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Abstract—Unmanned Aerial Vehicles (UAVs) are fast becoming
a popular choice in a variety of applications in wireless commu-
nication systems. UAV-mounted base stations (UAV-BSs) are an
effective and cost-efficient solution for providing wireless connec-
tivity where fixed infrastructure is not available or destroyed.
We present a method of using UAV-BSs to provide coverage
to mobile users in a fixed area. We propose an algorithm for
predicting the user locations based on their mobility data and
clustering the predicted locations, so that one UAV-BS would
provide coverage to one user cluster. The proposed method, hence
is similar to the UAV-BSs following the users to keep them under
the coverage region. Simulation results show that the proposed
method increases the user coverage by 47%-72% and increases
the spectral efficiency by 43%-55% depending on the scenario
and in addition, reduces the number of UAV-BSs required to
provide coverage.

Index Terms—UAV, Mobile Users, Mobile Network Coverage,
Spectral Efficiency

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have opened doors to

many potential applications in wireless communication sys-

tems, due to their many desirable features, such as high

manoeuvrability, cost-efficiency and ease of deployment. In

particular, UAV-mounted mobile base stations (UAV-BSs) can

be deployed to provide wireless connectivity in areas of urgent

need, such as battlefields or disaster scenes [1]. One of the

greatest advantages of this approach is that the UAV-BSs can

be sent to a specific target location immediately without having

to deploy any infrastructure [2]. Unlike terrestrial base stations

(BSs), even those mounted on ground vehicles, UAV-BSs can

be deployed in any location and move along any trajectory

constrained only by their aeronautical characteristics [1].

A number of studies related to UAV-BSs have been carried

out. The authors of [4] propose the optimal altitude for a

UAV-BS to provide maximum radio coverage on ground. The

authors of [1] propose an algorithm called ‘Spiral method’ for

optimizing the placement of UAV-BSs to provide coverage

to fixed ground users. Sharma et. al propose a solution for

optimal deployment of multiple drones between the macro

and small cell tiers for improving coverage and capacity of

the entire system [5]. Yet in most of these scenarios the

mobility of UAV-BSs is not considered, hovering UAV-BSs

are deployed instead of flying UAV-BSs, the UAV-BS is set

to hover without dynamically changing its position. In [2] the
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Fig. 1: UAV-BS providing coverage to ground users

authors consider dynamically repositioning the UAV-BSs to

improve the performance. Yet, they do not take users’ mobility

into account. The authors of [3] consider user movement and

aim to find the optimal placement for UAV-BS that aids the

ground network. Hence, the scenario of mobile ground users

being provided network coverage solely by UAV-BSs has not

been widely researched. In this paper we consider the mobility

of users and the manoeuvrability of UAV-BSs as well. We

propose an algorithm where UAV-BSs follow the ground users

based on their mobility patterns, so that the number of ground

users covered by UAV-BSs is increased.

In this paper we consider a disaster struck area where

coverage from terrestrial BSs is not available. UAV-BSs that

are backhaul-connected via satellite links (We assume the

backhaul has enough capacity to support all the active users),

are used to provide wireless coverage to ground users who

move within the considered area (Figure 1). We predict the

future locations of the mobile users based on their current

mobility data and cluster them based on their distances to each

other, in a way that one UAV-BS would provide coverage to

one user cluster. The user location prediction, user clustering

and UAV-BS movement algorithms are presented later in this

paper.

The rest of the paper is structured as below. Section II

describes the system model and problem formulation, Section

III presents the proposed adaptive network algorithm, Section

IV gives the simulation results and Section V concludes the

paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a square area of width l, with k mobile users

who are denoted by K = {1, 2, ..., k}. Their initial locations

are distributed uniformly and at random. These initial locations



are known and are given by {sk}k∈K, where sk ∈ IR2×1 is the

two dimensional (2D) coordinates of the k-th mobile user on

the horizontal plane. The k mobile users randomly move in the

considered area according to the Random Waypoint (RWP)

model [6].

UAV-BSs fly in the considered area aiming to provide

coverage to the maximum number of mobile users. We assume

that the UAVs fly in a fixed altitude of h. According to

[7], 10 m is the optimal height for positioning a small cell

BS. Lowering the antenna below 10 m would cause possible

coverage issues and an antenna height higher than 10 m would

increase interference with neighbouring cells [8]. Therefore,

we consider a fixed height for the UAV-BSs and consider their

movements restricted to a 2D plane.

We further assume that the transmit power of the UAV-BS

is fixed (Ptx) and the maximum allowed path loss (PLmax) at

the receiver for reliable communication is given. For ground

users, the path loss threshold can be considered a coverage

disk of radius R, as all receivers inside this coverage disk

would have a path loss less than or equal to PLmax [4].

We consider a probabilistic line of sight (LOS) model and

use the probability of having a line of sight between user and

the UAV-BS, proposed in [4], which is stated below.

PLOS(h, r) =
1

1 + a exp(−b[θ − a])
(1)

where PLOS is the probability of LOS connection, h is

the relative flying altitude of the UAV-BS, r is the distance

between the ground user and the UAV’s location projected on

ground, a and b are statistical parameters that depend on the

environment. θ is arctan(h/r) in degrees. Based on the basic

theories of probability, the probability of having a non line of

sight (NLOS) connection is PNLOS(h, r) = 1− PLOS(h, r).
We assume that the Doppler effect due to the mobility of

the UAV-BS is compensated for based on existing techniques

(eg. frequency synchronization using a phase-locked loop) [9]

as done in [10].

The path loss in dB is as below,

η(d) = A+ 10γlog10(d) (2)

where η is the path loss and A is the path loss at reference

distance (1 m), γ is the path loss exponent. η, A and γ would

take different values for LOS and NLOS communication

scenarios. A and γ have been obtained from field tests in [11].

d =
√
h2 + r2, is the distance between the UAV-BS and the

ground user.

The received power of the k-th user (Sk(d)) can be calcu-

lated using (3) below.

Sk(d) = Ptx10
−η(d)

10 (3)

The spectral efficiency of the k-th user (μk) can be calcu-

lated as below. N0 is the user equipment noise power.

μk = log2

(
1 +

Sk(d)

N0

)
(4)

The spectral efficiency of a user considering both LOS and

NLOS communication scenarios can be derived as below [2].

μk = PLOS(h, r) log2

(
1 +

SLOS
k (d)

N0

)

+ PNLOS(h, r) log2

(
1 +

SNLOS
k (d)

N0

) (5)

where symbols with LOS indicate the values for LOS

communication scenario and NLOS indicate values for NLOS

communication scenario.

We divide the entire simulation time into steps of Δt.
We assume the initial locations of the users are known and

they remain static in the known locations until the UAV-BSs

initially position themselves to provide coverage to the users.

We cluster the users such that one UAV-BS would provide

coverage to one cluster of users. Once the initial coverage is

provided, the mobile users start moving randomly following

the RWP model. We assume, once a user is under the coverage

zone of a UAV-BS, the UAV is able to collect velocity informa-

tion of the user. Based on the collected velocity information,

we predict the locations of the users at next Δt. Based on the

user location predictions, we repeat the clustering and UAV

placement process throughout the entire simulation time.

In order to minimize cost, we aim to minimize the number

of UAVs deployed. For this, minimal number of user clusters

should be formed, in a way that one cluster would be covered

by one UAV-BS. This reduces to the fact that one user cluster

should be covered by a circle with radius R. (It should be

noted that there is the possibility of some users being covered

by more than one UAV-BS. In such scenarios, inter-cell in-

terference should be addressed by proper channel assignment,

UAV-BS power management etc. [1]).

If U = {1, 2, ..., u} is the number of UAV-BS to be deployed

(hence the number of user clusters to be formed), the problem

can be formulated as suggested in [1].

P (1) :

{
minimize |U|
s.t duk ≤ R

(6)

where |U | is the cardinality of set U. duk is the distance

between the mobile user k and the position of the closest UAV-

BS u projected on ground. R is the coverage radius of a UAV-

BS. The above constraint makes sure that all the users are

under the coverage of at least one UAV-BS.

P(1), also known as the Geometric Disk Cover (GDC)

problem [12] is NP hard in general [1]. The p-centre problem,

which is closely related to GDC has the objective of finding p

centres (UAV-BS locations) to cover all K nodes. According

to [1], p-centre problem is in general difficult to solve and

requires high computational complexity.

In this paper, we propose a heuristic, computationally low-

cost solution to P(1), by clustering the users based on the

distance to their neighbours. The clustering algorithm will be

described in detail later in the paper.



III. PROPOSED ADAPTIVE NETWORK ALGORITHM

We propose movement strategies for UAV-BSs to provide

coverage to a maximum number of users despite the users’

mobility. We propose

• Predicting user movement and locations

• Clustering users based on the proximity of their predicted

locations

• Moving UAV-BSs to provide coverage to the clusters, in

a way flying energy is low

A. User Movement Prediction

We assume the initial locations of the users are known and

the users remain static in the initial locations until the UAV-

BSs initially position themselves to provide coverage to all

users. Once the UAV-BSs are positioned the users randomly

move within the considered area based on the RWP method.

RWP is the most commonly used mobility model in the

ad hoc networking research community [13]. In this model

a mobile node moves in a convex domain along a zigzag

path, at each turning point the node chooses a new destination

randomly and then moves toward it at a constant speed [6]. In

the context of this paper, the mobile users pause for a random

time at each turning point before choosing a new destination.

We assume that the UAVs are able to acquire information

about the velocities of the users who are in their coverage

zone. We divide the entire simulation time into steps of Δt.
If the selected Δt is small enough, based on RWP method,

we can assume that if a user is moving in a specific velocity,

during the next Δt, the user would still be moving in the same

velocity or would be static in the current position.

If the user is static, based on RWP, in the next Δt the user

would still be static in the same position or would start moving

in a random direction. Due to the randomness of the user’s

movement, predicting an area instead of a point where the user

would possibly be, would increase the accuracy. Based on the

preferred accuracy, the range can be calculated as below.

Y =

⎧⎪⎨
⎪⎩

(x− x′)2 + (y − y′)2 = (VmaxΔt)2, z = 100

(x− x′)2 + (y − y′)2 = (Vmax−Vmin

100 zΔt)2,

0 < z < 100

(7)

where Y is the area of possible positions of the user. (x’,y’) is

the current position of the static user and if V is the possible

speed of the user V ∈ [Vmin, Vmax], z is the percentage of

preferred accuracy.

B. User Clustering

Our objective is to cluster the users, first based on the initial

locations then based on the predicted positions in a way that

one UAV-BS would be able to provide coverage to one cluster.

This reduces to one user cluster being able to be covered by

a disk of radius R. Most of the standard clustering algorithms

require the knowledge of the number of clusters before the

formation. In the coverage scenario considered, it would be

advantageous to keep the number of UAV-BS open and not

limited, as one key objective would be providing coverage to

the most number of mobile users.
After the users start moving based on RWP model, the

user clustering is based on predicted locations which can be

calculated as described in the previous subsection. However,

for simplicity we assume that if a user is moving, during the

next Δt the user would be moving in the same velocity and

if the user is static, the user would be static during the next

Δt. Simulation results presented later in this paper show that

this assumption does not affect the outcome considerably.

Algorithm 1: Algorithm for user clustering

Input: Mobile user set K with known/predicted locations

{sk}k∈K, R

Output: Cluster centres C
Initialisation :temp ← K; cluster no = 0

1: while temp �= Ø do
2: first node = temp(1)

3: cluster(cluster no).add(temp(1))

4: C(cluster no) = temp(1)

5: in.add(temp(1))

6: for i = 2 to length(temp) do
7: dist = distance (first node, temp(i))

8: if (dist ≤ 2×R) then
9: cluster(cluster no).add(temp(i))

10: (r,c) = minBoundCircle(cluster(cluster no))

11: if (r ≤ R) then
12: C(cluster no) = c

13: in.add(temp(i))

14: else
15: cluster(cluster no).remove(temp(i))

16: end if
17: end if
18: end for
19: remove(temp,in)

20: cluster no = cluster no + 1

21: empty(in)

22: end while
23: return C

We cluster the ground users based on Algorithm 1. The

function distance() would return the distance between the two

points passed as arguments to the function, minBoundCircle()
would return the radius (r) and the centre (c) of the smallest

circle encircling the points passed to the function, remove()
would remove the second subset from the first, passed as

arguments. The function empty() would empty the array passed

as an argument to it.
We cluster the users and their predicted locations based on

Algorithm 1, every Δt for the entire period of simulation time.

C. UAV-BS Movement
Due to the distribution of the users based on their mobility,

the number of clusters formed differs. The number of UAV-

BSs required to provide coverage changes accordingly within

the span of simulation time. Because of the dynamic nature

of the problem, we consider two scenarios



• The available number of UAV-BSs is not restricted. We

assume there are sufficient UAV-BSs to provide coverage

to all the users

• The available number of UAV-BSs is limited. In this

scenario, in order to provide coverage to the maximum

number of users, we prioritize the clusters that have

higher number of users

Algorithm 2: Algorithm for updating UAV-BS locations

Input: UAV-BS set with current locations {su(t = t)}u∈U,

cluster centres C(t = t + Δt), available UAVs

Output: {su(t = t+Δt)}u∈U

Initialisation :to cover ← C; clear UAV ← su(t = t);
cluster no = length(C)

1: if (cluster no ≤ available UAV s) then
2: su(t = t+Δt) = position UAVs(clear UAV,to cover)

3: else
4: diff = cluster no - available UAVs

5: to cover = removeSmallest(to cover,diff)

6: position UAVs(clear UAV,to cover)

7: end if
8: return {su(t = t+Δt)}

Algorithm 2 is used for placing UAV-BSs. With Algorithm

2 we pick the UAV-BS closest to the next predicted cluster

centre and move it to the centre of the specific cluster. This

way we aim to reduce the energy spent on flying the UAVs,

as this reduces the flying distance of each UAV-BS. The

position UAV s procedure is shown in Algorithm 3. The

function removeSmallest makes sure that the clusters with the

smallest number of users are removed from consideration and

the number of available UAV-BSs and the number of con-

sidered user clusters match. The remove function behaves the

same way as explained before. The procedure position UAVs()
is shown in Algorithm 3.

Algorithm 3: position UAVs procedure

Input: set of cluster centres to be covered to cover, set of

available UAV-BSs clear UAV
Output: {su(t = t+Δt)}

Initialisation :temp cover ← to cover;

free UAV ← clear UAV
1: while temp cover �= Ø do
2: j = getClosestUAV(temp cover(1),free UAV)

3: {sj}j∈U (t = t+Δt) = temp cover(1)

4: remove (free UAV, j)

5: remove (temp cover, temp cover(1))

6: end while
7: return {su(t = t+Δt)}

IV. SIMULATION RESULTS

We tested the effectiveness of the proposed method based

on the below criteria,

• Increase in user coverage

• Increase in spectral efficiency

• Reduction in number of deployed idle UAV-BSs (UAV-

BSs that are deployed but do not serve any users)

• Reduction in number of UAV-BSs required

Due to the lack of similar studies in literature, where the

mobility of the UAV-BSs and the users is considered, we

compare the proposed method (in terms of user coverage,

number of deployed idle UAV-BSs and spectral efficiency)

with the baseline scenario of having a fixed number of UAV-

BSs hovering in fixed locations covering the entire region

considered. In the baseline scenario, the considered area is

divided into equal cells and a UAV-BS is positioned at the

centre of each cell.

Thus number of cells (n), hence the number of UAV-BSs

required in the baseline scenario is given by

n =
⌊ l

2×R

⌋2
(8)

where l is the length of the square area to be covered, R is

the coverage radius of the UAV-BS.

We evaluated the algorithm based on the two scenarios of

UAV-BS availability - when the number of available UAV-

BSs is not limited and when the number of available UAV-

BSs is limited. In the limited UAV-BSs number scenario, we

assumed the number of available UAV-BSs to be the same as

the number of UAV-BSs required in the baseline scenario of

hovering UAV-BSs in fixed locations (given by (8)).

User coverage improvement was calculated as follows,

where UCI is the user coverage improvement, Ximp is the

average number of users covered using the proposed algorithm,

Xfix is the average number of users covered in the baseline

scenario.

UCI =
(Ximp −Xfix)× 100

Xfix

(9)

In the proposed method, due to the errors in user location

predictions, there is the possibility of deploying UAV-BSs

that might not serve any users in reality. In the baseline

scenario, due to the random movements and distribution of

users, there is the possibility of having deployed UAV-BSs that

do not provide coverage to any ground user. We compare the

percentage of the deployed idle UAV-BSs in the two scenarios

as a measurement of effectiveness.

In addition, we test the improvement of the spectral effi-

ciency of the users based on the equation below.

SEI =
(μimp − μfix)× 100

μfix
(10)

where SEI is the improvement in spectral efficiency, μimp

and μfix represent the average spectral efficiency with the

proposed algorithm and the baseline scenario.

One objective of the proposed method is to minimize the

number of UAV-BSs required to provide coverage to ground

users. To access this objective, we compared the proposed

method with the ‘Spiral method’ proposed in [1]. Since the

Spiral method is proposed for static users, the comparison is



TABLE I: Simulation Parameters

Symbol Description Value

l Area Width 3.5 km

k Number of Mobile Users 30,50

f Working Frequency 2 GHz

Ptx UAV-BS Transmitting Power 24 dBm

A Reference Distance Path Loss
(LOS/NLOS)

41.1/33

γ
Path Loss Exponent
(LOS/NLOS)

2.09/3.75

N0 UE Noise Power
-104 dBm
[14]

a, b Environmental Parameters for
Urban Area

11.95, 0.136

T Simulation Time 100 s

Δt Time Slot 0.1 s

h UAV-BS Hovering Altitude 10 m

R Coverage Zone Radius 0.5 km
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made for the number of UAV-BSs required in the proposed

method (with the number of UAV-BSs not limited), before the

ground users start their movement based on RWP.

All results are based on simulations run in MATLAB. Each

scenario has been run for 1000 iterations of 100 s simulation

time. Unless otherwise mentioned the parameter values used

for simulations are as shown in Table I.

The results shown by the graphs in Figure 2, Figure 3 and

Figure 4 are summarized in Table II. As seen in Figure 2, the
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proposed method increases the user coverage by a considerable

margin in both flexible number of UAV-BSs and limited

number of UAV-BSs scenarios. With the proposed method, we

aim to increase the number of covered users by adapting the

network based on the user movements, as opposed to keeping

the UAV-BSs stationed at fixed locations. This increases the

percentage of covered users in each time interval.

Unlike stationing the UAV-BSs positioned at fixed locations,

in the proposed method we propose deploying UAV-BSs based

on the user demand. Thus, unlike the traditional scenario of

positioning the UAV-BSs at fixed locations, in the proposed

method UAV-BSs not having any users under their coverage

zone is relatively low. This reduces the deployment of idle

UAV-BSs (UAV-BSs that do not serve any users) as seen in

Figure 3. The comparison made is Figure 3 is for the scenario

when the number of UAV-BSs is not limited.

Since with the proposed method, the UAV-BSs follow the

movements of the users, the distance between the users and

the UAV-BSs reduces resulting in a considerable spectral

efficiency. As Figure 4 shows, the spectral efficiency gain can

increase up to an average of 55% depending on the number

of users and the availability of the UAV-BSs.

Figure 5 shows the number of UAV-BSs required to provide

coverage to 30 ground users using the proposed method and

‘Spiral method’ [1]. The average number of required UAV-

BSs is shown against l/R ratio. It can be seen that the number

of required UAV-BSs is relatively low when employing the

proposed method. The simulation results show an average



TABLE II: Simulation Results

Scenario
Average Im-
provement or
Value

Standard
Deviation

User Coverage
30
users

Flexible
number

72.3% 5.3

Limited
number

58.2% 4.8

50
users

Flexible
number

75.2% 4.2

Limited
number

47.4% 3.7

Idle UAV-BS
(Value)

30
users

Proposed
method

1.9% 0.4

Baseline
method

15.5% 1.4

50
users

Proposed
method

1.5% 0.2

Baseline
method

4.5% 0.7

Spectral Effi-
ciency

30
users

Flexible
number

52.7% 5.1

Limited
number

42.2% 4.6

50
users

Flexible
number

55.3% 4.1

Limited
number

42.7% 3.7

decrease of 7% in comparison to the Spiral method.

V. CONCLUSION

UAV-BSs are a highly effective solution for providing

wireless network coverage to users where coverage from a

terrestrial BS is not available. In this paper, we propose a

method of deploying UAV-BSs to provide coverage to mobile

users. We aim to increase the number of users under coverage,

by predicting and clustering the locations of the users. We

exploit the manoeuvrability of the UAV-BSs and direct them

along the user movements. The proposed method increases

the user coverage by 47-72% depending on the number of

ground users and UAV-BS availability while increasing the

spectral efficiency by 43 - 55% depending on the scenario.

The method proposed in this paper reduces the number of

UAV-BSs required to provide coverage to ground users by an

average of 7% in comparison to the baseline solution.
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