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Abstract—Labeling malware or malware clustering is im-
portant for identifying new security threats, triaging and build-
ing reference datasets. The state-of-the-art Android malware
clustering approaches rely heavily on the raw labels from
commercial AntiVirus (AV) vendors, which causes misclustering
for a substantial number of weakly-labeled malware due to the
inconsistent, incomplete and overly generic labels reported by
these closed-source AV engines, whose capabilities vary greatly
and whose internal mechanisms are opaque (i.e., intermediate
detection results are unavailable for clustering). The raw labels
are thus often used as the only important source of information
for clustering.

To address the limitations of the existing approaches, this
paper presents ANDRE, a new ANDroid Hybrid REpresentation
Learning approach to clustering weakly-labeled Android mal-
ware by preserving heterogeneous information from multiple
sources (including the results of static code analysis, the meta-
information of an app, and the raw-labels of the AV vendors)
to jointly learn a hybrid representation for accurate cluster-
ing. The learned representation is then fed into our outlier-
aware clustering to partition the weakly-labeled malware into
known and unknown families. The malware whose malicious
behaviours are close to those of the existing families on the
network, are further classified using a three-layer Deep Neural
Network (DNN). The unknown malware are clustered using a
standard density-based clustering algorithm. We have evaluated
our approach using 5,416 ground-truth malware from Drebin
and 9,000 malware from VIRUSSHARE (uploaded between Mar.
2017 and Feb. 2018), consisting of 3324 weakly-labeled malware.
The evaluation shows that ANDRE effectively clusters weakly-
labeled malware which cannot be clustered by the state-of-the-
art approaches, while achieving comparable accuracy with those
approaches for clustering ground-truth samples.

I. INTRODUCTION

ANDROID devices have represented around 80% of all
smartphones since 2017 and are forecast to maintain

their leadership with over 85% market share by 2020 [1].
The increasing popularity of Android devices has witnessed an
unprecedented growth in emerging Android apps, which has
also become the prime targets of attackers. It has been reported
that the total number of Android malware had reached 856.52
million by the end of 2018. There were more than 137.5
million newly discovered malicious apps in 2018 (i.e., 350,000
new malware per day) [2]. Android malware is a major source
of cyberattacks and is a serious threat to smartphone users.

Labeling a malicious app as an unknown or a variant of
an existing family is important for identifying new threats,
determining the severity of the threat, creating signatures for
malware detection, malware triaging, and building reference
datasets. Labeling malware is a non-trivial task. The raw
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TABLE I
MALWARE WITH EMPTY LABELS. THE TABLE GIVES THE NUMBER OF

MALICIOUS APPS WHICH DO NOT HAVE A FAMILY NAME AFTER
CLUSTERING BY EUPHONY AND AVCLASS DUE TO OVERLY GENERIC RAW
LABELS BEING REPORTED BY AV VENDORS. THE 9000 MALICIOUS APPS
ARE FROM VIRUSSHARE UPLOADED BETWEEN 03/2017 AND 02/2018.
Clusters AVCLASS EUPHONY

#App # Empty-labeled # percentage #Empty-labeled # percentage

9000 3066 34.06% 1534 17.04%

TABLE II
MALWARE WITH CONTROVERSIAL LABELS. THE TABLE GIVES THE

NUMBER OF MALICIOUS APPS WHOSE TOP TWO FREQUENT FAMILIES
REPORTED BY A CLOSE NUMBER OF VENDORS BASED ON PLURALITY
VOTING USING EUPHONY. OF THE 7466 APPS WHICH HAVE FAMILY
NAMES (EXCLUDING THE 1534 EMPTY LABELED APPS IN TABLE I),

PLURALITY VOTING IS NOT CONFIDENT IN 1790 APPS SINCE THE TWO
MOST FREQUENT NAMES ARE REPORTED BY AN EQUAL NUMBER OF

VENDORS FOR EACH APP.
#Gap = # vendor reporting the most frequent name -
# vendor reporting the second most frequent name.

#Gap 0 1 2 3 4 ≥ 5 # Apps # Vendor

# App No. 1790 1389 825 594 438 2430 7466 67

labels reported by AntiVirus (AV) vendors are well-known
to be inconsistent (e.g., two vendors may report two aliased
family names for the same type of malware. solimba and
firseria are aliases) without a standard naming convention
(e.g., the conventions CARO [3] and CME [4] are not often
used by AV vendors). Although manual inspection for malware
labeling by an expert can provide an accurate solution, it is
extremely costly in practice due to the huge number of apps
being released every day.

Existing efforts. To address these issues, the recently
proposed clustering approaches, such as AVCLASS [5] and
EUPHONY [6], perform an automatic malware labeling based
on the outputs from a collection of AntiVirus vendors in
VIRUSTOTAL [7]. Due to the inconsistency among the raw
labels reported by a wide variety of AV vendors, the existing
approaches normally perform a pre-processing to extract the
family names from the raw labels based on vendor-specific
or self-defined heuristic rules [5, 6], including generic token
removal and alias token reduction. Plurality voting [8] is then
applied to disambiguate the inconsistent family names.

Limitations and our observations. These raw-label-
based approaches rely heavily on the original labels from the
AV vendors. A substantial number of weakly-labeled malware
are unable to be clustered because their raw labels are often
incomplete, inconsistent and overly generic, as reported by
incompatible commercial vendors with different capabilities
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Fig. 1. An example of malware with empty label. Only one AV vendor
(Symantec Mobile Insight) reports it as malware. The raw label
AppRisk.Generisk given by this vendor is very generic. According to
the rules of AVCLASS and EUPHONY, the raw label AppRisk.Generisk
is parsed as two generic tokens AppRisk and Generisk with no actual
family information, thus returning an empty label after their generic token
removal phases.

in the presence of rapidly evolving malware.
We define two types of weakly-labeled malware based

on the results from the state-of-the-art approaches [5, 6]
with their statistics given in Tables I and II: (1) Malware
with empty label. The tokens from the raw labels being
recognized as generic tokens (e.g., apprisk) or unable to
be parsed by the rules of AVCLASS and EUPHONY are
discarded, resulting in weakly-labeled apps without a family
name. Figure 1 illustrates an concrete example of malware
with empty label. In addition, for example, as listed in Table I,
AVCLASS and EUPHONY are unable to produce a family
name for 34.06% and 17.04% of the total 9000 apps which
were recently uploaded to VIRUSTOTAL between Mar. 2017
and Feb. 2018, resulting in 1534 weakly-labeled malware.
(2) Malware with controversial labels. The plurality voting
strategy is also hard to disambiguate inconsistency between
two family names reported by a close number of vendors
among the 7466 apps which have family names extracted
from the raw labels by EUPHONY. In figure 2, an example
of malware with controversial labels is given. Table II shows
that the top two most frequent names are reported by an
equal number of vendors for 1790 apps (24%), causing the
plurality voting to be less confident for these weakly-labeled
malware compared to their strongly-labeled counterpart with
an uncontroversial family name reported by the majority (e.g.,
80%) of all available vendors in VIRUSTOTAL [7].

Insights and challenges. A strongly-labeled malware
with a clear and unambiguous family name is easy to be
clustered. However, relying on vendors’ raw labels as the only
source of information for labeling weakly-labeled malware is
inherently partial and shallow. Apart from the reports from AV
vendors, an Android app itself is a comprehensive package
containing source code and meta-info (e.g., configuration and
resource files), which are crucial for extracting the behaviors
of an app. This information cannot be easily obtained and is
not often considered by the existing raw-label-based clustering
approaches. This is because inferring the malware family by
analyzing an app, in fact, is to develop another AV engine,
competing with dozens of available AV vendors, which is hard

Fig. 2. An example of malware with controversial labels. There are seven
AV engines report this app as malware. According to EUPHONY, five of them
are generic labels (it becomes empty labels after generic token removal by
EUPHONY). The remaining two AV engines label this malware as two different
families, i.e., dinehu by NANO-Antivirus and Emagsoftware by
Sophos AV. Thus, the family name of this app becomes controversial if the
malware labeling is purely based on the raw labels produced by AV vendors.

and likely to cause inconsistent results due to lack of ground-
truth family names and the unknown mechanisms of the
commercial AV vendors, whose capabilities and mechanisms
vary greatly with no intermediate detection results reflected
in their reports. Thus, the raw labels generated from these
vendors are the only easy-to-use and important data source
for the existing clustering approaches.

Our solution. Deep representation learning (DRL) [9] is
a new and promising branch of machine learning. DRL learns
the representation of the target data via deep architectures in a
layer-wise manner, through which the higher abstraction level
of the features is embedded in a lower unified representation,
making it easy for later classification and clustering tasks.
Recently, Hybrid Representation Learning approaches [10–
13] have significantly enhanced the existing DRL techniques
in terms of both efficiency and accuracy for training and
predicting large-scale networks by extracting heterogeneous
information in a variety of formats (e.g., texts [14] or graphs
[15]) and from multiple data sources.

Inspired by the recent advances in DRL (Deep Rep-
resentation Learning), this paper proposes ANDRE, a new
hybrid representation learning approach to clustering weakly-
labeled malware by utilizing multiple sources of data (in-
cluding raw labels from AV vendors, meta-info of apps and
results from source code analysis). ANDRE jointly learns a
hybrid representation that allows heterogeneous information
to be integrated into one neural network pipeline that distills
the discriminative features for accurate clustering. ANDRE
is based on a new Android malware network, in which
every node represents an app whose label contains its meta-
info and the raw reports from AV vendors, and every edge
denotes the similarity between two apps inferred by our
static analysis which exploits a pairwise analysis of code
similarity. Weakly-labeled malware in the network, together
with existing strongly-labeled malware, are fed into our hybrid
representation learning model to embed all the nodes on the
network into a continuous and low-dimensional space that
preserves comprehensive heterogeneous information.

The learned representation is then used for our outlier-
aware clustering to partition the weakly-labeled malware into
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Fig. 3. The overview of ANDRE. ni represents a single malicious app, and ci denotes a known family name if ni is a strongly-labeled. ci is empty if ni is
weakly-labeled for prediction purposes. wj denotes a word in the meta-info associated with a node.

known and unknown families. The malware whose malicious
behaviours are close to the existing families on the network,
are further classified using a three-layer Deep Neural Network
(DNN). The unknown malware are clustered using a standard
density-based clustering algorithm.

The key contributions of our paper are as follows:
• We present a new hybrid representation learning approach

to cluster weakly-labeled Android malware.
• We propose a new representation by successfully pre-

serving heterogeneous information, including raw labels
from AV vendors, meta-info and results from source code
analysis. This provides a compact and low-dimensional
representation for effective Android malware clustering.

• We have conducted a comprehensive evaluation using
5,416 ground-truth samples from the Drebin dataset and
9,000 malware from VIRUSSHARE, uploaded between
Mar. 2017 and Feb. 2018, consisting of 3324 weakly-
labeled malware. The results show that our approach has
comparable accuracy to the state-of-the-art approaches
in clustering ground-truths, and can effectively cluster
weakly-label malware which are unable to be clustered
by AVCLASS and EUPHONY.
The rest of the paper is structured as follows. Section II

defines the malware clustering problem and introduces the
overall framework of ANDRE. Section III details our approach
including feature extraction, network construction, representa-
tion learning and outlier-aware clustering.

II. PROBLEM DEFINITION AND FRAMEWORK OVERVIEW

A. Problem Definition

An Android malware network is represented as G =
(N,E,W,C), where the node set N = {n1, n2, . . . , n|N |}
denotes a set of Android malware (including both strongly-
and weakly-labeled apps), and an edge ei,j = (ni , nj) ∈ E
between two nodes encodes the code similarity between two

apps. Each node ni is associated with content information di
consisting of a sequence of word tokens wj ∈ di extracted
from the app’s meta-info and the raw labels produced by AV
vendors. We use W ={w1, . . . , w|W |} to denote the words of
all nodes in this network.

Every node ni has a label li ∈ C = L ∪ U , where
U denotes a set of labels with no family name for pre-
diction purposes, and L are known family names of the
strongly-labeled malware (either from ground-truths in Drebin
or downloaded from VIRUSSHARE with each app’s unique
family name reported by over 80% of all available vendors).
The numbers of ground-truth and weakly-labeled apps are
configurable in the network. If the label set L = ∅, i.e., C=U ,
the representation learning becomes purely unsupervised, and
our proposed solution is still valid but imprecise.

Our hybrid representation learning problem is formulated
as maximizing an objective function J (Equation 1), which
aims to jointly learn a k-dimensional vector Vni ∈ Rk (k is
a smaller number) for each node ni in the network, such that
nodes, which are neighbors based on the network topology
or have similar meta-info or family names are close to one
another in the latent embedding space.

J =α1

|N |∑
i=1

|N |∑
j=1

AN◦N (Vni ,Vnj )+α2

|N |∑
i=1

|W |∑
p=1

AN◦W(Vni ,Vwp)

+α3

|L|∑
q=1

|W |∑
p=1

AL◦W(Vwp
,Vcq )

(1)
where Vni

, Vwp
and Vcq denote the learned representation

vectors of the three entities, i.e., node ni, word wp and family
cq in the representation space Rk. AN◦N , AN◦W and AL◦W
are affinity functions to capture the correlation between two
entities in Rk. α1, α2 and α3 are the weights that balance
network structure, meta-info, and family information (α1 +α2
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+α3 = 1).

B. Framework Overview

Figure 3 gives the overview of our framework, which
consists of the following three major components.

1. Feature extraction. There are two steps for extracting
features. (1) Code similarity analysis. ANDRE implements a
pairwise comparison scheme to dissect the similarities between
apps. Two apps are provided as inputs and our method
yields a similarity profile for each pair. The similarity profile
summarizes similarity facts relating to similarity scores at file
level, which means calculating similarity score for two source
code files. The method builds an invertd-index to quickly
calculate the similarity score of a pair of Android source
code files. In addition, there is also a filtering heuristics to
reduce the size of the index, which reduces the number of pairs
needed to evaluate the similarity scores. A large portion of an
Android app contains standard Android and safe third party
libraries [16], which can be seen as noise in our representation
learning. Following [16], we maintain a whitelist of common
libraries to remove those library-related code segments from
the application code of a malicious app in our code similarity
analysis. Whitelist is a standard way for reducing noise in
code similarity analysis. In addition, whitelist also provides a
flexible and customized way for adding any new APIs which
are safe.

(2) Analyzing the Android manifest files. We extract
meta-info of each malware app from its manifest files, includ-
ing package names, API versions, launcher activities, permis-
sions, etc, which are associated with the corresponding node
in the network. In addition, the raw labels from the existing
AV vendors are also attached to each node in our network.
Finally, all the ground-truths (strongly-labeled) malware are
labeled with their unique family names.

2. Hybrid representation learning. An Android network
G is constructed from the code similarity analysis, where
each edge encodes the similarity between node ni and nj .
The meta-info and raw labels associated with node ni are
represented by di. Our network G contains both weakly- and
strongly-labeled (as the ground-truths) malware nodes with
configurable portions of both kinds. The Hybrid (or multi-
modal) Representation Learning (HRL) module [11, 17, 18]
jointly embeds nodes N , words W from the meta-info, and
family names L in a low-dimensional space, so that the
affinity of heterogeneous information can be captured. The
malware clustering can be accurately performed based on the
comprehensive representation space via Equation 1, through
which the following three relationships are preserved.

(1) Inter-app correlation AN◦N (Vni
,Vnj

), which cap-
tures the relationship between two apps via a neural network
based on the randomly generated sequences (random walks)
from the network structure [19], where each sequence s = n1
→ n2 → ...→ nn can be seen as a phrase in natural language
model. Given a node nj in each random walk sequence s
within a sliding window b, the neural network maximizes
the log-likelihood of observing a set of neighboring nodes
{nj−b, nj−b+1, · · · , nj+b−1, nj+b}, so that the representation

vectors Vni and Vnj are close to each other if ei,j ∈ E, i.e.,
AN◦N (Vni

,Vnj
) is maximized.

(2) Node-word correlation, which maximizes the co-
occurrence of a node and a word in the meta-info, i.e.,
maximizing the affinity value of AN◦W(Vni ,Vwp) in the
embedding space, modeling the fact that if a word wp from
the meta-info appears in node ni, then the two vectors Vni

and Vwp
are near in the representation space.

(3) Label-word correlation, which maximizes the co-
occurrence of a family name and a word in the meta-info,
i.e., maximizing AL◦W(Vwp

,Vcq ), such that the label cq and
word wp are forced to be closed to each other in the resulting
representation space.

Lastly, the above three relations are jointly learned in
a unified mode in an iterative manner. We further employ
a hierarchical softmax modeling [20] to reduce the time
complexity of our model, enabling ANDRE to scale to large
malware datasets.

3. Outlier-aware weakly-labeled malware clustering.
Given our learned hybrid representation space Rk, this step
performs prediction of a weakly-labeled app in the network
G. When predicting its family name, this malware may fall
into an existing family in L from the strongly-label malware
in G or it may be an unknown type of malware with different
behaviors which are different from any known families in L
since the unknown malware types do exist and the ground-
truth labels from strongly-labeled malware in the network
may be limited. To address this issue, ANDRE performs an
outlier-aware clustering that first employs outlier detection to
partition all the weakly-labeled malware apps into (1) inlier
apps whose behaviors are close to those of known families, and
(2) anomalous apps that unlikely belong to any existing family
in the network. Malware apps in the outlier set are clustered
using a density-based algorithm, while apps in the inlier set are
fed into a designed neural network to train the multi-classifier
for classifying these malware into known families. The neural
network consists of three layers, where the first two 1024-node
layers comprise a dropout followed by a dense layer with a
parametric rectified linear unit (ReLU) activation function in
the first two layers and the sigmoid function in the third layer,
which is also used for prediction.

III. OUR APPROACH

This section introduces the detailed approaches of AN-
DRE, including Android malware feature extraction, hy-
brid representation learning and outlier-aware clustering for
weakly-labeled malware.

A. Android Malware Feature Extraction

The aim of our feature extraction is to build the network
via code similarity analysis between two nodes (apps) and
associate each node with its meta-info extracted from its
corresponding app.

Our source code analysis and meta-data extraction are
complementary. Performing code similarity analysis on possi-
ble malicious code segments from two programs is helpful for
grouping malware apps with similar runtime behaviors. The
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meta-info of an Android app, including permissions, Android
services, activities, providers, receivers, intent filters, security
settings and referenced libraries are important building blocks
for understanding about the special characteristics of an app.
Combining code similarity and meta-info for constructing the
network provides more comprehensive understanding of app
relationships.

1) Code Similarity Analysis: Directly applying the ex-
isting code clone analysis, such as SOURCERCC [21] and
DECKARD [22] on Android apps to obtain their similarity
information is ineffective, because an Android app commonly
contains a large portion of safe library code, either by invoking
Android SDK APIs or third party libraries. The malicious
code segments which reflect the malware type may be hidden
in the application code. The safe (library) code segments
may become noisy, resulting in inaccurate identification of
code similarity between the two malware families. In addition,
some malware apps are developed by repackaging an existing
benign app [23]. By injecting two different types of malicious
code into one benign app, the two repackaged apps can be
of different malware families. Therefore, the benign code
segments from Android SDK and third-library are the major
noises, impeding analyzing code similarity to differentiate the
two malware families.

Our code similarity analysis consists of four steps. First,
all the apks are decompiled using dex2jar by converting
their original DEX files to Java files for our source code
analysis. Next, we perform a common library removal to
reduce as many noise as possible, and our token-based code
similarity analysis is performed to group apps based on file-
level similarity. We then perform fine-grained code-block-level
similarity analysis by considering existing available malicious
payloads [16, 24] to refine the similarity scores between two
apps. Lastly, an edge in the network is connected between two
apps if their similarity score is above a pre-defined threshold.

Common library removal. Previous study [25] shows
that over 60% of Android application code (in terms of low-
level bytecode instructions after compilation) is contributed
by library code. To address the noises introduced by a large
portion of library code when conducting code similarity anal-
ysis, we follow [16, 26–28] to perform a common library
removal by maintaining comprehensive whitelists of common
libraries [29] to exclude library-related code segments prior to
our similarity analysis.

Code similarity. Our code similarity analysis applies
a bag-of-words-based code clone approach [21], which has
been shown to be the most efficient strategy and has a good
precision for scaling to large code bases. Tokenization is first
performed to remove comments, white space, and terminal. A
token is extracted from each source file into Java keywords, lit-
erals, and identifiers. A string literal is split on whitespace and
operators are not included. Tokens in known malicious payload
code segments [16, 24] are given higher weights for code
similarity analysis. The source code of an Android app n is
represented as a set of code blocks (basic blocks of the control-
flow graph of a program) Source(n) = {B1, ..., Bnum} with
each block Bi denoting a bag-of-tokens Bi = {T1..., Tk}.
One token may appear multiple times in a block, therefore

each token is qualified with its occurrence frequency inside
a block, Tj = (token, frequency) to differentiate between
the frequency of words in the bag-of-words model. Formally,
given two apk files Ax and Ay , a similarity function f , and a
threshold θ, the aim is to find all the code block pairs Ax.B
and Ay .B s.t f(Ax.B,Ay.B) ≥ [θ ·max(|Ax.B|, |Ay.B|)].

There are several choices of similarity function for mea-
suring the similarity between two code pieces, we use the
Jaccard index, or Jaccard similarity, which is defined as the
size of intersection divided by the size of the union of two
sets. The similarity of two code blocks Bx and By is defined
as follows:

J(Bx, By) =
|Bx ∩By|
|Bx ∪By|

=
|Bx ∩By|

|Bx|+ |By| − |Bx ∩By|
(2)

2) Meta-Info Extraction: Our meta-info is mainly ex-
tracted from AndroidManifest.xml, which is the key
file at the root of an Android project. It provides all
the essential information of an app to the building tools,
Android OS, and app stores. Once an app is launched,
AndroidManifest.xml is the first file to be consulted by
the Android system, providing the first-hand information to
understand the characteristics and security settings of the app.

The detailed content of a manifest file is illustrated
in Table III, including (1) permissions, which are re-
sponsible for protecting the application from accessing any
protected parts, (2) instrumentation classes, which
provide profiling and other dynamic monitoring informa-
tion, (3) application-level Android APIs that an
app is going to use, (4) four types of Android compo-
nents: activity, service, content provider, and
broadcast receiver. The names of an app’s compo-
nents may help identify the known malware components.
(5) hardware component, which is helpful to identify
malicious behaviors reflected by access requests to spe-
cific device components, e.g., touchscreen, camera, or sen-
sors. (6) intent and intent filter, which can be
used to trigger malicious activities, thus it is also neces-
sary to be collected, and (7) package name, version,
referenced libraries.

B. Android Network Representation Learning (ANDRE)

This section presents our malware representation learning
which jointly exploits the network structure, the meta-info,
and vendors’ labels to embed heterogeneous information into
a latent feature space for each node in the network.

The process of ANDRE consists of two steps:
• Network node (app) sequence generation with random

walks. This step randomly generates a set of walks on the
Android malware network, where each sequence starts
with a node ni and randomly jumps to other nodes at
each iteration. The random walk sequences capture the
topological relationships between nodes.

• Neural network architectures. This step encodes each
node (app) into a vector representation by preserving
multi-source information from (1) an android sequence
which captures the inter-app correlation, (2) the meta-
info which represents the node-word correlation, and
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TABLE III
META-DATA INFORMATION EXTRACTED FROM AN ANDROID APP

Type Description
Permission Permissions constitute an important security feature in Android apps. A user has to grant them to install

applications or access particularly sensitive data.
Instrumentation Declares the code used to test this package or other package directive components. A manifest can contain

zero or more of this element.
Application Contains the root node of the application-level component declaration in the package and contains global

and default properties in the application, such as tags, icons, themes, necessary permissions, and more.
Activity Activity is the primary Android component used to interact with users.
Service A service is a component that can run any time in the background.
Content provider A content provider is a component that is used to manage persistent data and publish it to other

applications.
Broadcast receiver The receiver enables the application to obtain data changes or operations that occur even if it is not

running.
Intent/intent-filter The IntentFilter is formed by declaring the Intent values supported by the specified set of components.
Action The intent action supported by the component.
Category Intent Category supported by the component.
Type Intent data MIME type supported by the component.
Schema Intent data URI scheme supported by the component.
Authority Intent data URI authority supported by the component.
Path Intent data URI path supported by the component.

Fig. 4. The DEEPWALK (Skip-Gram) method vs our proposed hybrid learning
method. The DEEPWALK approach learns the network representation based
only on the network structure. Our hybrid method couples two neural networks
to learn the representation from three parties (i.e., node structure, meta-info,
and label information from strongly-labeled malware) to capture the inter-
node, node-word, and label-word relationships. The input, projection, and
output indicate the input layer, hidden layer, and output layer of a neural
network model.

(3) the label information which records the label-word
correlation. Lastly, a hybrid representation model is built
by jointly learning the above three correlations.

1) Model Architecture: The proposed joint neural net-
work model is illustrated on the right of Figure 4. It has key
properties:

Inter-node correlation. Assuming that neighbor nodes
are highly correlated and statistically dependent on each other,
the upper layer of ANDRE exploits the network structure from
a set of generated random walk sequences.

Node-word correlations. The lower layer of ANDRE
captures the relations between nodes ni ∈ N and the meta-
info, which is considered as a document with a set of words
wj ∈W . If a word is used to describe a node, the node and
the word are correlated.

Label-word correlation. We use the labels ci ∈ C from
strongly-labeled malware (a ground-truth) and its correspond-
ing node ni∈N as input and learn the label vector and word
vector simultaneously, so that the label-word correlation can

be well captured to improve the learning model.
Joint training model. We integrate these two layers by

the node ni in the model. The three kinds of correlations are
jointly learned in a unified way, so that they can benefit each
other and ultimately converge to a steady stage.

2) Model Details: Inter-node correlation. To capture the
inter-node correlation, we assume that the nodes with linkages
(edges) in a network are statistically dependent on each other.
This idea is inspired by DEEPWALK [19], which extends the
SKIP-GRAM [30] algorithm.

The SKIP-GRAM model [30] is a language model that
learns the word embedding by exploiting word orders in a
sequence and assuming that words close to one another are
statistically more related. Due to its simplicity and efficiency,
The SKIP-GRAM model is widely used in many NLP tasks.
Given a word wm, Skip-Gram maximizes the log-likelihood
of wm’s surrounding words within a certain window b.

J1 =

T∑
m=1

logP(wm−b : wm+b|wm) (3)

where b is the window size and wm−b : wm+b is a word
sequence in a window, which excludes the word wm itself.
The probability P(wm−b : wm+b|wm) is defined as:∏

−b≤j≤b,j 6=0

P(wm+j |wm) (4)

Equation (4) makes the assumption that the words in
a window wm−b : wm+b are independent of each other.
P(wm+j |wm) is defined as:

P(wm+j |wm) =
exp(V>wm

V′

wm+j
)∑W

w=1 exp(V>wm
V′

w)
(5)

where Vw and V′

w are the input vector and output vector of
w. Once the training is finished, the input vector Vw is used
as the final representation of word w.
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DEEPWALK [19] extends SKIP-GRAM and employs the
neural language model to learn the embedding for a network.
Specifically, DEEPWALK generates a set of random walk se-
quences S based on the network structure. Each random walk
s = ni−b → ... ni ... → ni+b is regarded as a sentence with
a window of size b in the natural language model, and each
node ni is considered as a word. Then DEEPWALK employs
the SKIP-GRAM algorithm [30] on the node sequences to
obtain a latent representation for each node. This is achieved
by solving an objective function which maximizes the log-
likelihood of the observed nodes on a target node ni for all
random sequences s ∈ S.

J2 =

|N |∑
i=1

∑
s∈S

logP(ni−b : ni+b|ni)

=

N∑
i=1

∑
s∈S

∑
−b≤j≤b,j 6=0

logP(ni+j |ni)

(6)

The DEEPWALK neural network is illustrated on the left
of Figure 4. It exploits the network structure for learning
representations without considering other information (such
as meta-info and label-info), which is exploited by our model.

Node-word correlation. To enable joint learning together
with inter-node correlations, ANDRE captures the node-word
correlations as depicted in the right lower panel in Figure 4,
which applies a DOC2VEC style model built on top of SKIP-
GRAM and CBOW (Continuous Bag-Of-Words) [30], with the
aim of learning the distributed representation for a document.
In our setting, for a node ni, we learn the input node vector
Vni

and output word vector V′

wj
based on meta-info di =

[w0, w1, . . . , w|di|] associated with ni using a sliding window
of size b for repeatedly picking a sequence of words centering
wj within di.

Label-word correlation We enable semi-supervising by
leveraging uncontroversial family names from strongly-labeled
malware, benefiting from the knowledge of existing AV
vendors. By applying DOC2VEC, we use the ground-truth
label information together with the meta-info as inputs and
simultaneously learn the input label vector Vci of node ni
and output word vector V′wj

based on the meta-info associated
with ni, modeling the correlation between the nodes’ labels
and the nodes’ meta-info.

Since the first correlation is captured via DEEPWALK and
the last two correlations are modeled via DOC2VEC, it can
intuitively be seen that our hybrid learning couples these two
modelings using two panels, as illustrated in Figure 4. The
node ni shared by both panels indicates that ni is influenced
by the two models to produce a hybrid representation which
preserves the heterogeneous information and the relations
between the three parties (e.g., node sequences from random
walks, word sequences from meta-info, and label information).

Joint learning model. Given a network G consisting of
nodes N = {n1, n2, . . . , n|N | }, our hybrid learning model in
Equation 7 implements the pre-defined objective function in
Equation 1 by considering the three aforementioned correla-
tions. The aim is to jointly learn the following three affinity
functions with random walks S generated for node ni, and a

sliding window for a sequence of nodes or words.

J = (1−α)
|N |∑
i=1

∑
s∈S

∑
−b≤j≤b,j 6=0

AN◦N (ni+j , ni)

+ α

|N |∑
i=1

∑
−b≤j≤b

AN◦W(wj , ni)+α

|L|∑
i=1

∑
−b≤j≤b

AL◦W(wj , ci)

(7)
where α is the weight that balances the network structure,
meta-info, and label information. b is the window size of a
node or a word sequence, and wj indicates the j-th word in a
contextual window. Given Equation 7, the first term computes
the affinity function A(ni+j , ni), and the log-likelihood prob-
ability of observing surrounding nodes given node ni, using
the log-likelihood softmax functions as Equation 8:

AN◦N (ni+j , ni) = logP(ni+j |ni) = log
exp(V>ni

V′

ni+j
)∑|N |

x=1 exp(V>ni
V′

nx
)

(8)
where Vnx

and V′

nx
are the input and output vector repre-

sentations of node nx. |N | is the number of the nodes in the
network. The probability of observing contextual words wi−b
: wi+b given current node ni is:

AN◦W(wj , ni) = logP(wj |ni) = log
exp(V>ni

V′

wj
)∑|W |

x=1 exp(V>ni
V′

wx
)
(9)

where V′

wj
is the output representation of word wj , and |W | is

the number of distinct words on the whole network. Similarly,
the probability of observing the words given a class label ci
is then defined as:

AL◦W(wj , ci) = logP(wj |ci) = log
exp(V>ciV

′

wj
)∑|W |

x=1 exp(V>ciV
′
wx

)
(10)

Equations 9 and 10 reflect the correlation between nodes
and meta-info, and the correlation between meta-info and
label information, so that ANDRE jointly learns the output
representation vector V′

wj
of word wj , which will propagate

back to influence the input representation of ni ∈ N in the
network as also illustrated in Figure 4. As a result, the node
representation (i.e., the input vectors of nodes) is enhanced by
both the meta-info and the label information.

3) Training Hybrid Learning Model: We train our model
Equation 7 using stochastic gradient ascent, which is a stan-
dard solution for training. However, computing the gradients
in Equations 8, 9 and 10 is expensive, as the computation
is proportional to the number of nodes and words in the
network G. To address this issue, we resort to hierarchical
softmax [11, 20], which reduces the time complexity to
O(|W |log(W ) +Nlog(N)).

The hierarchical model in our algorithm uses two binary
trees, one with distinct nodes as leaves, and another with
distinct words and labels as leaves. The trees are built using
HUFFMAN algorithm, so that each vertex in a tree has a binary
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code, in which more frequent nodes (or words) have shorter
codes. There is a unique path from the root to each leaf in
a tree. The interval vertices of the trees are represented as
real-valued vectors with the same dimension as the leaves.
Instead of enumerating all nodes in Equation 7 in each gradient
step, we only need to evaluate the path from the root to the
corresponding leaf in the Huffman tree. Suppose the path to the
leaf node ni is a sequence of vertices (l0, l1, ..., lh) reaching
ni, where lh is ni and l0 is the root node in the Huffman tree.
The probability is computed as follows:

P(ni+j |ni) =
h∏

t=1

P(lt|ni) (11)

P(lt|ni) = σ(V>ni
V

′

lt) (12)

where P(lt|ni) is a binary classifier with σ(.) as the sigmoid
function, and V′

lt
is the representation of node lt, which is the

parent of ni in the Huffman tree. Thus, the time complexity
is reduced to O(NlogN). Likewise, we can use hierarchical
softmax technique [14] to compute the words and labels in
Equations 9 and 10.

C. Outlier-aware Android Malware Clustering

Outlier detection (a.k.a. anomaly detection [31]) detects
rare samples that do not meet the expected patterns or behav-
iors of the majority of samples in the dataset. The technique
is essentially a density-based outlier detection algorithm that
constructs a graph of the data using nearest neighbors, instead
of calculating local densities. A malware sample whose ma-
licious behaviours are closed to those of known families in
the network G will be classified into an existing family in L,
otherwise, it will be identified as an unknown type of malware.
This is due to the fact that the unknown malware types do exist
and the number of ground-truth labels from strongly-labeled
malware in the network may always be limited.

Finally, the outlier set of the collected malware apps is
clustered to produce unknown family clusters, while the inlier
set is fed into the designed Multi-layer Perceptron (MLP)
classifier (Supervised Neural Network) to train the multi-
classification model, thereby classifying these malware into
known families.

IV. EVALUATION

The objective of our evaluation is to show that ANDRE
is effective in clustering weakly-labeled malware that cannot
be clustered by AVCLASS and EUPHONY, while achieving
comparable accuracy with the state-of-the-art tools evaluated
using the ground-truth samples in the Drebin dataset.

A. Experimental Setup and Implementation

To evaluate the effectiveness of ANDRE, 5,416 ground-
truth malware samples from the Drebin dataset [32] and 9,000
recent malware from VIRUSSHARE [33] (uploaded between
March 2017 and October 2018) were used. The Android
apks were first decompiled to Java files using dex2jar for
our source code analysis. Note that there are 5560 malware

samples in the Drebin dataset, but only 5416 samples were
used since the remaining 144 samples could not be correctly
decompiled by dex2jar. Out of the 9,000 recently collected
malware from VIRUSSHARE, 4314 are smaller than 5MB,
1969 are between 5MB and 10MB, and 2717 are greater than
10MB.

To build the edge relations between nodes (apps) of the
network, we adopted the bag-of-words model [21] to perform
code similarity analysis for all pairs of malware apps after
excluding their library-related code, following [16] by using
a self-maintained whitelist containing common third-party
libraries [29] and the available malicious payload [16, 24].
An edge is connected between two nodes if their similarity
score is above 0.8 (with the maximum score 1 using Jaccard
similarity in Equation 2 after normalization).

For each app in the network, we use the ANDROID ASSET
PACKAGING TOOL [34] to extract meta-info of an app. The
raw labels reported by Anti-Virus vendors were obtained by
uploading an app or its hash value to VIRUSTOTAL [7], an
online malware scanning service which integrates a set of
existing commercial Antivirus vendors, such as Comodo and
Kaspersky. Given VIRUSTOTAL’s reports, we can identify
weakly-labeled malware, including malware with no label
(1534) and malware with controversial family names (1790)
by using EUPHONY. The results are shown in Table I and
Table II.

We implemented DEEPWALK, DOC2VEC and our hybrid
learning models to embed the constructed network using
Python. Our outlier detection approach was implemented
based on TOPOLOGICAL ANOMALY DETECTION (TAD) [35].
To classify the inlier known families, we applied and com-
pared different classification algorithms, including the neural
network classifier MULTI-LAYER PERCEPTRON (MLP) [36]
and traditional classification algorithms SVM [37], KNN [38],
DSTREE [39] and RDFOREST [40] whose implementations are
available from Scikit-learn library [41].

B. Evaluation Methodology

We evaluate the effectiveness of our approach from
the following four aspects: (1) comparing ANDRE with the
state-of-the-art tools using Drebin’s ground-truth samples (a
typical dataset widely used by existing clustering tools) to
show the effectiveness and applicability of our representation
learning approach for clustering all types of malware (not
limited to weakly-labeled malware) with good precision, (2)
comparing ANDRE against different baseline settings (i.e.,
different representation learning models including DEEPWALK
and DOC2VEC) to show whether our hybrid learning model
can obtain a promising level of accuracy by preserving het-
erogeneous information, (3) comparing different classification
models given the learned representation, and (4) validating our
outlier-aware malware clustering results with comprehensive
case studies to show ANDRE’s effectiveness in clustering
weakly-labeled malware.
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Fig. 5. Performance comparison with respect to different learning models. • represents the DEEPWALK method, • represents the DOC2VEC method, •
represents our ANDRE method. In the three subgraphs, the horizontal axis represents the ratio of the training set, which is 10% to 70%. The vertical axes in
the three subgraphs represent the fractions of accuracy, macro and micro score respectively.

TABLE IV
COMPARISON WITH AVCLASS [5] AND EUPHONY [6]. THE ACCURACY,

F1 AND RECALL DATA ARE DIRECTLY FROM THEIR PAPERS

Method Accuracy F1 Score Recall

AVCLASS 95.2% 93.9% 92.5%
EUPHONY 95.0% 95.5% 96.1%

ANDRE 93.1% 93.3% 93.1%

C. Comparing with the state-of-the-art tools and different
baseline settings

Comparing with non-learning approaches. We compare
ANDRE with the two state-of-the-art tools AVCLASS and
EUPHONY by using ground-truth samples from Drebin to show
ANDRE’s applicability and effectiveness in clustering mal-
ware which are not weakly-labeled. Our hybrid representation
learning approach randomly selects 70% of malware as the
training set and 30% of samples in the dataset for testing. Table
IV shows that ANDRE achieves 93.1% for accuracy, 93.3%
for F1 score and 93.1% for recall, which are comparable or
slightly less than the results of the two tools (reported in their
papers [5] and [6]).

Note that we do not claim that our learning-based ap-
proach is superior to the non-machine-learning methods in
clustering malware apps that are not weakly-labeled. This is
because plurality voting does work well for strongly-labeled
samples with uncontroversial raw labels from AV vendors after
label preprocessing, such as generic token removal and alias
detection [5]. Rather, our aim is to show that our approach
successfully preserves necessary information for effective clus-
tering and can achieve comparable accuracy with the existing
tools for ground-truth samples. Due to the nature of the
learning-based algorithm, its performance depends on several
factors, such as ratio selection of the training and testing
sets, clustering algorithm, network structure (from the code
similarity analysis) and feature attentions (importance of dif-
ferent meta-information). The following subsections conduct
comprehensive evaluations and discussions of these factors.

Comparing with different representation learning mod-
els. To demonstrate that our hybrid network representation
learning is able to achieve better performance, we com-
pare ANDRE with the mainstream learning methods, i.e.,
DOC2VEC [14] (a paragraph vectors algorithm for embedding
texts and phrases in a distributed vector using neural networks)

TABLE V
COMPARISON WITH DIFFERENT CLASSIFIERS

Classifiers Accuracy F1 Score Speed(Seconds)
KNN 0.8677 0.4468 225
SVM 0.8295 0.2580 256

Random Forest 0.4911 0.0491 224
Decision Tree 0.4031 0.0357 230
MLP Classifier 0.9126 0.6079 356

and DEEPWALK [19] (which applies language modeling to
capture the topological relationships between nodes in a social
network).

Figure 5 shows our comparison results of the three
approaches. By preserving the network structure (node-node
correlation) and the co-occurrence relations between apps
and their corresponding meta-info (node-word and label-word
correlations), our approach performs better than the individual
learning methods, i.e., DEEPWALK and DOC2VEC. In general,
the accuracy values and F1 scores of the three approaches
increase when the sizes of the training sets increase. The trend
becomes stable and gradually reaches a convergence when the
training set occupies around 70% of the total samples. ANDRE
achieves up to 93% in accuracy, while DEEPWALK and
DOC2VEC can only achieve 89.5% and 70.1% respectively.

Comparisons using different multi-class classifiers.
Given the learned representation, we compare the classifica-
tion performance when applying MULTI-LAYER PERCEPTRON
(MLP), a deep neural network classifier and conventional
classification algorithms, including SVM (separating hyper-
plane in the feature space to maximize the interval between
positive and negative samples), KNN (distance measurement
between different eigenvalues), RANDOM FOREST (integrating
multiple trees through Ensemble Learning) and DECISION
TREE (mapping relationships between object attributes and
object values through a tree structure).

To fairly compare the results of different classifiers, we
keep their underlying network embeddings unchanged (i.e.,
by associating all meta-info for each node, using the same
network structure and same representation space with the di-
mension K=400). As shown in Table V, the accuracy of MLP
classifier exceeds that of all other methods, demonstrating
the recent advances in deep learning that enable the precise
capture of input-output data relations correlations, i.e., the
input features are connected to the neurons of the hidden layer,
and the neurons of the hidden layer are then linked with the
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TABLE VI
PERFORMANCE COMPARISON REGARDING DIFFERENT K , I.E., THE

NUMBER OF DIMENSIONS IN THE REPRESENTATION SPACE.

Number of K Accuracy Macro-F1 Score Micro-F1 Score
5 0.7230 0.2360 0.7230
10 0.8505 0.4661 0.8505
30 0.9022 0.5851 0.9022
50 0.9083 0.6115 0.9083

100 0.9151 0.6027 0.9151
200 0.9138 0.6189 0.9138
300 0.9169 0.5927 0.9169
400 0.9175 0.6282 0.9157

Fig. 6. Performance comparison (permissions vs all meta-info)

neurons of the input layer. The multi-layer perceptron layer
is fully associated (the full connection means that any single
neuron in the upper layer is connected to all neurons in the
next layer).

Comparisons when selecting K-dimensional represen-
tation space. Table VI shows the results when the number of
representation dimensions K are varied from 5 to 400 in our
hybrid representation learning. There are noticeable increases
for accuracy, macro-F1 score and micro-F1 score when K
is increased from 5 to 50. The subsequent differences are
negligible especially when K is greater than 100.

All meta-info vs. permission information. In this exper-
iment, we choose the representation dimension K = 400 for
our MLP classifier. This experiment aims to show that of all
the meta-info components, permission information makes the
major contribution to the accuracy of our clustering results.
All other components also contribute to the improvement in
accuracy. As illustrated in Figure IV-C, the mean accuracy
is 90% when only permission strings were used for our
network embedding. The accuracy increases to 93.4% when
all elements of meta-info are used. The improvement shows
that the complete meta-info includes not only permission
information, but also many other types of useful information,
such as activity, intent, service, etc., which represents much
richer text information for capturing the correlations of apps
whose behaviors are similar.

D. Result analysis for weakly-labeled malware
When clustering the weakly-labeled malware from

VIRUSSHARE, we apply our outlier-aware clustering on top
of the hybrid representation learned from the constructed
malware network, which consists of 5676 strongly-labeled and
3324 weakly-labeled samples.

Our outlier detection identifies that 3242 malware apps
are close to existing malware families, falling into the inlier

TABLE VII
RESULTS OF OUTLIERS AND INLIERS OF WEAKLY-LABELED MALWARE

INCLUDING MALWARE WITH EMPTY LABELS AND CONTROVERSIAL
LABELS (I.E., THE TOP TWO MOST FREQUENT FAMILY NAMES REPORTED

BY AN EQUAL NUMBER OF VENDORS USING EUPHONY).

#Weakly-labeled #Malware in outlier #Malware in inlier
malware

Empty- Controversial- Empty- Controversial-
labels labels labels labels

# 3324 35 47 1499 1743

zone, and 82 apps have behaviors that are unlikely to corre-
spond to those of the known families, thereby falling into the
outlier zone.

Table VII gives the inliers and outliers of the 3324
weakly-labeled malware. The number of outlier samples is
relatively small, comprising only 2.5%. A major portion of the
weakly-labeled malware are detected as inliers. For the 1534
empty-labeled malware (Table I), 35 and 1449 are outliers and
inliers respectively. Of the 1790 malware (Table II) who have
controversial family names (i.e., the top two most frequent
family names reported by an equal number of vendors using
EUPHONY), 47 and 1743 are outliers and inliers respectively.

Figure 7 shows the outlier results with 58 outlier (un-
known) families clustered by anomaly detection. 47 out of 58
outliers contain only 1 malware sample, and the remaining
11 include more than 1 candidate. The largest outlier cluster
contains 9 samples.

For inliers, there are 60 families out of the 176 known
families. The distribution is uneven. The malware apps in
the top 10 families occupy the majority (88.26%) of all the
weakly-labeled malware. Regarding malware in the inlier,
we observe that our method is not limited by the number
of malware samples in the training set. For example, the
plankton family ranks first in terms of the prediction result
in the Drebin dataset, whereas it only ranks as the third largest
family. Similarly, Vdloader ranks fifth according to our
experiment result, while it only ranks 167th in the Drebin
dataset with only 16 samples inside.

Due to the lack of ground-truths for weakly-labeled
malware, manual checking is the best and only way to validate
the results [24]. Following [16], we have also conducted
manual inspections (costing two people for four weeks) of the
malware inside the same cluster to check the similarity of their
malicious behaviors (by running and looking into the source
code and meta-info of the apps) to validate ANDRE’s clustering
results. All the malware in outliers were checked since all
the outlier clusters have very small sizes. For inlier families,
we randomly checked 3 apps for each family if the family
contains more than 3 apps, otherwise, all the apps within the
family were checked. This process includes running the app
(in a virtual Android environment) and checking the meta-
info, vendors’ raw labels and malicious code (decompiled by
dex2jar) to understand their familial behaviors. We will
select and illustrate in detail the representative apps within 3
different clusters in the inlier set in the following subsection.
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Fig. 7. Weakly-labeled malware detected as outliers (unknown families in the
network). There are 58 outlier clusters; their corresponding malware numbers
listed on the right-hand side.

E. Case studies for weakly labeled malware in inlier

This section conducts in-depth case studies to demon-
strate representative inlier weakly-labeled malware clustered
by ANDRE. Since every malware has a unique hash value
(MD5), we will refer to their hash values in the following
studies.

Inlier case Study 1 - YzchBgserv family. Malware
“327a0387a3114ab4e4d18a81ad9fca8b”, which is a malware
with an empty label being processed by EUPHONY, is clus-
tered into the YzchBgserv family by ANDRE based on our
hybrid representation. The app has similar malicious behaviors
to other apps in YzchBgserv, which is essentially a type of
ransomware. The app runs as a background thread which is
automatically triggered when the app starts. It first fetches
a target service provider number (component info) from a
remote server and then sends an SMS message (permission
info) to the number, incurring a charge on the user’s phone
bill. The SMS messages (code info) sent will always start with
a string “YZHC”.

Inlier case study 2 – DroidKungFu family. Malware
“00307253cd9ad3d1120df85beb473801” which is unable to
be clustered by EUPHONY, is clustered into the DroidKungFu
family by ANDRE. We manually checked the app whereas
observing that such malware infects a self-defined service
and receiver (code-info), which can be automatically launched
without user interaction. Once the service gets started, it will
collect three kinds of user information on the infected device,
including the IMEI number, phone model, and the Android OS
version (meta-info). These behaviors are typical symptoms of
being infected by the Droidkungfu family.

Inlier case Study 3 – Fakeupdates family. Malware
“005054fdf485fdbbada461bd7824cfb2”, whose top two fam-
ilies are reported by an equal number of vendors (“fake-
updates”:1, “igexin”:1). After manual validation, we estab-
lished that the plankton.device.android.service
package is its source of malice. By looking at several other
peers within the same cluster, we find that they all share this
package (code-info) with an identical code segment to start the
malicious service (i.e., AndroidMDKService. initMDK ()).

F. Case study for weakly-labeled malware in outlier

We also performed a manual inspection of outliers whose
malicious behaviours are different from the known families
in the network. As per our discussions in Section III-C, the
results of our outlier detection often rely on the availability
of the existing known families in the network, which may
not cover all emerging malware families. The following case
studies report the outlier clusters, inside which an app does
not conduct behaviors that are similar to those of the existing
ground-truths (e.g., Drebin).

Outlier-1 case study. This cluster, containing 9 mal-
ware, is the largest of all outlier clusters. Our manual
inspection reveals that the apps in this cluster share the
same risky permission combinations (9 suspicious permis-
sions in total, as shown in Table VIII) to trigger similar
malicious behaviors, which induce users to click an inbound
link address to install a trojan package that modifies the
app’s configuration files. For example, the malware candidate
“ee93c3eefb81151eca7346db74d613c” has the top two family
names “autoins” and “letang” both reported by 2 vendors using
EUPHONY. These two family names are new and do not appear
in our ground-truths.

Outlier-2 case study. This cluster contains 4 malware
sharing similar malicious behaviors as triada [42], a recent
malware family, which does not belong to any of the existing
families in the network. The malware in this cluster first col-
lects sensitive information including Android OS versions and
the list of installed applications. Then it sends this information
to the command and control (C&C) server [43].

Outlier-3 case study. This cluster also contains 4 mal-
ware in total. The malice of the malware in this clus-
ter starts from their in-app advertisements. In particular,
when a user clicks a pre-defined advertisement link, the
malicious program will display as many ads as possi-
ble to the user. These malware also have a risky com-
bination of permissions using CHANGE WIFI STATE and
CHANGE NETWORK STATE whose intention is to switch
the Wifi and network status respectively after deriving their
current status.

V. RELATED WORK

Android malware detection. A number of solutions to Android
malware detection [26, 32, 44–46] exist that gives a binary
decision to identify whether or not an app is malicious.
DREBIN [32] proposes a malware detection approach through
a two-class SVM by performing a lightweight static analysis

TABLE VIII
SUSPICIOUS PERMISSIONS USED BY APPS IN OUTLIER-1

Permission Strings
ACCESS COARSE LOCATION

ACCESS FINE LOCATION
ACCESS FINE LOCATION

INTERNET
READ PHONE STATE

SYSTEM ALERT WINDOW
WRITE EXTERNAL STORAGE

ACCESS DOWNLOAD MANAGER
DOWNLOAD WITHOUT NOTIFICATION

WRITE SETTINGS
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Fig. 8. Weakly-labeled malware detected as inliers (known families in the network). The horizontal axis in the figure shows the family names of all malware
in the inlier clusters. The vertical axis indicates the log value of the number of apps in the corresponding families.

to extract API calls and manifest files as the input features.
MaMaDroid [47] leverages sequences of abstracted method
calls to create a probabilistic representation of program be-
haviors in the form of Markov chains. DroidAPIMiner [44]
mines API features for malware detection in Android using a
lightweight KNN-based binary classification. HINDroid [48]
proposes an Android malware detection approach using hetero-
geneous information network. Kim et al. [49] present a deep-
learning-based approach to malware detection by utilizing
the features extracted from an Android app. Unlike malware
detection, malware clustering or labeling (such as ANDRE)
performs fine-grained familial identification, which in turn can
be used to build references datasets for supervised detection
and classification [5].
Android malware classification and clustering. Droid-
Miner [50] proposes a two-level behavioral graph model
and extracts sensitive paths to represent malicious behavioral
patterns for malware classification. DroidSIFT [51] classifies
Android malware through dependency graphs. The approach
excludes common third-party libraries to improve precision
by using a set of benign subgraphs to remove the common
subgraphs of the whole dependency graph. DroidCat [52]
proposes a dynamic malware detection and classification ap-
proach that complements existing static program analyses by
supporting dynamic features such as reflections and callbacks.
SMART [53] presents a malware classification approach based
on semantic clones using deterministic symbolic automation.

Malware clustering mainly works in an unsupervised or
semi-supervised scenario to cluster unlabeled samples. Most
existing works on Android malware clustering rely on the
raw labels reported by AntiVirus vendors [32]. However, the
lack of common naming standards results in inconsistencies
among the reports from different vendors [54]. To address this
problem, AVCLASS [5] processes the raw label from vendors
by performing alias detection and generic token removal based
on vendor-specific rules to produce a single label per sample.
EUPHONY further enhances its accuracy by using self-defined
extraction rules to distinguish fields of a raw label. Consensus
between different vendors is then reached through plurality
voting. Li et al. [16] present a malicious payload mining
method for clustering malware by considering the source code

information of an app. However, the approach relies on a
pre-labeling phase similar to AVCLASS and weakly-labeled
samples are not included in their clustering process. This paper
addresses the limitations of previous approaches to clustering
weakly-labeled malware using a new representation learning
approach that preserves code similarity, meta-info and the raw
labels of vendors.
Representation Learning. Representation learning takes sam-
ples and their corresponding raw features as input and pro-
duces a unified and low-dimensional representation, which
is particularly useful for later machine-learning tasks, such
as classification and clustering. Many existing methods
perform representation learning based on a single source
of information, such as natural languages (word2vec [30]
and doc2vec [14]) and graph structures (DeepWalk [19],
Node2vec [55], and LINE [56]).

HRL model has recently emerged as a promising branch
of representation learning, demonstrating its power in embed-
ding heterogeneous information into a unified low dimensional
space. The resulting representation is particularly useful for
many complicated machine-learning tasks. This paper is the
first work that leverages the recent advances in HRL to per-
form comprehensive Android malware clustering by preserv-
ing multi-source heterogeneous information by jointly learning
three correlations: node sequences, node content, and node
labels. This comprehensive representation learning approach is
shown as a promising solution for clustering Android malware.

VI. DISCUSSIONS AND LIMITATIONS

First, like all learning-based approach, our approach
requires samples for training our model for precise clustering
of weakly-labeled malware. The more samples we have, the
more precise and robust our clustering model will be.

Second, this approach relies on a whitelist [29] to exclude
common Android application third-party libraries, which may
potentially lead to false positives or negatives, if the whitelist
is incomplete for emerging APIs. Nevertheless, whitelist is still
a standard way for reducing noise in code similarity analysis.
In addition, whitelist also provides a flexible way for adding
any new APIs which are safe.
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Third, regarding the calculation of the similarity distance
between two Android applications, our method uses Jaccard
for measuring the similarity distances, which achieves good
results for code analysis. However, other methods, such as
Cosine [57], can also be used as an alternative approach to
similarity analysis.

Fourth, ANDRE aims to develop a representation learn-
ing framework for clustering weakly-labeled malware. When
comparing the similarity between Android apps, our method
does not focus on obfuscation or deobfuscation, which may
lead to imprecise results if malicious apps are obfuscated.
Investigating obfuscated app is an orthogonal but an interesting
future topic.

Finally, when calculating the similarity between two apps,
we made a pairwise comparison for all Android malware.
Applying parallel computing or enable similarity comparison
between apps using multiple threads can reduce the code
analysis overhead and save comparison time.

VII. CONCLUSION

This paper proposes ANDRE, a new approach to Android
malware clustering that utilizes heterogeneous information
including code similarity, the raw labels of AV vendors and
meta-data information to jointly learn an effective represen-
tation that embeds all malware in the network into a low-
dimensional and compact hybrid feature space for effectively
clustering weakly-labeled malware. The experimental results
show that ANDRE achieves comparable accuracy to the state-
of-the-art approaches for clustering ground-truth samples and
that ANDRE can effectively cluster weakly-labeled malware
which cannot be clustered by those approaches.
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