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Abstract  24 

Recent developed sequencing techniques have resulted in a new and unprecedented way to 25 

study biological wastewater treatment, in which most organisms are uncultivable. This review 26 

provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a 27 

critical assessment of the microbial community in biological reactor and biofouling layer in a 28 

membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer 29 

microbial growth conditions and metabolisms of microorganisms present in MBRs at the time 30 

of sampling. These data shed new insight to two fundamental questions about a microbial 31 

community in the MBR process namely the microbial composition (who are they?) and the 32 

functions of each specific microbial assemblage (what are their function?). The results to date 33 

also highlight the complexity of the microbial community growing on MBRs. Environmental 34 

conditions are dynamic and diverse, and can influence the diversity and structural dynamics of 35 

any given microbial community for wastewater treatment. The benefits of understanding the 36 

structure of microbial communities on three major aspects of the MBR process (i.e. nutrient 37 

removal, biofouling control, and micropollutant removal) were symmetrically delineated. This 38 

review also indicates that the deployment of microbial community analysis for a practical 39 

engineering context, in terms of process design and system optimization, can be further 40 

realized.  41 

Keywords: Membrane bioreactor; Microbial community; Microbial ecology; Maker-gene 42 

sequencing; Whole-genome sequencing; wastewater treatment. 43 
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Highlight 45 

• Molecular techniques can reveal microbial community composition and functionalities 46 

• Insight to MBR performance is achieved through microbial community analysis 47 

• Considerations (sample & data analysis) in microbial community studies are reviewed 48 

• Possible directions (e.g. full-scale) to enhance engineering outcomes are suggested  49 

 50 
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1. Introduction  54 

Since the inception of modern sanitation, large scale municipal wastewater treatment has 55 

relied almost exclusively on the aerobic activated sludge (AS) process (Sheik et al., 2014). In 56 

a simplistic representation of the AS process, microorganisms assimilate and convert dissolved 57 

organic matters and nutrients in wastewater to insoluble body cells (i.e. biomass or activated 58 

sludge) and simple gases such as CO2 and N2. The activated sludge can be removed from the 59 

treated wastewater by gravity in a conventional clarifier. In practice, several variations of the 60 

AS process with a combination of different biological treatment conditions including 61 

anaerobic, anoxic and aerobic can be applied to promote the growth and functions of different 62 

microbial communities to achieve overall performance (i.e. division of functionality to enhance 63 

efficiency).  64 

A recent alternative to AS treatment is membrane bioreactors (MBR) which utilizes a 65 

membrane process for biomass separation instead the conventional clarifier (Xiao et al., 2019). 66 

Indeed, the MBR process is a hybrid of a biological and physical liquid-solid separation 67 

processes (Xia et al., 2010; Nguyen et al., 2012a; Wolff et al., 2018). Compared to the AS 68 

process, MBR has a much lower physical footprint and can produce higher and more reliable 69 

effluent quality (Xiao et al., 2019; Nguyen et al., 2012b). With the decrease in membrane cost, 70 

new and more stringent regulations on effluent quality, demand for water recycling, many 71 

MBR plants have recently been commissioned around the world especially for large scale water 72 

reuse applications (Xiao et al., 2019). In principle, MBR performance is governed by both 73 

physical and biological processes (Xia et al., 2010; Nguyen et al., 2012a). While the physical 74 

process can be readily controlled by regulating operational parameters  and membrane 75 

selection, the performance of biological process relies on the microbial community in the 76 

bioreactor (Xiao et al., 2019). Microbial community is also subjected to changes in operation 77 

conditions (e. g. dissolved oxygen, sludge retention time and hydraulic retention time, 78 
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temperature). Thus, understanding the structure, functions and dynamics of microbial 79 

communities involved in the biological process has been the objective of many studies recently 80 

(Wolff et al., 2018; Wen et al., 2018; Inaba et al., 2018; Zhu et al., 2017). 81 

Analysis of the microbial community structure, functions and dynamics in the biological 82 

process has been possible since the emergence of high-throughput sequencing techniques. 83 

Bypassing the reliance on cultivable microbes, high-throughput sequencing techniques provide 84 

details of microbial assemblages in any given activated sludge samples. Sequencing techniques 85 

can be used to target specific research questions. Marker-gene based approach provides 86 

microbial profile (i.e. who are they?) while whole-genome approach create a functional profile 87 

of a microbial community (i.e. what do they do?) based on the functional genes in the genomes 88 

of the different microbes. Both approaches have recently been used to investigate the microbial 89 

communities in biological treatment process. A review of the literature on the identity and 90 

potential metabolic capabilities of microorganisms is imperative for a better design, control 91 

and understanding of bioreactors. The broad range of microorganisms present in biological 92 

reactor across different operational conditions has been revealed; however, the process design 93 

and control have yet to be revised accordingly to this new knowledge. 94 

This paper reviews the state-of-the-art knowledge on the microbial community of the 95 

biological reactor obtained from modern molecular methods. Molecular methods including 96 

both marker-gene and whole-genome sequencing are critically discussed with a focus on their 97 

outcomes, considerations and limitations. Recent achievement of microbial community profile 98 

and their functions are provided. Potential new strategies resulting from a better understanding 99 

of the microbial community to improve MBR performance (i.e. three dominant performances: 100 

nutrient removal, biofouling and micropollutant removal) is also discussed. This critical review 101 

expects to guide future studies of the MBR microbiome. 102 

2. Contemporary Molecular Methods for Microbial Community Analysis 103 
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2.1 Microbial community analysis 104 

Two key aims of molecular biology analysis are to determine components of microbial 105 

assemblages (who are they?) and identify their functions (what do they do?) as outlined in Fig 106 

1. These two aims are achieved through different molecular methodological approaches, 107 

namely marker-gene, whole-genome sequencing and other –omics methods (i.e., 108 

metatranscriptomics, metaproteomics). These approaches begin with microbial sampling then 109 

follow by either DNA, RNA or proteins extraction. These two initial steps are crucial as their 110 

results will largely influence subsequent steps. The extracted molecules can be subjected to 111 

different steps to target each of the key aims of molecular biology analysis (i.e. profiling the 112 

microbes or identifying their functions) (Fig 1). In the context of wastewater treatment, 113 

monitoring the biological activity of the microbial community is essential to ensure a high 114 

quality of treated water. Marker-gene sequencing allows for the identification of the microbial 115 

community present in the MBR, metagenomics is used to describe the putative functions of the 116 

microbial community, while metatranscriptomics and metaproteomics can highlight the active 117 

metabolic pathways and/or the active microorganisms at time of sampling (Fig. 1). 118 

Metatranscriptomics and metaproteomics are powerful methods to infer if the microbes are 119 

performing as expected. Metaproteomic studies of MBR communities were performed to 120 

understand fouling (Zhou et al., 2015) or the effect of substrate stress (Salerno et al., 2019). 121 

Metatranscriptomics have recently been used in combination with metagenomics to analysis 122 

MBR microbial community dynamics and interactions (Yang et al., 2019). However, these 123 

methods are still in their infancy and only a few studies have applied them in the context of 124 

MBR, making it hard to source sufficient literature for a thorough review. In addition, 125 

metatranscriptomics and metaproteomics are currently limited by a lack of quantitative 126 

approaches and incomplete coverage of reference databases impairing transcripts and proteins 127 

identification, meaning that metagenomics often need to be conducted alongside. We foresee 128 
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that these limitations will be overcome in the coming decades as tailored search databases are 129 

being constructed. For the above-mentioned reasons, this review focuses mostly on marker-130 

gene and whole-genome sequencing for the study of microbial diversity and putative functions 131 

in MBR.  132 

 133 
Figure 1. Different sequencing approaches to reveal bioreactor microbial community structure 134 

and functions.  135 

 136 

2.1.1 Marker-gene based approach: Who are they?  137 

Marker-gene based approach, also known as targeted and amplicon sequencing, utilizes 138 

universal marker genes to determine components of microbial assemblages (Fig 1). The most 139 

common marker genes are ribosomal RNA genes such as 16S for bacteria and archaea and 18S 140 

genes for eukaryotes (Brown et al., 2018). Depending on the sample and organisms of interest, 141 
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custom marker genes encoding proteins can also be used such as cytochrome b (cob) for 142 

dinoflagellates (Smith et al., 2017) and heat shock proteins such as hsp60 for specific bacterial 143 

taxa (Sakamoto & Ohkuma, 2010). In the context of wastewater treatment, markers targeting 144 

specific functional genes such as the ammonia monooxygenase (amoA) gene or the nitrogenase 145 

reductase (nifH) gene have been used to study the genetic diversity of ammonia-oxidizing 146 

bacteria (AOB) and species of the Frankia genus, respectively (Wang et al., 2014; Rodriguez 147 

et al., 2016). 148 

Given the length limitations of short-read sequencing technologies, e.g., Illumina 149 

sequencing, often only a particular region of the chosen marker gene is targeted. The choice of 150 

marker gene and the gene region used are of crucial importance and can have a significant 151 

impact on the study outcome (Větrovský & Baldrian, 2013). Generally, marker genes have to 152 

be universal single-copy genes as copy-number variations inflate the apparent abundance of 153 

some taxa in comparison to others (Větrovský & Baldrian, 2013).  154 

A key-concept of microbial community analysis is the operational taxonomic unit (OTU). 155 

An OTU represents a cluster of sequences that show certain sequence similarity and that are 156 

assumed to originate from the same taxonomic group of organisms (Fig 1). Konstantinidis and 157 

Tiedje (2005) showed intra-species 16S gene sequence similarity to be ≥ 97% for most 158 

bacterial taxa. Based on these results a similarity cut-off of 97% was adopted by the community 159 

to cluster 16S sequences into OTUs (Konstantinidis & Tiedje, 2005). Although similarity 160 

clustering can minimize potential errors from sequencing errors and intra-species variation, 161 

recent studies have highlighted the importance of fine-scale community structure that can be 162 

obscured when merging sequences at a threshold of 97% ≤ similarity < 100 % (Edgar, 2018; 163 

Callahan et al., 2017). Therefore, zero-radius/zero-difference OTUs (zOTUs), also called 164 

amplicon or exact sequence variants, are increasingly used as the lowest taxonomic rank in 165 
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microbial community analyses. An zOTU is defined as clusters of sequences with 100% 166 

similarity, i.e., each unique marker-gene sequence in a data set represents a separate zOTU. 167 

Amplicon sequencing is a universal process (Fig. 2). For any marker gene and taxonomic 168 

ranking level, polymerase-chain-reaction (PCR) primers are used to bind to a specific region 169 

of the marker gene for PCR amplification.  The amplified marker genes are then sequenced 170 

using either short-read sequencing technologies such as Illumina’s sequencing by synthesis 171 

method or recently available long-read methods such as nanopore sequencing. Illumina short-172 

reads are the de-facto standard in microbial community analysis due to the higher accuracy of 173 

the sequencing reads and more advanced analysis tools. Long-read techniques have also been 174 

increasingly used for community analysis. With future development and the potential 175 

advantages of such as the ability to sequence the complete marker gene in contrast to only a 176 

particular region, further application of long-read techniques for amplicon sequencing can be 177 

expected. 178 

 179 
Figure 2. A basic flowchart of marker-gene sequencing approach 180 

 181 

A large number of tools are available for amplicon sequence analysis. Two of the most 182 

common bioinformatics pipelines are Qiime (Caporaso et al., 2010) and Mothur (Schloss et al., 183 

2009). Both Qiime and Mothur provide scripts for quality control and trimming of sequencing 184 

reads, OTU/zOTU picking, as well as methods for taxonomic classification in a user-friendly 185 

way. Taxonomic classification is still a challenge for many microbial community studies, 186 

especially when using custom marker genes or eukaryotic microbes such as protists and marine 187 

fungi (Nilsson et al., 2019; Andreakis et al., 2015) due to the lack of well-curated databases of 188 
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known sequences and taxonomies. There are several approaches for taxonomic classification 189 

including machine learning algorithms such as Naïve Bayes and BLAST-based methods 190 

(Bokulich et al., 2018). However, appropriate approach is often based on marker genes, the 191 

sampled environments as well as user preferences.  192 

The marker-gene based approach is mainly used to determine the microbial community 193 

composition of a sample. However, in some cases, this approach has been used to infer 194 

metabolic capabilities from a community profile, e.g., for bacterial assemblages (Aßhauer et 195 

al., 2015; Langille et al., 2013), based on completely sequenced genomes of closely related 196 

bacteria, on the assumption that closely related species share similar functional profile. Whole 197 

genome sequencing is a better approach when determining the function of specific bacteria 198 

within a community. 199 

2.1.2 Whole Genome Sequencing: What are their functions?  200 

The principal objectives of metagenomic approach in microbial ecology are to (i) determine 201 

the metabolic and functional potential of the community of interest and (ii) to connect genes 202 

and their metabolic functions with specific microbial taxa (Fig 1). In contrast to marker-gene 203 

approaches, metagenome sequencing provides a snapshot of the complete genomic information 204 

of a sample at a particular sampling time and not just a single gene.  205 

The bioinformatic pipelines for metagenome data analysis are less standardized compare to 206 

amplicom data. Commonly, metagenome analysis workflows including i) steps for quality-207 

control of raw reads; ii) assembly of reads into longer continuous DNA fragments (contigs) 208 

using metagenome assemblers (Nurk et al., 2017; Liu et al., 2015); iii) a binning step to cluster 209 

contigs that originate from the same organism into contigs bins and metagenome assembled 210 

genomes (MAGs) (Lu et al., 2016; Kang et al., 2015); iv) subsequent gene prediction (Stanke 211 

& Morgenstern, 2005; Hyatt et al., 2010) and taxonomic classification (Kahlke & Ralph, 2019; 212 

Darling et al., 2014; Ounit et al., 2015). There are several pipelines to automate these steps 213 
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(Uritskiy et al., 2018; Tamames & Puente-Sánchez, 2019) for integrating state-of-the-art tools 214 

into single metagenome analysis pipelines. However, many bioinformaticians choose a 215 

combination of custom tools and software based on study design, research question and 216 

personal preferences. Downstream statistical and differential analysis can also be performed 217 

using specific software such as the R package DESeq and the metagenome analysis tool 218 

STAMP (Anders & Huber, 2010; Parks et al., 2014).  219 

The strength of metagenome experiments lies in its ability to link functional profiles of 220 

samples with specific taxonomic groups. Some bioinformatic pipelines, however, estimate 221 

abundance-based community profiles similar to those provided by marker-gene based 222 

approaches (Ounit et al., 2015; Wood & Salzberg, 2014). Although these tools do not use the 223 

wealth of information in a metagenome sample, they provide valuable insight into the sample’s 224 

microbial community and can achieve results comparable to those of amplicon sequencing 225 

studies.   226 

2.2 Key considerations and limitations 227 

In the context of wastewater treatment, whole genome sequencing has been carried out in 228 

an attempt to elucidate which species are involved in organic matter, ammonium, nitrogen and 229 

phosphorus removal (Siezen & Galardini, 2008; Ma et al., 2016; Nguyen et al., 2019a), as well 230 

as assessing the pathogenic potential of multi-drug resistant bacteria (Mahfouz et al., 2018). 231 

Amplicon sequencing, on the other hand, is commonly used to describe microbial community 232 

structure and monitor the abundance of key organisms. However, these methods have 233 

limitations and precautions have to be taken at every step (sampling, DNA extraction and data 234 

analysis) of the process to minimize mistakes when dealing with AS and wastewater samples. 235 

Some limitations encountered at each of these three steps are discussed below. 236 
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2.2.1 Sampling 237 

Spatial scaling of microbial biodiversity needs to be taken into consideration when sampling 238 

wastewater for microbial community analysis as environmental heterogeneity can result in 239 

spatial patterns of microbial diversity (Green & Bohannan, 2006). In the context of wastewater 240 

treatment, microbes are subjected to diverse and transient environmental conditions (e.g., 241 

variation in dissolved oxygen and nutrient content). Thus, a sample taken at a specific time can 242 

only represent a snap shot of the microbial community (Hu et al., 2012). The need for sample 243 

replications is crucial, as the sampled environment is heterogeneous. For instance, the simple 244 

absence of mixing in a bioreactor can result in stratification of the microbial distribution 245 

(Nguyen et al., 2019b). To assess species diversity and make sure the species richness of a 246 

sampling site was adequately sampled, ecologists have developed tools, such as diversity 247 

indexes and rarefaction curves (de Vargas et al., 2015; Gotelli & Colwell, 2001). These 248 

methods should be used when sampling heterogeneous sites such as wastewater treatment 249 

bioreactors to ensure meaningful comparison of datasets and proper estimation of low-250 

abundance species. When studying the impact of disturbances and unsteady environmental 251 

conditions on microbial diversity, time series sampling is important as it provides information 252 

on the dynamic of the community. In a recent study, Perez et al. (2019) performed 16S rRNA 253 

amplicon sequencing and metagenomics over a period of 3 years in a full-scale municipal 254 

activated sludge wastewater treatment plant (WWTP) to monitor the changes in bacterial 255 

populations overtime and understand the adaptive response of microbiomes to disturbances due 256 

to short-term plant shutdowns. These types of results contribute to the development of 257 

predictive models and help guide engineering and WWTP management practices. 258 

 259 
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2.2.2 DNA extraction 260 

The DNA extraction step is also a source of potential errors. Indeed, it is well established 261 

that DNA extraction kits commonly used to extract genomic DNA from wastewater samples 262 

may be contaminated with bacterial DNA. Up to 181 contaminating microbes genera have been 263 

identified in common DNA extraction kits (Glassing et al., 2016). Many of these contaminating 264 

microbes are commonly found in the human gut and the environment, thus, it may not be 265 

possible to distinguish them from those in the sample. These contaminating microbes may 266 

affect the interpretation of low-abundant bacteria in the samples. Glassing et al. (2016) 267 

recommend careful scrutinisation of any unusual and unexpected results to distinguish between 268 

new findings and possible contamination. Extraction blanks (as no template) are recommended 269 

to be processed together with the samples and alongside proper controls to limit 270 

misinterpretations (Glassing et al., 2016) . 271 

Sequencing experiments require high-quality DNA samples (or RNA in the case of 272 

transcriptomics) with very low to no nucleic acids degradation. The quality of DNA is often 273 

controlled using spectrophotometry (Nanodrop), fluorimetry (PicoGreen or Qubit) and gel 274 

electrophoretic methods (Bioanalyser). When using spectrophotometry, the A260:A280 and 275 

A260:A230 ratios should be higher than 1.8. Since DNA absorbs at 260 nm, ratios lower than 276 

1.8 indicate contamination of the DNA sample with proteins (absorb at 280 nm) or chemicals 277 

(e.g., EDTA, phenol, carbohydrates absorb near 230 nm) used in the extraction procedure. 278 

DNA Integrity Number (DIN) or Genomic DNA Quality Score (GQS) can be calculated from 279 

the size distribution of the DNA sample using electrophoretic methods, they provide a robust 280 

method for DNA quality, with most experiments using samples with DIN>7. 281 

2.2.3 Batch effects, PCR artefacts and sequencing errors 282 

Another group of errors that can have significant effects on the outcomes of sequencing studies 283 

is those inherent to the technology used such as batch effects, PCR artefacts and sequencing 284 
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errors. Batch effects describe a broad group of factors that add variance to sequencing data that 285 

is not based on a true biological signal, such as DNA extracted on different days, different 286 

technicians performing the sampling or DNA extraction, different batches of chemicals as well 287 

as sequencing control and treatment samples on different days, machines or flow cells (Leek 288 

et al., 2010). This is especially problematic when comparing sequencing data from different 289 

studies, in time serious or longer temporal studies  (Goh et al., 2017). Despite being known for 290 

more than a decade correcting for batch effects in microbial sequencing data is challenging and 291 

hard to distinguish from true biological signals. Therefore, care should be taken during 292 

experimental design to limit batch effects, e.g., via randomization of sample collection, DNA 293 

extraction and sequencing (Leek et al., 2010; Yang et al., 2008). Downstream data analysis 294 

approaches such as principal component analysis (PCA) and permutational multivariate 295 

analysis of variance (PERMANOVA) can help to identify batch effects (Holman et al., 2017). 296 

Combined with common-practice analyses such as Principal Component Analysis batch effects 297 

can be picked up. Additionally, recently developed bioinformatic approaches such as 298 

percentile-normalization can limit batch effects for analysis of pooled studies (Helbling et al., 299 

2015). 300 

 Another systematic error of major concern is so-called PCR chimeras or chimeric 301 

sequences. These sequences originate from incomplete amplification of fragments during a 302 

PCR cycle that act as amplification primers in subsequent PCR cycles resulting in artificial 303 

sequences merged from more than one true biological parent sequence. It has been shown that 304 

PCR chimerase are generally very common, ranging anywhere from 8-80% of reads in a sample 305 

(Wang & Wang, 1996; Qiu et al., 2001). Although it has been shown that optimizing PCR 306 

conditions can reduce the formation of PCR chimeras (Smyth et al., 2010; Omelina et al., 2019) 307 

bioinformatic identification of chimeric sequences is crucial and implemented in all common 308 

data analysis pipelines. Similarly, sequencing errors, i.e., wrong bases introduced during the 309 
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sequencing process, can artificially inflate the number of unique sequences in a sample. This 310 

is especially problematic for zOTU approaches where sequences with as little as one nucleotide 311 

difference are assumed to originate from different organisms.  One way of increasing the 312 

accuracy of sequences is to correct errors the forward reads of paired-end data with the 313 

overlapping part of its reverse mate. This is especially useful for short marker genes where the 314 

overlap of the two mates is large. Many common read-joining tools such as BBmerge (Bushnell 315 

et al., 2017) and FLASH (Magoč & Salzberg, 2011) already implement these strategies. 316 

However, current maximum read lengths of Illumina technology are <=350bp which is much 317 

shorter than most common marker genes. Additionally, more recent so called denoising  318 

algorithms such as UNOISE (Edgar & Flyvbjerg, 2015) achieve higher accuracy without the 319 

need of large read-pair overlaps.  320 

2.2.4 Data analysis 321 

The initial step in any genomic project is the quality control of the raw data, i.e., check for 322 

read length, quality, and removal of low quality bases and reads. Initial visualization of the raw 323 

sequencing data can be performed with tools like FastQC. Similarly, amplicon sequence 324 

analysis frameworks such as Qiime (Caporaso et al., 2010) and Mothur (Schloss et al., 2009) 325 

provide visualization and data statistics for raw read data as well as trimming and filtering 326 

functionality. For genomic and metagenome data a variety of tools for trimming and filtering 327 

is available such as Trimmomatic, PRINSEQ or the Fastx-toolkit to name just a few. 328 

Subsequent to the initial filtering error correction, batch effect adjustments and identification 329 

of chimeric sequences should be performed where applicable (see section 2.2.3 for details). 330 

When performing amplicon sequencing, the length of the reads influences the taxonomic 331 

resolution, with longer reads allow distinguishing between related strains that will otherwise 332 

share the same amplified region. However, most of the sequencing platforms used today require 333 

short reads, typically 100 - 500 nucleotide or 16 - 33% of the total length of the marker-gene 334 
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(Callahan et al., 2019), thus limiting the resolution of taxonomic profiles. In recent years, new 335 

technologies that generate long sequencing reads (tens of thousands of nucleotides) have 336 

emerged (Goodwin et al., 2016). These technologies have the potential to drastically increase 337 

the resolution of microbial diversity, but the error rate in long-read sequencing is 20-times 338 

higher than in short-read sequencing (~10% against ~0.5%) (Callahan et al., 2019) and 339 

improvements are still needed before these methods can supplant the current sequencing 340 

platforms.  341 

During data analysis, marker-gene sequences can be clustered either in OTUs (>97% 342 

similarity) or zOTUs (100% similarity) (Section 2.1.1). The zOTUs clustering enables 343 

resolution of closely related strains with potentially different phenotypes that would otherwise 344 

be lumped into the same cluster using conventional OTUs formed at 97% sequence similarity. 345 

The use of zOTUs is thought to maximize the phylogenetic resolution of the sequencing data, 346 

but with the risk that some species may be split over several zOTUs due to intra-species 347 

variations. Finding the balance between sensitivity and specificity is the key when choosing 348 

between zOTUs and OTUs. Jia et al. (2019) reported no clear advantage of the zOTU method 349 

over conventional OTU formation method with the zOTU method likely to discard some 350 

biologically relevant information, when using the UNOISE3 algorithm with default settings. 351 

Their analysis showed that the community taxonomic compositions from OTU and zOTU 352 

analyses were similar, though the zOTU method appeared to capture less phylogenetic diversity 353 

and produced a much larger proportion (31%) of phantom taxa than the OTU method (11%) 354 

(Jia et al., 2019). On the contrary, Callahan et al. 2017 argue that zOTUs (or amplicon sequence 355 

variants, ASVs) make marker-gene sequencing more precise, comprehensive, reusable across 356 

studies and reproducible in future data sets. They also suggest that unlike OTUs, zOTUs are 357 

not limited by incomplete reference databases (Callahan et al., 2017). Edgar et al. 2018 came 358 

to the same conclusion adding that zOTUs can be directly comparable between datasets without 359 
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re-clustering, providing that the same genetic locus (i.e., studies using the same primer set) be 360 

compared (Edgar, 2017).  361 

Data analysis can also be affected by horizontal transfer of 16S rRNA genes between different 362 

species. Evidence of this genetic transfer mechanism has been documented (Schouls et al., 363 

2003) and would lead to misleading inferences with species identification based on 16S rRNA 364 

genes. Unless using different genetic markers in parallel, no method exists to date to distinguish 365 

native 16S rRNA genes from horizontally transferred genes. Fortunately, this exchange of 366 

genetic material between species is considered rare, although impossible to quantify. Copy-367 

number variations of the small subunit 18S rRNA gene, most commonly used marker in 368 

eukaryotes, is also a parameter to consider when analysing sequencing data (Wang et al., 2017; 369 

Guo et al., 2016; Gong & Marchetti, 2019). For instance, some species of ciliates (Wang et al., 370 

2017) and dinoflagellates (Guo et al., 2016) have hundreds or even thousands of 18S copies, 371 

which can lead to misinterpretation of the actual abundance of these organisms in a sample 372 

(Gong & Marchetti, 2019). Alternative molecular markers can be used to mitigate the effect of 373 

copy-number variation on organism’s abundance. Guo et al. (2016) reported that actin gene 374 

was a more appropriate molecular marker than 18S rDNA for the community analysis of 375 

dinoflagellates (Guo et al., 2016). The bioinformatics pipeline described by Marchetti & Gong 376 

(2019) can be used to correct for variations in 18S gene copy number and thus improve the 377 

accuracy of eukaryotes abundance in microbial community profiles.  378 

Most bacterial genomes contain multiple copies of the 16S rRNA gene with copy number 379 

varying between species (Vos et al., 2012), which can impair the microbial diversity results 380 

when based on 16S relative abundances. In addition, individual genomes might contain 381 

different variants of the 16S rRNA gene (Pei et al., 2010). For these reasons, single-copy, 382 

essential protein-encoding marker-gene such as rpoB can offer potential advantages over the 383 

standard 16S rRNA gene-based approaches, as described by Vos et al. (2012) Moreover, 384 
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protein-encoding gene facilitates the elimination of sequencing errors if they disrupt the 385 

reading frame. Amplicon sequencing based on ribosomal DNA is a powerful method, but other 386 

approaches should also be considered as it can further improve the accuracy of taxonomic 387 

analysis. 388 

3. What have we obtained to date? 389 

3.1 Microbial community profile in the MBR process 390 

Marker-gene based approach has identified almost 97% of microorganisms in the biological 391 

reactor of the MBR process. Of which, Proteobacteria is the dominant phylum (by at least 392 

25%) of the sludge community (Fig. 3). The Proteobacteria phylum made up of at least eight 393 

classes including β-proteobacteria, α-proteobacteria, λ-proteobacteria and δ-proteobacteria. 394 

The Proteobacteria phylum contains bacterial groups that are responsible for nutrient removal, 395 

including ammonia-oxidizing bacteria (AOBs), nitrite-oxidizing bacteria (NOBs) and 396 

phosphorus accumulating organisms (PAOs) (Hu et al., 2012; Ye et al., 2011; Phan et al., 397 

2014). It has been found that the population of Proteobacteria was correlated significantly with 398 

the functions and performance of biological reactors.  399 
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Figure 3. The relative abundance of major bacterial phylum in activated sludge of membrane 401 

bioreactor. Data were extracted from recent studies, which used high throughput sequencing 402 

technologies to detect their abundance (Phan et al., 2016; Ziegler et al., 2016). 403 

Chloroflexi is another phylum that is frequently detected in the sludge community as well 404 

as in marine and freshwater sediments (Hug et al., 2013). The phenotype of Chloroflexi 405 

member includes carbon cycling, organohalide respiration, fermentation, CO2 fixation and 406 

acetogenesis (i.e. production of volatile fatty acids and acetate) with ATP formation by 407 

substrate-level phosphorylation (Hug et al., 2013). Members of the Chloroflexi phylum have 408 

the ability to degrade a wide range of complex organic matters (Graber & Breznak, 2005). The 409 

abundance of Chloroflexi and their phenotype suggest they play a role in organic carbon 410 

removal in the MBR process.  411 

The phylum Saccharibacteria was present at 0.5 to 2% of the total bacteria in the AS 412 

community. Members of Saccharibacteria can degrade various organic compounds in aerobic, 413 
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anoxic and anaerobic conditions (Ohashi et al., 2016). In the AS community, Saccharibacteria 414 

members could contribute to organic carbon removal and nitrate reduction in the AS process.  415 

The phylum Acidobacteria was present in less than 2% of the total bacteria in the sludge 416 

community (Fig. 3). This phylum adapts to oligotrophic environments and contributes to 417 

carbon and nitrogen cycles (Eichorst et al., 2018). Bacteria of Acidobacteria phylum carry 418 

carbon metabolism-associated genes involved in the degradation of polysaccharides and 419 

aromatic compounds (Janssen et al., 2002; Hester et al., 2018). The phylum Acidobacteria is 420 

characterised as slow-growing microbes due to low energy generation in their metabolisms 421 

(Jones et al., 2009; Fierer et al., 2007). Their low growth rates could make it hard for them to 422 

compete with other phyla in the sludge community, explaining their low abundance.  423 

3.2 Classification of functional microbes 424 

3.2.1 Ammonia and nitrite-oxidising bacteria 425 

The obtained results have unravelled the complexity of ammonia-oxidising bacteria (AOB) 426 

and nitrite-oxidising bacteria (NOB), involving in autotrophic nitrification processes in the 427 

MBR. AOB are mainly classified in the sub-class of β-proteobacteria, excepting Nitrosococcus 428 

that belongs to δ- proteobacteria (Table 1). NOBs are in the class of α-proteobacteria except 429 

Nitrospira.  430 

Nitrosomonas sp. is the main functional groups of AOB in the MBR process (Phan et al., 431 

2016). The relative abundance is much higher than the total abundance of all other AOB genera 432 

(Table 1). An abundance of Nitrosomonas sp suggests that the other AOB species play only a 433 

minor role in nitrification efficiency in the MBR process. Ecophysiological studies of isolated 434 

Nitrosomonas sp (e.g. Nitrosomonas sp Is79) suggested that Nitrosomonas sp may be resilient 435 

to fluctuating environmental conditions (e.g. presence of micropollutants, long sludge retention 436 

time) (Phan et al., 2016).  Nitrosomonas sp Is79 is strictly aerobic, fixing carbon 437 

autotrophically from carbon dioxide and adapt to low ammonium levels (Bollmann et al., 438 
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2013). Ammonium concentration in the wastewater varies significantly (e.g. dry vs wet 439 

weather, winter vs summer). The resilience of Nitrosomonas sp allows them to maintain their 440 

population in the MBR process.      441 

 Nitrospira sp. is the dominant group of NOBs (Table 1). Species of Nitrospira globally 442 

inhabit terrestrial and limnic environments, marine waters, deep-sea sediments, drinking water 443 

distribution systems, corroded iron pipes and WWTPs (Daims et al., 2001). The main 444 

ecological function of Nitrospira is nitrite oxidation. However, they also have versatile 445 

metabolism, including the utilisation of various organic compounds. Recently, it has been 446 

reported that Nitrospira species possess all the enzymes to catalyse the complete nitrification 447 

process (Daims et al., 2015). These species are referred to as ‘comammox’. Phylogenetic 448 

analyses suggested that comammox Nitrospira are present in diverse environments (Daims et 449 

al., 2001; Fan et al., 2017). Nitrospira sp. are also present in the influent, contributing to their 450 

high abundance in the MBR process.  451 

Heterotrophic nitrifiers including species from the genus of Comamonas, Thauera, 452 

Accumulibacter and Dechloromonas were present at 5 to 14% of total bacteria in the microbial 453 

community (Table 1). These species were previously found dominant in AS receiving 454 

ammonium-rich influent (Fan et al., 2017; Ma et al., 2015). Ma et al. (2015) observed more 455 

than 10% of heterotrophic nitrifiers (i.e. Comamonas sp. (6.6%), Thauera sp. (4.0%) and 456 

Azoarcus sp. (7.8%) in six WWTPs receiving high ammonium-bearing wastewater (i.e. 300 457 

mg/L). Species of Accumulibacter sp. and Dechloromonas sp. could also perform phosphorous 458 

removal (Section 3.4). The growth rate of heterotrophic nitrifiers is five-times faster than that 459 

of autotrophic nitrifiers. Therefore, published results often suggest that nitrogen removal is 460 

mainly due to the heterotrophic process in conventional WWTPs. In the MBR process, the 461 

addition of a membrane filter allows the operation of higher sludge retention times, promoting 462 
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the growth of autotrophic nitrifiers (Li et al., 2019). The presence of both autotrophic and 463 

heterotrophic nitrifiers could be the reason for better nitrogen removal in these MBR process.  464 

Table 1. The relative abundance of AOB and NOB in recent MBR studies 465 

Genera Relative 
abundance 

(%) 

MBR description Reference 

Functional group: AOB (autotrophic nitrification) 
Nitrosomonas 
(Betaproteobacteria) 

4.8 – 16  Aerobic MBR receiving 
secondary effluent 

(Cimbritz et al., 2019) 

21.3  Aerobic MBR receiving 
saline sewage 
wastewater 

(Ye et al., 2011) 

Nitrosomonadaceae 
(Betaproteobacteria) 

0.2 Anoxic-aerobic MBR 
receiving synthetic 
wastewater  

(Phan et al., 2016) 

Nitrosospira 
(Betaproteobacteria) 

11 Anoxic-oxic MBR 
receiving raw 
wastewater 

(Sofia et al., 2004) 

Nitrosovibrio  
(Betaproteobacteria) 

0.2 Aerobic MBR receiving 
municipal wastewater  

(Xia et al., 2016) 

Nitrosococcus 
(Deltaproteobacteria) 

0.1  Aerobic MBR receiving 
municipal wastewater  

(Xia et al., 2016) 

Functional group: NOB (autotrophic nitrification) 
Nitrospira 8.2 – 20  Aerobic MBR receiving 

secondary effluent 
(Cimbritz et al., 2019) 

3 In the anoxic zone of 
anoxic-aerobic MBR 
receiving synthetic 
wastewater under infinite 
sludge retention time 

(Phan et al., 2016) 

3.2 Aerobic MBR receiving 
saline sewage wastewater 

(Ye et al., 2011) 

9.6 Oxic-anoxic-oxic MBR 
receiving municipal 
wastewater 

(Li et al., 2019) 

Functional group: AOB & NOB (heterotrophic nitrification) 
Comamonas 5.2 – 15  Anoxic-aerobic MBR 

receiving synthetic 
wastewater 

(Phan et al., 2016) 
Thauera 0.2 – 2  
Accumulibacter 0.2 – 1.3  
Dechloromonas 0.4 – 2.2  

 466 

The metabolism of nitrogen pathways by AOB and NOB is related to the abundances of 467 

genes coding for ammonia monooxygenase (amo), hydroxylamine oxidase (hao), nitrate 468 

reductase (nar), nitrite reductase (nir), nitric oxide reductase (nor) and nitrous oxide reductase 469 
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(nos). The presence of these functional genes indicates that the metagenomic approach can be 470 

used to investigate the functional genes of nitrifiers from the MBR process comprehensively. 471 

However, the correlation amongst the abundance of these genes, level of expression and 472 

nitrogen removal efficiency is still to be investigated.   473 

3.2.2 Phosphate-accumulating organisms 474 

PAOs have been identified in three main genera (Table 2). These microorganisms are 475 

ecologically significant as they remove phosphorus from wastewater. They can adapt for 476 

survival in both aerobic and anaerobic conditions. PAOs cycle molecules for energy generation 477 

or storage depending on the environment. To promote their activity as PAOs, the key is to 478 

induce appropriate conditions with the addition of anaerobic zones. It was also reported that 479 

the anaerobic micro-niches occurring in the non-enhanced biological phosphate removal MBR 480 

could promote the growth of PAOs (Silva et al., 2012; Saunders et al., 2013). The total 481 

abundance of PAO organisms was similar in enhanced biological phosphorus removal and non-482 

enhanced biological phosphorus removal (i.e. 10 ± 2% vs 10 ± 7%, respectively). It is suggested 483 

that the high removal of phosphorus in the enhanced biological phosphorus removal MBR is 484 

due to the high level of phosphorus accumulating in the PAOs. Therefore, the operation of 485 

MBR should favor the phosphorus accumulation process rather than promote the growth of 486 

PAOs community. PAOs (β-proteobacteria class) are capable of immobilising phosphorus 487 

from the mixed liquor using nitrate and oxygen as an electron acceptor in the anoxic and 488 

aeration zones of the bioreactor, respectively. By using nitrate as a final electron acceptor, the 489 

phosphorus accumulating organisms also contribute to denitrification, producing nitrogen gas. 490 

Table 2. Relative abundance of PAOs in recent MBR studies 491 

PAOs Relative 
abundance 

(%) 

MBR description Reference 

Candidatus 
Accumulibacter 
 

0.54 – 5.54 Anoxic zone to aerobic zone to 
membrane zone (with aeration) 
Ferrous dosing at aerobic zone 

(Ren et al., 2019) 
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0.06 – 0.11  Anaerobic zone to anoxic zone to 
membrane zone (with aeration) 

(Ziegler et al., 
2016) 

1 – 6  Enhanced biological phosphate 
removal MBR 

(Silva et al., 2012) 

1 – 11  Non enhanced biological 
phosphate removal MBR 

(Silva et al., 2012) 

 0.2 – 5.8  Anoxic zone to membrane zone 
(with aeration) 

(Phan et al., 2016) 

 2.8 - 15.3 Non enhanced biological 
phosphate removal MBR 

(Saunders et al., 
2013) 

 3.6 – 10.1 Enhanced biological phosphate 
removal MBR 

(Saunders et al., 
2013) 

Tetrasphaera 0.28 – 1.34 Anaerobic zone to anoxic zone to 
membrane zone (with aeration)  

(Ziegler et al., 
2016) 

1.1 – 19.2 Aerobic MBR  (Rodriguez-
Sanchez et al., 
2019) 

2 – 6  Enhanced biological phosphate 
removal MBR 

(Silva et al., 2012) 

1 – 8  Non enhanced biological 
phosphate removal MBR 

(Silva et al., 2012) 

 0.1 – 13.7 Non enhanced biological 
phosphate removal MBR 

(Saunders et al., 
2013) 

 6.7 – 9  Enhanced biological phosphate 
removal MBR 

(Saunders et al., 
2013) 

Dechloromonas 1 – 6  Enhanced biological phosphate 
removal MBR 

(Silva et al., 2012) 

1 – 9  Non enhanced biological 
phosphate removal MBR 

(Silva et al., 2012) 

 492 

The genomes of a few culturable PAOs have been sequenced and revealed the abundance 493 

of genes involved in the metabolisms of phosphorus and inorganic polyphosphate (Kawakoshi 494 

et al., 2012).  These genes include polyphosphate kinase (ppks gene), exopolyphosphatase (ppx 495 

gene), polyphosphate-glucose phosphotransferase (ppgks gene), phosphate transporters (pits 496 

gene) and phosphate ABC transporter (phaABC gene). The detection of molecular information 497 

of phosphorus accumulation process in the isolated/known PAOs paves the way for 498 

metagenomic, metatranscriptomics and metaproteomics analyses of a consortium performing 499 

phosphorus accumulation. In this way, techniques to use PAOs for phosphorus removal and 500 

recycle can be enhanced which will improve the overall effectiveness of AS using MBR. 501 

3.3 Insight on microbial community and MBR performance relationships 502 
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3.3.1 Nutrient removal 503 

A number of studies have demonstrated the benefit of microbial community information on 504 

the operation of MBR process for nutrient removal. Ma et al. (2013) observed a reduction in 505 

the population of AOB and NOB at high aeration intensity. This observation suggested that 506 

MBR could be operated at low aeration rate to maintain the high abundance of NOB and AOB 507 

for nitrogen removal, thus reducing operating cost used as aeration energy. Another example 508 

is optimisation of ferrous dosage. Ferrous dosing has been used to enhance chemical removal 509 

of phosphorus but could change the population of bacteria involved in aerobic denitrifying (e.g. 510 

Zoogloea), anoxic denitrifying (e.g. Dechloromonas, Hyphomicrobium and Thauera), and 511 

nitrifying bacteria (e.g. Nitrospira) as well as phosphorus accumulating (e.g. Candidatus 512 

Accumulibacter) (Ren et al., 2019). Dosing of Fe/P 1:1 (molar ratio), there was no impact on 513 

the bacterial community regulating nutrient removal. However, at a ratio of Fe/P 2:1, a sharp 514 

decrease in the population of Nitrospira, Dechloromonas and Candidatus Accumulibacter  was 515 

observed (Ma et al., 2013; Ren et al., 2019). There were two main reasons for this observation, 516 

i) excess  ferrous dosage can outcompete the bacteria for the phosphorus, and ii) ferrous iron 517 

can also induce the formation of reactive oxygen species (via Fenton reaction) that oxidise and 518 

damage protein, lipids and DNA in cells. Optimisation of ferrous dosage should not interfere 519 

with the biological removal of nitrogen and phosphorus. It is recommended that ferrous dosing 520 

should be used as the post-treatment method for additional chemical removal of phosphorus 521 

from the biological process.  522 

In-situ ozonation of sludge in the MBR increased phosphorus removal due to the increased 523 

abundance of PAOs (i.e. Candidatus and Accumulibacter) (Tang et al., 2019). It is likely that 524 

species of Candidatus and Accumulibacter are resilient to ozonation due to their cell membrane 525 

structure and morphology. On the other hand, anoxic denitrifying bacteria Dechloromonas 526 

were inhibited by ozonation. Consequently, the efficiency of denitrification decreased in the 527 
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MBR with in-situ ozonation. The above-mentioned studies using the marker-gene approach 528 

have provided insights into the change of microbial community in the MBR induced by a 529 

selective pressure (i.e. a specific operating condition). However, the marker-gene approach is 530 

unable to evaluate the functional potential of the microbes. It is suggested marker-gene 531 

approach couple with metagenomic sequencing to provide insights into the microbial 532 

functional.  533 

Flavobacterium, Thauera, Comamonas and Dechloromonas are key microbes for biological 534 

nutrient removal in the MBR process. Ma et al. (2016) observed the coherence between the 535 

percentages of protein-coding reads from metagenomic sequencing and taxonomic results from 536 

16S rRNA amplicon sequencing. For example, Flavobacterium possess genes that encodes for 537 

proteins involved in the assimilation and dissimilation of nitrogen compounds by transporting 538 

nitrate/nitrite into cells, such as the ammonia monooxygenase gene (amo) known to increase 539 

the nitrification capacity of membrane bioreactors. Genes coding for denitrification enzymes 540 

are assigned to the syntrophic and heterotrophic communities in the activated sludge of the 541 

MBR, consisting of Flavobacterium, Thauera, Dechloromonas and Niastella. Identifying and 542 

tracking the prevalence of nitrogen and phosphorus removing bacteria along the operational 543 

regime may provide the information to operate MBR in a different way.  544 

3.3.2 Biofouling 545 

Analysis of biofilms attached to the membrane surfaces provided in depth information 546 

on microbial community structure responsible for biofouling (i.e. who colonizes the membrane 547 

surface). A study by Miura et al. (2007) revealed that bacteria in the class of β-proteobacteria 548 

dominated the biofilm on the membrane (61% of total bacteria) in the MBR system. Bacteria 549 

in the class of β-proteobacteria such as Dechloromonas sp. (was present at 50% abundance) 550 

express a putative lytic transglycosylase, cation transporter and pilin peptidase that are involved 551 

in host coloniosation (Salinero et al., 2009). This physiological character could promote the 552 
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formation of mature biofilm on the membrane in the MBR system. Huang et al. (2008) reported 553 

different microbial communities between suspended sludge and biofilm developed on the 554 

microfiltration membrane surface in the MBR system. Bacteria in the phylum of 555 

Proteobacteria dominated the community from the membrane surface, indicating that these 556 

phylotypes prefer to attach onto the membrane surface (Fig. 4) (Huang et al., 2008). Other 557 

phyla such as Firmicutes and Nitrospira were also found to colonise the membrane surface 558 

(Fig. 4) (Huang et al., 2008; Lim et al., 2012; Jo et al., 2016). Nitrospira bacteria are common 559 

NOB present in suspended sludge at 2-5% of total abundance. However, in a biofilm 560 

configuration, the abundance of Nitrospira can reach a total of 10%. The low amount of 561 

dissolved oxygen in the biofilm is likely to promote the growth of Nitrospira microbes.  562 
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 563 
Figure 4. The relative abundance of phylum in bulk sludge (dotted line) and biofilm (plain 564 

line) during MBR operation from different studies (a) (Huang et al., 2008); (b) (Lim et al., 565 

2012) and (c) (Jo et al., 2016).  566 

Bacterial colonisation and biofilm development on the membrane surface in the MBR 567 

system is a complex process (Table 3). These phenomena cause unwanted biofouling problems 568 

in the MBR systems. The biofouling occurs sequentially by first cell attachment on the 569 

membrane, cell reproduction, exopolymeric substances (EPS) production and finally 570 
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membrane pore blockage. Ziegler et al. (2016) observed a high abundance of species in the 571 

genera of Limnohabitans, Hydrogenophage and Malkia on the initial stage of biofilm formation 572 

(i.e. week 1 to week 4) (Table 3). As the biofilm matured, these genera were replaced with 573 

bacteria of Chloroflexi phylum and Gordonia genus. Dechloromonas - a member of PAOs – 574 

many colonise the membrane surface due to their low potential of motility. A review paper by 575 

Meng et al. (2009) suggested that the genus of Dechloromonas causes irreversible membrane 576 

fouling during the MBR operation.  577 

Table 3: List of biofilm forming bacteria and their phylotypes 578 

Taxa Relative abundance 
(%) 

Phylotypes Reference 

Dechloromonas 3 - The low potential of motility 
- Cause irreversible 
membrane fouling 

(Meng et al., 
2009) 

0.58 – 9.75 (Jo et al., 
2016) 

Limnohabitans 3 – 13 - Pioneer species on the 
membrane surface 
- Provide initial adhesion and 
establishment of biofilm 

(Ziegler et 
al., 2016) Hydrogenophage 1.5 – 3.8 

Malkia 1.2 – 4.9 

Caldilinea 0.13 – 4.45 - Sludge bulking forming 
bacteria  
- Membrane attachment due 
to EPS production 
- Hydrophobicity cells 
membrane or flocs  

(Jo et al., 
2016) Haliscomenobacter 0.13 -4.69 

Aeromonas na - Produce outer membrane 
proteins to aid in the 
colonisation  

(Zhou et al., 
2015) Enterobacter 

Pseudomonas 
Thauera 
Ferruginibacter 7.46 - Non-motile bacteria (Xiong et al., 

2016) 
Meiothermus 3.90 - Non-motile bacteria (Xiong et al., 

2016) 
Betaproteobacteria 54.7 - Enriched in high loading 

MBR 
(Xia et al., 
2010) Bacteroidetes 19.8 

* na = not available 579 

 580 

Results from a few studies of microbial colonization, biofilm formation, and microbial 581 

community structures on the membrane surfaces imply that biofouling control strategy 582 
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development should focus on specific bacterial groups rather than the whole microbial 583 

community presents in the sludge of MBR and aim at counteracting the mechanisms of cell 584 

attachment and colonisation on membrane surfaces. The biofilm-forming bacteria are quite 585 

diverse and mitigation method to target or inhibit these microorganisms is impossible to 586 

develop as such a method cannot provide a selective inhibition mechanisms. One possible 587 

method is the addition of carrier (i.e. activated carbon or sponge) to provide support to bacteria 588 

that prefer to colonise hard surfaces. In this condition, the surface available for biofilm 589 

formation will be larger, reducing potential fouling of the membrane. Addition of activated 590 

carbon and sponge has demonstrated to be effective in membrane fouling control, mainly due 591 

to the shear stress and scours effect (Nguyen et al., 2014). No one has tested the possible 592 

hypothesis of membrane surface competition. This is probably a missing piece of the puzzle to 593 

develop an effective biofouling control and mitigation process in the MBR process. 594 

3.3.3 Micropollutant removal 595 

Results to date have suggested the linkage between micropollutant removal and the MBR 596 

microbial community (Wolff et al., 2018; Phan et al., 2016). The population of bacteria in the 597 

phylum of Proteobacteria increased from 23% to 64% (i.e. significant difference), which 598 

coincided with the observation of high removal of micropollutants (Phan et al., 2016). For 599 

example, carbamazepine and gemfibrozil – two biologically recalcitrant compounds – were 600 

well removed (i.e. above 50%) when there was more abundance of Proteobacteria in the MBR 601 

systems (Phan et al., 2016). In the Proteobacteria phylum, Phan et al. (2016) suggested that 602 

the family Burkholderiales may contribute to the degradation of carbamazepine and 603 

gemfibrozil. Members of the Burkholderiales have been found to survive in limited nutrient 604 

environments (Li et al., 2012) and be able to use chlorinated aliphatic compounds and aromatic 605 

hydrocarbons as a source of carbon and energy (Abbai & Pillay, 2013; Boonnorat et al., 2014). 606 

The presence of micro-pollutants (i.e. 22 compounds at 5 µg/L in Phan et al. (2016) and 8 607 
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compounds at 1000 µg/L (Boonnorat et al., 2014)) did not induce the proliferation of 608 

Burkholderiales. The reason was thought to be the operation of MBR at infinite sludge 609 

retention time. Therefore, MBR operating conditions influenced the development of different 610 

microbial community structure that can effectively remove micropollutants. Amplicon and 611 

metagenomic sequencing techniques provided essential clues to which microbes might be 612 

beneficial to enrich in the MBR process.  613 

Bacteria in the class of α-proteobacteria, β-proteobacteria and ʏ-proteobacteria are also 614 

major contributors to micropollutant removal in the MBR process. Xia et al. (2012) achieved 615 

high removal of antibiotics in the presence of bacteria in the class of β-proteobacteria and ʏ-616 

proteobacteria. The genus of Rhodobacter in the class of α-proteobacteria was significantly 617 

enriched from 0.09% to 21% after the addition of three antibiotics in the influent of MBR (Wen 618 

et al., 2018). Rhodobacter spp. is capable of cleaning up soil and water environments 619 

contaminated with various organic and inorganic pollutants (e.g. aromatic hydrocarbons and 620 

explosives) (Oberoi et al., 2015). Rhodobacter can generate an array of catalytic enzymes, such 621 

as monooxygenase and dioxygenase (Oberoi et al., 2015) which are important for the 622 

degradation of micropollutants.  623 

The population of AOB and NOB has shown a positive correlation with micropollutant 624 

removal efficiency in the MBR process. Species of Nitrosomonas sp. increased from 0.56 to 625 

1.8% of total bacteria abundance in the MBR after micropollutants addition. The increment led 626 

to enhanced removal of micropollutants bearing nitrogen elements (i.e. amines and amides). It 627 

is suggested that Nitrosomonas sp. or AOB species oxidise micropollutants in similar pathways 628 

to those utilised in the ammonia oxidation process. Tran et al. (2013) observed the dependence 629 

of micropollutant biodegradation on the microbial community structure of the MBR process, 630 

particularly species in the groups of AOBs and NOBs. In this aspect, high ammonia loading 631 

stimulated the growth of AOBs and NOBs and provided a better removal of micropollutants.  632 
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Amplicon and metagenomic sequencing techniques provide insights to help isolating which 633 

are the micropollutant-degrading microbes. It has been demonstrated that long-term exposure 634 

of activated sludge microbiome to micropollutants can alter the microbial community and in 635 

some cases, selectively enrich specific microbes with enhanced affinity for micropollutant 636 

degradation. Nguyen et al. (2018)  isolated a strain of Bradyrhizobium sp that can degrade 637 

antibiotic ciprofloxacin from the activated sludge. The phylogenetic relatedness of newly 638 

identified species to the previously cultured relatives allows follow-up ecophysiological and 639 

isolation studies. Overall, there has been strong evidence on how MBR microbiome 640 

composition can influence MBR ecosystems (i.e. micropollutant removal). There is a growing 641 

interest in understanding and engineering of microbiomes for shaping microbiota that provides 642 

ecosystems of interest. 643 

4. Future outlooks and challenges  644 

Modern molecular techniques have shed new light on understanding the microbial 645 

community in the MBR process. However, there remain several challenges that need to be 646 

addressed in the upcoming studies, allowing translation of microbial community knowledge to 647 

process engineering and operate of MBR or other biological process efficiently.  648 

As reviewed in Section 2, there are still several technical bottlenecks in the molecular 649 

techniques that need to be overcome. First, the high financial cost of sequencing has led to the 650 

lack of replicate measurements. Without adequate replication, the variation observed amongst 651 

microbial communities may not be statistically different or may be due to artefacts of analytical 652 

techniques. It is recommended that at the least, triplicate samples are required. Secondly, the 653 

taxonomic classification of microbes in the community depends on comparison against a 654 

reference database. The completeness of the reference database largely influences how the data 655 

are analysed and explained. In the absence of a consensus methodology, the choice of the 656 

database used to map the sequencing results (i.e., aligning short reads to a reference sequence) 657 
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is user-dependent. This leads to inconsistencies and limits comparisons amongst the reviewed 658 

literature. The observed differences could simply reflect the distinct molecular approaches and 659 

database used to characterize the microbial community. Future efforts to standardize a 660 

universal database (e.g. taxonomy for the organisms of wastewater treatment systems, 661 

functional proteins) will largely improve data analysis.  However, this ambitious task requires 662 

contributed effort of scientists all around the world.   663 

In this review, the data generated from sequencing techniques have been mainly used to 664 

describe and explain the two initial questions “who are there and what are their functions?” in 665 

the MBR process. However, these obtained data are often from an aftereffect. Thus, there is a 666 

long way to reach the ideal point where the MBR performance can be regulated online using a 667 

real-time microbial community analysis. This endeavor may be achievable subjecting to the 668 

development of sequencing technology and the readiness of data analysis. There is also a large 669 

research gap amongst lab-, pilot- and full-scale studies. The well-defined and control 670 

conditions in the lab- and pilot-scale studies could generate significantly different results with 671 

the full-scale studies. At the current stage, a possible recommendation is to focus on full-scale 672 

studies with a rigorous sampling plant over long time series. The microbial community data 673 

obtained from such studies can be integrated with the MBR operating conditions and 674 

performance into a network. Until then, the translation of “microbial community 675 

understanding” to the operation of better MBR plant may be achievable.     676 

5. Conclusion 677 

This paper reviews the state-of-the-art sequencing techniques as a new platform to unravel 678 

the complexity of microbial community in the MBR process. Two approaches including maker-679 

gene and whole-genome sequencing have been analysed in terms of their benefits, 680 

considerations and limitations for future study. These included sample size, DNA extraction as 681 

well as bioinformatics analysis. These sequencing techniques have become increasingly more 682 
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powerful to provide details about microbes and their functions in the MBR process. The results 683 

can be used to describe and explain the performance of the MBR process (i.e. nutrient removal, 684 

biofouling and micropollutant removal). Key considerations to translate these findings to 685 

practical outcomes are recommended.    Results to date are significant but are still preliminary. 686 

Further applications of sequencing techniques for the design and optimisation of the MBR 687 

process are expected and can significantly enhance MBR performance.  688 
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