designated items in the GSP Tree 342 

was defined, which are referred as affordances of the behavior. The significance of this property is to map 343 

environmental factors (model inputs) to behavior options (model outputs), while the decision-making algorithms 344 

calculate the Utility for each behavior during the simulation process of the ABM.  345 

3.4 Model Execution and Discussion  346 

The ABM was developed as a library that comprises the functioning modules above. To execute the model, a 347 

simulation scenario must be created. The first two modules, namely agents and objects, can be considered as class 348 

which is analogous to a class in Object-oriented Programming (OOP). These two classes must be instantiated in the 349 

simulation scenario for model execution. Thus, one or more instances could be added to the scenario, which increase 350 

the flexibility of the model. One of the benefits of this setting is that the model (library) can be extended to multi-351 

occupancy rooms. Moreover, it allows for a combination of various agents and objects from one library. For example, 352 

if needed, additional occupants such as student, staff and building manager can be created; objects including time, and 353 

room properties can also be added to the library. Hence, the model can be applied to any rooms at the building level, 354 

which increases the versatility of the model.  355 

When executing the model, the values of the input environmental parameters in the “Built Environment” object are 356 

updated at each time step in the created scenario. If certain perceptions are triggered at the moment, the model outputs 357 

one behavior that the agent prioritizes; otherwise, the agent will not conduct any behavior on the building components. 358 

The item status of corresponding component in the object will be automatically updated based on the output of that 359 

time step. The model execution repeats the process and progresses beyond the former step until simulation ends. The 360 

simulation executed in the scenario does not influence values of the modules in the original library. Final behavior 361 

outcomes can be exported for further uses such as validation study or simulation integration.  362 

 363 

4. Validation Study of the Developed ABM 364 

Since ABM is a simulation-based modeling approach, a validation study is necessary to enhance the reliability and 365 

robustness of the model. This requires a time interval record of environmental parameters and occupant behaviors. 366 

The analysis of ABM output using real-world ambient environmental data and actual behavior can be used to assess 367 

performance and also tune the settings and rules of the ABM. The validation study investigates how specific occupants 368 



react to the changing environment and evaluates the ABM through results comparison. It also aims to facilitate the 369 

integration of the ABM with building energy simulation engine as future research.  370 

4.1 Environmental and Occupant Behavior Data Collection 371 

4.1.1 Data collection approaches 372 

The data collection for this research includes two parts, namely environmental data sensing and occupant behavior 373 

data recording. Related indoor environmental data was measured with a customized sensor node. The sensor node is 374 

comprised of an embedded single-board microcontroller computer, and three separate sensors that record indoor 375 

temperature (Celsius degree) and relative humidity (%), illumination (lux), and CO2 concentration (ppm), respectively. 376 

A programming script was written and uploaded to the sensor board to configure the assembling device and log the 377 

environmental data along with a time stamp. The time interval for data collection was five minutes. All data were 378 

stored on a Micro-SD card. One of the advantages of the customized sensor node is its flexibility, which allows more 379 

sensors to be added to the sensor node if necessary. The data file was uploaded to a cloud drive every two hours via 380 

the Wi-Fi connection. Figure 2 shows the configurations of the sensor node.  381 

 382 

Figure 2.  Customized smart sensor node 383 

Since the ABM requires outdoor ambient temperature and relative humidity as model inputs, these data were acquired 384 

from a local weather report website [41]. The website provides historical weather data collected by different weather 385 

stations that are spread in the locations of interest. For this study, a weather station located near the building was 386 

selected as data source. The temperature and relative humidity data with time information were extracted for the 387 

studied time period at a time interval of 30 minutes to one hour. 388 



For behavioral data, a daily survey with behavior options and corresponding time intervals was used. To balance the 389 

data precision and to avoid disturbing occupants, the time interval was set to 15 minutes from 8:00 AM to 5:00 PM. 390 

Additional time intervals could be added according to the occupant’s actual schedule. The survey sheet is attached as 391 

Appendix B. The monitored occupants were asked to initialize the starting status of the targeted building components 392 

every day, and then manually make a check mark at a box corresponding to a certain time whenever a behavior occurs. 393 

The survey was approved by Institutional Review Board (IRB) at UF to protect the privacy of the persons in the 394 

experiment. Meanwhile, a commercial off-the-shelf system consisting of a central hub and a set of magnetic sensors 395 

was installed on the door and window in one of the rooms, to log their open/close status through an Ethernet 396 

connection. This sensor system was used only for validating the daily survey sheet for several days.  397 

4.1.2 Data collection scale and preprocessing 398 

The data collection area was limited to the third floor of the test bed building, containing a row of single-occupancy 399 

faculty offices located on the west side of the building. Although random sampling was not used, based on the actual 400 

situation in the building and references from literature [21], five offices were selected with occupants of different 401 

genders and age ranges in order to avoid skewing the data. Five sets of sensor nodes and daily survey sheets were 402 

distributed to the offices with overlapping data collection time periods. Figure 3 shows the floor plan and targeted 403 

rooms of the building. The targeted occupants were given multiple daily survey sheets and were requested to complete 404 

the survey voluntarily, preferably on consecutive days. Embedded sensor boards were placed on the desk close to the 405 

occupants, and were never powered off during the data collection period. 406 

 407 

Figure 3.  Selected sample rooms for validation study 408 

The data collection period was in the spring season, during which the temperature and relative humidity variations 409 

between day and night are conducive to opening windows and the sun is low in the western sky during working hours. 410 



Four-week volumes of survey sheets were provided to the occupants and two to four weeks of data was returned 411 

depending on each occupant’s availability. The data collection needs to be expanded with respect to both the number 412 

of spaces and the time period in order to improve the reliability of the validation result for the ABM. However, the 413 

current study is considered sufficient to evaluate the general performance of the model and draw preliminary 414 

conclusions based on the observed results. On average, there are 25 to 35 behavior records per person per day.  415 

The raw behavioral data for each occupant over the validation period was preprocessed by converting the status of the 416 

door, window, and blinds into numerical values of “0” for closed or “1” for open. Therefore, at each time interval, a 417 

vector was used to record the current status of the door, window, and blinds. For example, [1, 0, 1] means the door is 418 

open, the window is closed, and the blinds are open at the moment. Also, at each time step, the ABM inputs were 419 

extracted from the environmental data collected by sensors, and a mapping of the ABM outputs onto the preprocessed 420 

behavior data at the same time interval was obtained for performance metric calculation.  421 

4.2 Performance test of the developed ABM 422 

Since the purpose of the ABM is to estimate how occupants interact with building components under specific 423 

environmental conditions, the simulated output from the ABM is compared to the recorded behavior using 424 

visualization and quantified performance metrics.  425 

4.2.1 Evaluation metrics and methods 426 

This research used a black-box validation method, i.e., the validation focuses on the final results as compared to white-427 

box validation method that focuses on the internal mechanism and structure. The reasons are two-fold: First, Bharathy 428 

and Silverman [42] conducted white-box validation of the human behavior modeling platform. Several documents 429 

discussing the technical details of PMFserv are available [37, 38]. Therefore, for this research, it is not necessary to 430 

test the internal behavioral algorithms. Second, since the research goal is to enhance building energy modeling by 431 

adding the human dimension, a black-box validation is sufficient to demonstrate the validity for future application of 432 

the model. Therefore, the validation can focus on whether the output of the occupant behavior model reflects reality, 433 

so that incorporating the information to building energy model would potentially improve the modeling capability.  434 

Four evaluation metrics are used in the paper to compare ABM simulated and actual behavior data for validation, 435 

namely recall, precision, accuracy, and F1 score. The value span for the four metrics are from 0 to 1. The definitions 436 

of these metrics are easily interpreted using the data in this study. It is assumed that the status of “open” for all targeted 437 



building components are positive samples, and “close” are negative samples. Thus, each simulation output of a 438 

building component is classified as: a True Positive sample (TP), a False Positive sample (FP), a True Negative sample 439 

(TN), or a False Negative sample (FN). For example, for the window, TP indicates the number of time steps when the 440 

ABM predicts the window is open when it is open actually and FN is the number of time steps when the ABM predicts 441 

the window is closed while it is open. Similarly, TN indicates the number of time steps when the ABM predicts the 442 

window is closed when it is closed, and FP means the ABM predicts window is open while it is actually closed in 443 

reality. Based on this classification, the calculation for the evaluation metrics is as follows: 444 

Recall = TP/(TP + FN) 445 

Precision = TP/(TP + FP) 446 

Accuracy = (TP + TN)/(TP + FP + FN + TN) 447 

F1 score = 2TP/(2TP + FP + FN) 448 

To conduct the comparison for ABM validation, first, the personal and environmental characteristics of the real 449 

occupants were fed to the agent and surrounding environment variables in the ABM. These include the same behavior 450 

options, comfort ranges, daily occupancy, and local environmental conditions. Then, the ABM was executed under 451 

the same conditions as the actual world, to obtain the simulated behavior results. In other words, as input parameters 452 

for the ABM, collected environmental data served as the virtual environment that represents the same conditions the 453 

occupant experiences in the real world. The process repeated at each time step to generate a list of vectors representing 454 

the status of the building components. Meanwhile, the actual behavior from the daily surveys were overlaid on the 455 

simulated results from the ABM for the same time period. Essentially, a direct mapping of simulated and actual data 456 

was obtained for analysis. Finally, for each behavior, the four standard metrics were calculated to measure the 457 

simulation performance of the ABM. This process was also used to calibrate the ABM from the validation results.  458 

4.3 Results and Analysis  459 

4.3.1 Individual-level evaluation 460 

The five occupants in the experiment are referred to as A through E. The actual behavioral data from the daily surveys 461 

were compared with the ABM outputs, and plotted for analysis. Although the developed occupant behavior model 462 

aims to capture a generic behavior of faculty members, the behavioral differences between these individuals cannot 463 



be ignored. As shown in Figure 4 to 6, two out of the five sample occupants that show a distinct discrepancy in 464 

behavior patterns are discussed.  465 

For occupant A, the simulation result and actual record of behavior for window blinds operation on a selected day are 466 

shown in Figure 4 (left), as well as the sole influencing environmental factor - indoor illumination. The actual status 467 

of blinds was open from the beginning through the majority of the day, which indicates the lighting intensity during 468 

the time frame satisfied or was slightly below the occupant’s visual comfort range. Towards the end of working hours 469 

on the day, sunlight from the west-facing windows increased the interior illumination level significantly. The interior 470 

illumination level apparently exceeded the comfort level, which drove the occupant’s decision to close the blinds. It 471 

is observed that the overall trend of the simulation result accords with the actual record. However, the simulated blind 472 

closing behavior occurred immediately when the illumination value started to increase, while the actual results 473 

reported a lagging after the parameter reached the maximum value. This delaying phenomenon was observed and 474 

studied in other research [43], which could be attributed to different reasons. Finally, the gap in the simulation result 475 

reflects a short time when the occupant was not in the office and no environmental inputs were used for those particular 476 

time steps. 477 

 478 

Figure 4.  ABM simulation results and survey record for occupant A for blinds, door and window operation on a 479 
selected day, with the respective relevant environmental parameters. 480 
Figure 4 (middle) shows the simulation result and actual record of door operation behavior on the same day. Three 481 

environmental parameters were considered influential to door operation, including indoor temperature, relative 482 

humidity, and CO2 concentration. The actual record indicated an initial status of door closed at the beginning of the 483 



day, and some alternative changes occurred during the daytime. However, the simulated result only predicted two 484 

behavior alternations, and nearly one third of the time periods were not matching reality for the day. One of the main 485 

reasons of this observation is that door operation behavior is related to many other non-environmental factors. 486 

Examples could be a random visit of other building occupants, or some personal events such as going to class or 487 

restroom. The ABM can hardly capture these stochastic events under the current settings. However, the ABM 488 

indirectly considered associated factors such as privacy and security which somehow affected the simulation result. 489 

Generally, it is argued that the ABM is more reliable if the occupant’s door operation behavior is mainly driven by 490 

environmental conditions.  491 

For window operation behavior, two additional environmental variables including outdoor temperature and relative 492 

humidity were involved. For instance, if it is cold or humid, i.e. rainy, outside of the room, the occupant may still keep 493 

the window close even though the indoor environment is slightly uncomfortable. In addition, if the occupant perceives 494 

that the indoor air quality is uncomfortable (indicated by a higher CO2 level) [53], he/she would normally open the 495 

window for fresh air intake. Similar to blinds operation behavior, the control of window is also influenced mainly by 496 

environmental factors. Particularly, in the test bed building, the window is the only building component for the 497 

occupant to adjust the room thermal conditions, given that the thermostat is not accessible in the room. Figure 4 (right) 498 

shows the window operation behavior for occupant A. It is observed that the occupant did not operate on the window 499 

on the day, while the ABM predicted a small portion of time for window opening behavior. There could be multiple 500 

reasons other than environmental factors that caused the actual state, yet the prediction performance generally 501 

conforms to the reality.  502 

Figure 5 showed a same set of results of occupant A from another day. The observed outcomes for blinds and door 503 

are similar to Figure 4, where the explanations also apply to this particular day. However, it is noticed that the actual 504 

window status alternated on the day, which was probably influenced by outdoor environment and indoor air quality. 505 

The central HVAC maintained stable indoor temperature and relative humidity, while the outdoor environment had 506 

significant change during the day. But since the outdoor temperature was low, the ABM assumed that occupant would 507 

close the window for thermal comfort over air quality comfort at the beginning of the day. 508 



 509 

Figure 5.  ABM simulation results and survey record for occupant A on another day, with the respective relevant 510 
environmental parameters. 511 

In contrast to occupant A, the simulated behavior patterns of occupant B differ more significantly from actual behavior. 512 

Figure 6 (left) shows the window blinds operation on a selected day for occupant B. The overall lighting intensity in 513 

the room was much lower than the recommended light level for an office work environment. However, according to 514 

the survey record, occupant B did not operate the window blinds the entire day. The reason could be due to a different 515 

personal light intensity preference or because the occupant was using other sources of lighting for visual comfort, i.e. 516 

a desk lamp that was out of the sensor’s range. Because the illumination level was low, the occupant behavior model 517 

predicted an open blind behavior. An interesting phenomenon is that around 2:00 pm, although the light level dropped 518 

to a very low level, the ABM did not output another open blind behavior. This is because at this time step, the model 519 

output another behavior according to the Utility function results, which indicates that there were multiple 520 

uncomfortable perceptions felt by the agent at that time period.  521 

For the door operation behavior, the simulation results for occupant B captures a similar trend as the actual the survey 522 

record (Figure 6 middle), while some behaviors at certain time steps are missed. The reason for this observation is 523 

similar to the explanation of door behavior for occupant A. Occupant B left the door open most of the time, probably 524 

due to personal habit. The door closing behavior periods were comparatively short, which caused the simulation model 525 

to miss some behaviors. This could occur for many reasons other than environmental conditions, such as a short 526 

meeting, which are not included in the behavior model. However, the raw survey sheets show that the missing data 527 

records are infrequent and sporadic and thus do not affect the overall simulation results. 528 



 529 

Figure 6.  ABM simulation results and survey record for occupant B for blinds, door and window operation on one 530 
day, with the relevant environmental parameters 531 

The actual record of window operation behavior for occupant B shows that the occupant never open the window no 532 

matter how the ambient conditions changed during the day (Figure 6 right). According to the on-site observations and 533 

interview with the occupant, opening and closing the window is not a normal behavior, unless an extreme situation 534 

occurs. However, since the ABM only focused on the influence of environmental conditions on behavior decisions, 535 

the simulation results show the window opening and closing during the day, mainly based on the level of CO2 in this 536 

case. One of the reasons is that both the indoor and outdoor thermal conditions were within the comfort range for most 537 

of the day, which is typical in the spring season at the building location. As such, the ABM can serve as an advisor 538 

and suggest behaviors such as opening and closing windows that would improve indoor environmental conditions for 539 

the occupant. 540 

4.3.2 Overall evaluation 541 

Due to the complexity of occupant behaviors, the behavior pattern of each occupant is likely to be different. The 542 

survey results also indicate variations for the same occupant on different days given similar environmental conditions. 543 

Therefore, the virtual model does not aim to track exactly how people in the built environment will react to certain 544 

ambient conditions. On the contrary, the model is considered to be applicable if the overall performance reaches an 545 

acceptable level, in terms of the evaluation metrics. Table 4 summarizes the model performance. Note the overall 546 

results are not simply the average of all five occupants, since the five occupants occupied their offices at different 547 

times due to their schedules. Instead, the results are obtained by calculating the performance measures from behavior 548 



records of all occupants for each building component. This measure reflects the general performance of the ABM, as 549 

the model aims to represent a generic “faculty” behavior pattern.  550 

Table 4. Agent-based model performance measure summary for the sample occupants 551 
Occupant Building system Recall Precision F1 Score Accuracy 
A  Blinds 0.98 1.00 0.99 0.98 
 Door 0.88 0.53 0.66 0.70 
 Window 0.78 0.83 0.80 0.80 
B  Blinds N/A 0.00 0.00 0.39 
 Door 0.93 0.81 0.87 0.79 
 Window N/A 0.00 0.00 0.67 
C  Blinds 1.00 1.00 1.00 1.00 
 Door 0.89 0.38 0.53 0.55 
 Window N/A 0.00 0.00 0.73 
D  Blinds 1.00 1.00 1.00 1.00 
 Door 0.98 0.84 0.90 0.85 
 Window N/A 0.00 0.00 0.84 
E Blinds 0.50 1.00 0.67 0.50 
 Door 1.00 1.00 1.00 1.00 
 Window N/A 0.00 0.00 0.79 
Overall Blinds 0.82 0.84 0.83 0.74 
 Door 0.96 0.79 0.87 0.81 
 Window 0.78 0.35 0.49 0.77 

It can be seen that for each individual, the model simulation performance differs for the three building components. 552 

For example, for occupant A, blinds and window operation have a higher accuracy, while the prediction accuracy for 553 

door operation is relatively low. Besides the explanation above, another possible cause is that the frequency of door 554 

control can be very high that repeated alternation of open and close happens during the 15-minute time interval. This 555 

in turn influenced the occupant’s actual record for door operation, and eventually decreased the prediction 556 

performance for door behavior of the ABM. However, the recall value for door operation obtained satisfactory result, 557 

as well as the other two components. In other words, the ABM predicted the behavior of “opening” fairly well for 558 

occupant A. A low precision of 0.53 indicates the ABM falsely predicted opening the door while in reality it was 559 

closed for a portion of time steps. It is inferred that either the occupant has a wider comfortable range or there are 560 

other factors that influence the behavior even though the indoor environment is out of the comfort level.  561 

Taking occupant B as another example, the simulation results deviate more significantly from the survey records. 562 

Although the door operation behavior has an acceptable performance, both window and blinds have lower accuracy. 563 

Recall is not applicable in this case, and the precision value is 0 for this occupant. The reason is that this occupant 564 

never reported opening the window or blinds. Therefore, since “opening” behavior is defined as the positive outcome, 565 

there are no positive samples for this occupant. As a result, true positive and false negative numbers are both 0, which 566 



makes the value of precision 0 and the calculation of recall not applicable. Similarly, the value of “N/A” and “0” 567 

appear in other occupants’ results as well for the same reason.  568 

In the summary statistics, referred to as “overall,” behaviors on all three building systems achieve a relatively high 569 

accuracy, i.e., approximately 80%. From the perspective of black-box validation, the ABM can be applied for further 570 

use, i.e. simulation coupling. However, there are additional information to note. Specifically, for blinds use, most of 571 

the occupants kept the component open for better vision from natural light. This increased the positive sample numbers 572 

that leads to higher recall and precision; for door use, although all the parameters show a satisfactory value, the ABM 573 

performs much differently among individuals, with some of the reasons mentioned above. For window use, since most 574 

of the sample occupants did not open their windows, the positive outcomes are largely from occupant A. Lastly, the 575 

fact that the sample time steps for each individual are slightly different needs to be taken into consideration when 576 

applying the model for other research purposes.  577 

To present the model testing results from a more comprehensive view, Figure 7A illustrates the status change 578 

percentages occurring in each of the three building components for each occupant during their self-reported time 579 

period. Different behavior patterns can be observed clearly from the figure. Notice that window opening status is not 580 

common for the five occupants, and blinds operation is also a rare behavior. A clue to this phenomenon may be 581 

because of the data collection season, which is spring with occasional rain during daytime. Also, these occupants have 582 

rather distinguished visual comfort needs. Specifically, for occupant C, a personal heater is presented in the office so 583 

that window is not the first option for indoor environment adjustment.  584 



 585 

Figure 7.  Actual (top, 7A) and simulated (bottom, 7B) building component status changes as a percentage of total 586 

events for three building components and five occupants during the survey period 587 

Figure 7B shows the modeled status change percentages as a comparison to Figure 7A. Although the model is applied 588 

to all occupants, the simulated behavior patterns still present differences, owing to different inputs (ambient 589 

conditions) for the five offices. In addition, the simulated results show a similar proportion of behaviors to the 590 

measured results, demonstrating a good performance of the occupant behavior model for all five occupants. However, 591 

the simulated results have a rather symmetrical distribution in behavior outputs, especially for the window opening 592 

behavior. The blinds operation behavior is also slightly over-estimated by the model, but the error rate is much lower. 593 

One reason is that the ABM places thermal comfort and air quality comfort over visual comfort, which prioritizes the 594 

behavior options related to the first two perceptions. 595 

4.4 Summary and Discussion 596 

The observations of individual’s behavior selected two representative samples (occupant A and B) to evaluate the 597 

model performance. As occupants have distinct characteristics, such as thermal and visual comfort ranges, different 598 

behavior decisions under similar external conditions were evident. This is reflected in Table 4, where the ABM 599 



performs well for some occupants but achieves lower accuracy for others, e.g., blinds operation for occupant B. 600 

Ideally, each individual should have an independent model tailored to reflect their own patterns, however, it may be 601 

impractical to customize separate models for each person occupying the spaces. One approach to navigate effort (i.e., 602 

multiple ABMs of individual occupants in the space) versus accuracy is to identify major occupant typologies by their 603 

function; an example in the case of educational building is faculty, administrative staff, and students. Each of these 604 

occupant types can be modeled which may lead to improved performance. 605 

The survey records from the occupants show insights into occupants’ perception and their interactions with building 606 

components. For example, some occupants have a rather stable pattern of behaviors in terms of the operation on the 607 

three building components, regardless of the variation of the ambient environment. The possible reasons may be 608 

summarized as follows: 1) they are always satisfied with the ambient environment (broader comfortable threshold); 609 

2) other options exist such as desk lamp, personal heater, etc., which influence the use of the modeled building 610 

components indirectly. More research may be needed to understand the causality of driving factors and behavior 611 

decisions at both individual and group levels.    612 

Finally, in terms of the generalizability of the validation results, though the ABM is developed to represent occupants 613 

in all of the faculty offices on the third floor, the actual spaces used in this study only accounts for one third of the 614 

targeted spaces. The individual-level results presented in this paper, owing to page limits, focused on one to two days 615 

with two out of five rooms as sample, which may not be generalized to cover the entire situation. These limitations 616 

are further discussed in the next section and will be addressed in the future improvement of the model. As a result, 617 

this validation study aims to provide domain researchers a feasible verification process rather than claiming an 618 

accurate validation result.  619 

Although the ABM exhibited acceptable performance in the overall evaluation metrics results, the validation study 620 

could be expanded further to improve the robustness of the model, from perspectives of simulation and actual behavior 621 

comparison, and model architecture. This may include additional sample data over extended time periods, increased 622 

occupant numbers and types, and building types and spaces with varied orientations. Moreover, it is argued that the 623 

validation approaches should be designed based on the future application of the model. For instance, a time-step-based 624 

validation was conducted in this study, as the authors plan to implement a simulation coupling with EnergyPlus™ 625 

which is executing in a time-step mode.  626 



5. Conclusions 627 

Occupant behaviors are identified as an important influential factor of building energy use. A deeper understanding 628 

in the way occupants interact with building components not only provides valuable data to develop systems and 629 

controls to optimize energy use during the life cycle of the building, but also helps improve occupants’ comfort. This 630 

research proposed a systematic approach that combines the development and validation of an ABM-based occupant 631 

behavior model for the purpose of gaining insights of how occupant behaviors change and differ individually, given 632 

a set of environmental parameter values. A case study that implemented the methods in a realistic commercial building 633 

was conducted to illustrate the validity and feasibility of the approach.  634 

First, an ABM was developed in the context of the built environment that virtually predicts occupant’s behavior. This 635 

model was built under the assumption that occupants may adapt to the surrounding environment through accessible 636 

building components for comfort. Subsequently, the occupant behavior model was tested with a black-box validation 637 

method, using the data collected by sensor nodes and a paper-based survey. The results on both individual and group 638 

levels indicated an acceptable fit on a time-step basis, which showed the validity of using the model for further studies 639 

such as integrating with building energy models. However, a few limitations still exist that should be addressed in the 640 

future.  641 

Limitation 1: Barriers to Occupant Behavior Modeling using ABM  642 

The occupant behavior model was developed with the assumption that environment is the only stimulant for occupant 643 

behaviors. However, many other factors also affect people’s behaviors. For example, external factors such as occupant 644 

routine, schedule, room size or location, and internal factors such as personal background, e.g. comfort range, age, 645 

and gender, psychological state, and privacy all contribute to behaviors. The completeness of the model can be 646 

advanced by incorporating more relevant factors as behavior drivers. Nevertheless, from the perspective of an 647 

engineering study, it may be unnecessary or redundant to consider every aspect that may influence human behaviors, 648 

since this research does not intend to implement an accurate virtual reality environment, but focuses more on capturing 649 

the range of behavior and providing supplementary information for building energy modeling. In addition, as stated 650 

in [44], it is impossible to completely model occupant behavior, as individuals are too complex and random.  651 

With respect to the randomness of people, the ABM only investigated the deterministic relationship between the 652 

behaviors and drivers. Stochastic influences should be studied to eliminate a definitive simulation result as opposed 653 



to the “random” nature of occupant behaviors. Moreover, some subtle behaviors that are not directly energy-related 654 

were excluded from the model. These behaviors may lead to effects which should not be ignored.  655 

Limitation 2: Case Study Limitations 656 

The case study is an example of the research methodology. The model has not been tested in different types of 657 

conditions and building types, such as shared and open offices, residential buildings or buildings with more complex 658 

functions. In fact, occupant behavior will vary significantly in different buildings due to the accessibility of occupant 659 

alterable building components and related factors. Despite the fact that this research is defined in the scope of 660 

commercial buildings, the generality of the model is limited to the current conditions.  661 

Furthermore, the data collection period is four weeks in the spring, which does not cover the climate in a full year. 662 

However, people may have different preferences and habits during different seasons, leading to different behaviors 663 

under similar environmental conditions. In addition, only five occupants were selected as research samples, which can 664 

be expanded to a larger scale. The offices are all single-occupancy rooms, which means no interactions between 665 

multiple occupants were considered. This condition, however, has been studied by other researchers as separate 666 

research and can be modeled in the modeling platform if needed.  667 

Last, but not the least, the paper-based survey not only caused certain disturbance and pressure for the occupants, but 668 

might also lead to data collection errors. Manual report is error-prone for a longer duration of data collection. This can 669 

be improved by installing smart sensing devices on targeted building components that can automatically log object 670 

status data with more detailed time granularity.  671 

5.1 Recommendations for Future Study 672 

This research systematically established an occupant behavior model for improving commercial building energy 673 

efficiency, which lays the foundation for future studies. The proposed research workflow aims to help various 674 

stakeholders including building designers, engineers, and managers optimize and control building systems and 675 

facilities based on the behavior patterns of building users. The research also aims to facilitate the development of 676 

building energy simulation programs and energy management solutions, as well as designing behavior intervention 677 

policies. Further studies will be conducted to realize the goals.  678 



First, it is worthwhile to compare data-driven methods to the ABM in terms of prediction accuracy. It should be noted 679 

that the ABM is not mutually exclusive with data-driven models, in that an agent’s behavior can range from simplistic 680 

and reactive rules to complex behaviors regulated by artificial intelligence techniques [45]. Specifically, if proved to 681 

be practical, ABM rules can be defined based on statistical inference or data mining-based models as part of the system 682 

that manages the behaviors of autonomous agents. [26] and [46] are examples that combine these approaches with an 683 

ABM which potentially utilizes the benefits of both methods. In this way, the need to delve into the internal 684 

relationship between behaviors and influencing factors is reduced, and the stochastic feature of occupant behaviors 685 

can be involved by adding probability to the modeling rules.  686 

Since the occupant behavior model was defined in single-occupied offices, further research could be extended to multi-687 

occupant rooms. Under this circumstance, the behavior mechanism becomes more complicated as communications 688 

between different occupants influences how they operate building components. Fortunately, the ABM platform allows 689 

the modeling of multiple agents as well as their mutual effects, which enables behavior modeling from individual to 690 

the group level. Meanwhile, more behavior options such as those pertaining to plug loads can be added and studied as 691 

can other typical behaviors in buildings. Additional properties including occupant physiological and psychological 692 

conditions that can be modeled in PMFserv should also be specifically designed, which is one of the major 693 

considerations of using the platform.  694 

The research methods and results can be used for simulation coupling with traditional building energy models to 695 

quantify the impact of different behavior patterns. A comparison on the fluctuation of energy use in different 696 

simulation settings can assess building performance in a more comprehensive way. Additionally, the ABM can be fed 697 

with real-time data to manage building operation for an existing building. As behaviors mostly result from 698 

uncomfortable indoor environmental conditions, the building systems can start to adjust schedules and operation in 699 

advance to achieve a better balance between building energy efficiency and occupant comfort.  700 
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A1. 707 

708 

 709 



Figure A1. GSP tree created in the ABM.  710 
A2.  711 

 712 
Figure A2. Custom rules for blind open due to visual perception. 713 
B. 714 

 715 
Figure B1. Survey sheet for behavior data record. (Note: this figure cut part of the rows in the survey sheet, while the 716 
complete survey time period is from 8:00 am to 5:00 pm.) 717 



References 718 
[1]  Energy Information Administration. (2015). Annual Energy Outlook 2015. Retrieved November 13, 2018, 719 

from https://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf 720 
[2]  Final Report IEA Annex 53 Total Energy Use in Buildings, Analysis and Evaluation Methods, IEA, 2013. 721 
[3]  Cheung, C. K., Fuller, R. J., & Luther, M. B. (2005). Energy-efficient envelope design for high-rise 722 

apartments. Energy and Buildings, 37(1), 37–48. https://doi.org/10.1016/J.ENBUILD.2004.05.002 723 
[4]  Zhou, S., Wu, Z., Li, J., & Zhang, X. (2014). Real-time Energy Control Approach for Smart Home Energy 724 

Management System. Electric Power Components and Systems, 42(3–4), 315–326. 725 
https://doi.org/10.1080/15325008.2013.862322 726 

[5]  Zeng, R., Chini, A., Srinivasan, R. S., & Jiang, P. (2017). Energy efficiency of smart windows made of 727 
photonic crystal. International Journal of Construction Management, 17(2), 100-112. 728 

[6]  Jia, M., & Srinivasan, R. S. (2015). Occupant behavior modeling for smart buildings: A critical review of 729 
data acquisition technologies and modeling methodologies. In 2015 Winter Simulation Conference (WSC) 730 
(pp. 3345–3355). IEEE. https://doi.org/10.1109/WSC.2015.7408496 731 

[7]  Fabi, V., Andersen, R. V., Corgnati, S., & Olesen, B. W. (2012). Occupants’ window opening behaviour: A 732 
literature review of factors influencing occupant behaviour and models. Building and Environment, 58, 188–733 
198. https://doi.org/10.1016/J.BUILDENV.2012.07.009 734 

[8]  Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. (2015). 735 
Occupant behavior modeling for building performance simulation: Current state and future challenges. 736 
Energy and Buildings, 107, 264–278. https://doi.org/10.1016/J.ENBUILD.2015.08.032 737 

[9]  Balvedi, B. F., Ghisi, E., & Lamberts, R. (2018). A review of occupant behaviour in residential 738 
buildings. Energy and Buildings. 739 

[10]  Hong, T., Taylor-Lange, S. C., D’Oca, S., Yan, D., & Corgnati, S. P. (2016). Advances in research and 740 
applications of energy-related occupant behavior in buildings. Energy and Buildings, 116, 694–702. 741 
https://doi.org/10.1016/J.ENBUILD.2015.11.052 742 

[11]  Fabi, V., Vinther Andersen, R., Corgnati, S. P., Olesen, B. W., & Filippi, M. (2011). DESCRIPTION OF 743 
OCCUPANT BEHAVIOUR IN BUILDING ENERGY SIMULATION: STATE-OF-ART AND 744 
CONCEPTS FOR IMPROVEMENTS 2 3. In Building Simulation Conference (pp. 2882–2889). Sydney. 745 
Retrieved from http://www.ibpsa.org/proceedings/BS2011/P_1923.pdf 746 

[12]  Hong, T., D’Oca, S., Turner, W. J. N., & Taylor-Lange, S. C. (2015). An ontology to represent energy-747 
related occupant behavior in buildings. Part I: Introduction to the DNAs framework. Building and 748 
Environment, 92, 764–777. https://doi.org/10.1016/J.BUILDENV.2015.02.019 749 

[13]  Haldi, F., & Robinson, D. (2011). The impact of occupants’ behaviour on building energy demand. Journal 750 
of Building Performance Simulation, 4(4), 323–338. https://doi.org/10.1080/19401493.2011.558213 751 

[14]  de Wilde, P. (2014). The gap between predicted and measured energy performance of buildings: A 752 
framework for investigation. Automation in Construction, 41, 40–49. 753 
https://doi.org/10.1016/J.AUTCON.2014.02.009 754 

[15]  Andersen, R., Fabi, V., Toftum, J., Corgnati, S. P., & Olesen, B. W. (2013). Window opening behaviour 755 
modelled from measurements in Danish dwellings. Building and Environment, 69, 101–113. 756 
https://doi.org/10.1016/J.BUILDENV.2013.07.005 757 

[16]  Turner, C., & Frankel, M. (2008). Energy Performance of LEED ® for New Construction Buildings. 758 
Retrieved from www.newbuildings.org 759 

[17]  Hong, T., Sun, H., Chen, Y., Taylor-Lange, S. C., & Yan, D. (2016). An occupant behavior modeling tool 760 
for co-simulation. Energy and Buildings, 117, 272–281. https://doi.org/10.1016/J.ENBUILD.2015.10.033 761 

[18]  Gunay, H. B., O’Brien, W., & Beausoleil-Morrison, I. (2013). A critical review of observation studies, 762 
modeling, and simulation of adaptive occupant behaviors in offices. Building and Environment, 70, 31–47. 763 
https://doi.org/10.1016/J.BUILDENV.2013.07.020 764 

[19]  Jia, M., Srinivasan, R. S., & Raheem, A. A. (2017). From occupancy to occupant behavior: An analytical 765 
survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for 766 
building energy efficiency. Renewable and Sustainable Energy Reviews, 68, 525–540. 767 
https://doi.org/10.1016/J.RSER.2016.10.011 768 

https://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf
https://doi.org/10.1016/J.ENBUILD.2004.05.002
https://doi.org/10.1080/15325008.2013.862322
https://doi.org/10.1109/WSC.2015.7408496
https://doi.org/10.1016/J.BUILDENV.2012.07.009
https://doi.org/10.1016/J.ENBUILD.2015.08.032
https://doi.org/10.1016/J.ENBUILD.2015.11.052
http://www.ibpsa.org/proceedings/BS2011/P_1923.pdf
https://doi.org/10.1016/J.BUILDENV.2015.02.019
https://doi.org/10.1080/19401493.2011.558213
https://doi.org/10.1016/J.AUTCON.2014.02.009
https://doi.org/10.1016/J.BUILDENV.2013.07.005
http://www.newbuildings.org/
https://doi.org/10.1016/J.ENBUILD.2015.10.033
https://doi.org/10.1016/J.BUILDENV.2013.07.020
https://doi.org/10.1016/J.RSER.2016.10.011


[20]  Nguyen, T. A., & Aiello, M. (2013). Energy intelligent buildings based on user activity: A survey. Energy 769 
and Buildings, 56, 244–257. https://doi.org/10.1016/J.ENBUILD.2012.09.005 770 

[21]  Langevin, J., Wen, J., & Gurian, P. L. (2015). Simulating the human-building interaction: Development and 771 
validation of an agent-based model of office occupant behaviors. Building and Environment, 88, 27–45. 772 
https://doi.org/10.1016/J.BUILDENV.2014.11.037 773 

[22]  Lee, Y. S., & Malkawi, A. M. (2014). Simulating multiple occupant behaviors in buildings: An agent-based 774 
modeling approach. Energy and Buildings, 69, 407–416. https://doi.org/10.1016/J.ENBUILD.2013.11.020 775 

[23]  Azar, E., & Menassa, C. C. (2012). Agent-Based Modeling of Occupants and Their Impact on Energy Use in 776 
Commercial Buildings. Journal of Computing in Civil Engineering, 26(4), 506–518. 777 
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000158 778 

[24]  Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of 779 
Simulation, 4(3), 151–162. https://doi.org/10.1057/jos.2010.3 780 

[25]  D’Oca, S., Hong, T., & Langevin, J. (2018). The human dimensions of energy use in buildings: A review. 781 
Renewable and Sustainable Energy Reviews, 81, 731–742. https://doi.org/10.1016/J.RSER.2017.08.019 782 

[26]  Papadopoulos, S., & Azar, E. (2016). Integrating building performance simulation in agent-based modeling 783 
using regression surrogate models: A novel human-in-the-loop energy modeling approach. Energy and 784 
Buildings, 128, 214–223. https://doi.org/10.1016/J.ENBUILD.2016.06.079 785 

[27]  Zhou, X., Liu, T., Shi, X., & Jin, X. (2018). Case study of window operating behavior patterns in an open-786 
plan office in the summer. Energy and Buildings, 165, 15-24. 787 

[28]  Ren, X., Yan, D., & Wang, C. (2014). Air-conditioning usage conditional probability model for residential 788 
buildings. Building and Environment, 81, 172-182. 789 

[29]  Ahmadi-Karvigh, S., Ghahramani, A., Becerik-Gerber, B., & Soibelman, L. (2018). Real-time activity 790 
recognition for energy efficiency in buildings. Applied Energy, 211, 146-160. 791 

[30]  Dong, B., & Lam, K. P. (2011). Building energy and comfort management through occupant behaviour 792 
pattern detection based on a large-scale environmental sensor network. Journal of Building Performance 793 
Simulation, 4(4), 359–369. https://doi.org/10.1080/19401493.2011.577810 794 

[31]  Zhao, J., Lasternas, B., Lam, K. P., Yun, R., & Loftness, V. (2014). Occupant behavior and schedule 795 
modeling for building energy simulation through office appliance power consumption data mining. Energy 796 
and Buildings, 82, 341–355. https://doi.org/10.1016/J.ENBUILD.2014.07.033 797 

[32]  Alfakara, A., & Croxford, B. (2014). Using agent-based modelling to simulate occupants’ behaviours in 798 
response to summer overheating. In Proceedings of the Symposium on Simulation for Architecture & Urban 799 
Design (p. 13). Society for Computer Simulation International. Retrieved from 800 
https://dl.acm.org/citation.cfm?id=2664336 801 

[33]  Kashif, A., Ploix, S., Dugdale, J., & Le, X. H. B. (2013). Simulating the dynamics of occupant behaviour for 802 
power management in residential buildings. Energy and Buildings, 56, 85–93. 803 
https://doi.org/10.1016/J.ENBUILD.2012.09.042 804 

[34]  Putra, H. C., Andrews, C. J., & Senick, J. A. (2017). An agent-based model of building occupant behavior 805 
during load shedding. Building Simulation, 10(6), 845–859. https://doi.org/10.1007/s12273-017-0384-x 806 

[35]  Jia, M., Srinivasan, R., Ries, R., Bharathy, G., Silverman, B., Weyer, N., & Rinker, M. E. (2017). An Agent-807 
Based Model Approach for Simulating Interactions between Occupants and Building Systems. In Building 808 
Simulation Conference (pp. 2407–2413). San Francisco, CA. https://doi.org/10.26868/25222708.2017.673. 809 

[36]  Jia, M., Srinivasan, R. S., Ries, R., & Bharathy, G. K. (2018). A Framework of Occupant Behavior 810 
Modeling and Data Sensing for Improving Building Energy Simulation. In Symposium on Simulation for 811 
Architecture and Urban Design (pp. 153–160). Delft, the Netherlands. 812 

[37]  Silverman, B. G., Bharathy, G., Nye, B., & Eidelson, R. J. (2007). Modeling factions for “effects based 813 
operations”: part I—leaders and followers. Computational and Mathematical Organization Theory, 13(4), 814 
379–406. https://doi.org/10.1007/s10588-007-9017-8 815 

[38]  Bharathy, G. K., & Silverman, B. (2013). Holistically evaluating agent-based social systems models: a case 816 
study. SIMULATION, 89(1), 102–135. https://doi.org/10.1177/0037549712446854 817 

[39]  The Engineering ToolBox. https://www.engineeringtoolbox.com (last accessed: 11/27/2018) 818 

https://doi.org/10.1016/J.ENBUILD.2012.09.005
https://doi.org/10.1016/J.BUILDENV.2014.11.037
https://doi.org/10.1016/J.ENBUILD.2013.11.020
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000158
https://doi.org/10.1057/jos.2010.3
https://doi.org/10.1016/J.RSER.2017.08.019
https://doi.org/10.1016/J.ENBUILD.2016.06.079
https://doi.org/10.1080/19401493.2011.577810
https://doi.org/10.1016/J.ENBUILD.2014.07.033
https://dl.acm.org/citation.cfm?id=2664336
https://doi.org/10.1016/J.ENBUILD.2012.09.042
https://doi.org/10.1007/s12273-017-0384-x
https://doi.org/10.1007/s10588-007-9017-8
https://doi.org/10.1177/0037549712446854
https://www.engineeringtoolbox.com/


[40]  Yang, R., & Wang, L. (2013). Development of multi-agent system for building energy and comfort 819 
management based on occupant behaviors. Energy and Buildings, 56, 1–7. 820 
https://doi.org/10.1016/J.ENBUILD.2012.10.025 821 

[41]  Weather Underground. Historical Weather. Retrieved November 13, 2018, from 822 
https://www.wunderground.com/history/ 823 

[42]  Bharathy, G. K., & Silverman, B. (2010). Validating agent based social systems models. In Proceedings of 824 
the 2010 Winter Simulation Conference (pp. 441–453). IEEE. https://doi.org/10.1109/WSC.2010.5679142 825 

[43]  Total energy use in buildings analysis and evaluation methods: Final Report Annex 53. 2013. Retrieved 826 
from: http://www.iea-ebc.org/Data/publications/EBC_Annex_53_Appendix_Volume_2.pdf 827 

[44]  Tabak, V., & de Vries, B. (2010). Methods for the prediction of intermediate activities by office 828 
occupants. Building and Environment, 45(6), 1366-1372. 829 

[45]  Macal, C., & North, M. (2014). Introductory tutorial: Agent-based modeling and simulation. In Proceedings 830 
of the Winter Simulation Conference 2014 (pp. 6–20). IEEE. https://doi.org/10.1109/WSC.2014.7019874 831 

[46]  Lin, H., Wang, Q., Wang, Y., Liu, Y., Sun, Q., & Wennersten, R. (2017). The energy-saving potential of an 832 
office under different pricing mechanisms–Application of an agent-based model. Applied Energy, 202, 248-833 
258.  834 

[47]  Yang, Z., Li, N., Becerik-Gerber, B., & Orosz, M. (2014). A systematic approach to occupancy modeling in 835 
ambient sensor-rich buildings. Simulation, 90(8), 960-977. 836 

[48]  Yang, Z., & Becerik-Gerber, B. (2014). Modeling personalized occupancy profiles for representing long 837 
term patterns by using ambient context. Building and Environment, 78, 23-35. 838 

[49]  Agarwal Y, Balaji B, Gupta R, Lyles J, Wei M, Weng T. Occupancy-driven energy management for smart 839 
building automation. In: Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-840 
efficiency in building, ACM, 2010, p. 1–6. 841 

[50]  D’Oca, S., & Hong, T. (2015). Occupancy schedules learning process through a data mining 842 
framework. Energy and Buildings, 88, 395-408. 843 

[51]  Wei, Y., Xia, L., Pan, S., Wu, J., Zhang, X., Han, M., Zhang, W., Xie, J. and Li, Q., 2019. Prediction of 844 
occupancy level and energy consumption in office building using blind system identification and neural 845 
networks. Applied Energy, 240, pp.276-294. 846 

[52]  Chen, Z., Xu, J., & Soh, Y. C. (2015). Modeling regular occupancy in commercial buildings using stochastic 847 
models. Energy and Buildings, 103, 216-223. 848 

[53]  Satish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., & Fisk, W. J. (2012). Is CO2 849 
an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making 850 
performance. Environmental health perspectives, 120(12), 1671-1677. 851 

[54]  Silverman, B. G., Hanrahan, N., Bharathy, G., Gordon, K., & Johnson, D. (2015). A systems approach to 852 
healthcare: agent-based modeling, community mental health, and population well-being. Artificial 853 
intelligence in medicine, 63(2), 61-71. 854 

 855 

https://doi.org/10.1016/J.ENBUILD.2012.10.025
https://www.wunderground.com/history/
https://doi.org/10.1109/WSC.2010.5679142
http://www.iea-ebc.org/Data/publications/EBC_Annex_53_Appendix_Volume_2.pdf
https://doi.org/10.1109/WSC.2014.7019874

	Clipboard Data(1)
	EnB-manuscript-new-revise(2)-1.pdf

