UNIVERSITY OF TECHNOLOGY SYDNEY

FACULTY OF ENGINEERING AND IT SCHOOL OF ELECTRICAL AND DATA ENGINEERING

AN IMPROVED FINITE CONTROL SET MODEL PREDICTIVE CONTROL FOR POWER CONVERTERS IN DISTRIBUTED GENERATIONS/MICROGRIDS

A THESIS SUBMITTED TO THE UNIVERSITY OF TECHNOLOGY SYDNEY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

By Mahlagha MAHDAVI AGHDAM

TITLE OF THESIS:

An Improved Finite Control Set Model Predictive Control for Power Converters in Distributed Generations/Microgrids

PhD Candidate:

MAHLAGHA MAHDAVI AGHDAM

MAHLAGHA.MAHDAVIAGHDAM@uts.edu.au

FACULTY OF ENGINEERING AND IT, UNIVERSITY OF TECHNOLOGY SYDNEY, AUSTRALIA

PRINCIPAL SUPERVISOR:

Associate Professor Li Li

Li.Li@uts.edu.au

FACULTY OF ENGINEERING AND IT, UNIVERSITY OF TECHNOLOGY SYDNEY, AUSTRALIA

Co-Supervisors:

Dr. Ricardo Aguilera Echeverria

RICARDO. AGUILERA @UTS. EDU. AU

FACULTY OF ENGINEERING AND IT, UNIVERSITY OF TECHNOLOGY SYDNEY, AUSTRALIA

Professor Jianguo Zhu

JIANGUO.ZHU@SYD.EDU.AU

FACULTY OF ENGINEERING AND IT, THE UNIVERSITY OF SYDNEY, AUSTRALIA

Certificate of original authorship

I, Mahlagha MAHDAVI AGHDAM declare that this thesis, is submitted in fulfillment of the requirements for the award of Doctor of Philosophy in Electrical Engineering, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note:

 ${
m SIGNATURE}$: Signature removed prior to publication. MAHLAGHA MAHDAVI AGHDAM 03 FEBRUARY 2019

ACKNOWLEDGMENT

I am grateful to all of those with whom I have had the pleasure to work during my PhD at University of Technology Sydney (UTS). Each has provided me extensive personal and professional guidance and taught me a great deal about both scientific research and life in general. I would especially like to express sincere gratitude and appreciation to my supervisor Associate Professor Li Li, for his invaluable guidance, motivation, inspiring discussions, and consistent encouragement throughout the entire research. I am also thankful to Professor Jianguo Zhu for his inspiring discussions, and advice. Dr. Ricardo Aguilera Echeverria has been a constant source of insightful thoughts, inspiration, and guidance. I have benefited greatly from his timely advice, continuous encouragement, and generous support especially with the experimental test. I am also grateful to the support and guidance from Dr. Ha Pham and engineers Russell Nicholson and Jiang Chen.

I acknowledge the financial support provided by the Australian Government Research Training Program Scholarship.

Most importantly, I would like to thank my family: my parents and my brothers, whose love, inspiration and guidance are with me in whatever I pursue.

Last but not the least, I would like to thank all my other friends in the School of Electrical and Data Engineering for their kind support and care during my study. I am also grateful to my close friends who reminded me that there is a life beyond the lab and supported me along the way.

DEDICATION

To my FATHER.

For believing in me no matter what, and for making me believe in myself.

RIP

Contents

1	INT	CRODUCTION	3
	1.1	Motivation	3
	1.2	Statement of Problem and Objectives	4
	1.3	Chapter Outline	5
2	TH	E STATE OF THE ART	11
	2.1	Introduction	11
	2.2	Microgrid Structure	11
	2.3	Hierarchical Control of Microgrids	
	2.4		
			14
			15
		2.4.3 Model predictive control	15
	2.5	Finite Control Set Model Predictive Control	17
		2.5.1 Finite control set-MPC principles	17
		2.5.2 Power converter topologies controlled by FCS-MPC	18
		2.5.2.1 Two-level voltage source converter	18
		2.5.2.2 Multilevel converters	19
		2.5.2.3 Modular multilevel converters	20
		2.5.2.4 Direct matrix converter	21
	2.6	Real-time Implementation of FCS-MPC Algorithm	21
	2.7	Issues and Alternative FCS-MPC Methods	23
		2.7.1 Cost function optimization and design	24
		2.7.2 Computational burden and time	
		2.7.3 Switching loss	25
		2.7.4 Ripple reduction	
		2.7.5 Harmonic performance	
		2.7.6 Mutual interference	
		2.7.7 Parametric uncertainties	
		2.7.8 Weighting factor	
		2.7.9 Longer prediction horizon	
		2.7.10 Filters	
	2.8	Summary	29
3	FIN	TITE CONTROL SET-MODEL PREDICTIVE CONTROL OF	
	PO	WER CONVERTERS: DELAY-TIME COMPENSATION	45
	3.1	Introduction	45
	2.0	Theory of ECC MDC	45

		3.2.1	Conventional FCS-MPC principles	45
		3.2.2	Proposed time-delayed FCS-MPC	47
	3.3	Case	Study I: Two-level Three-phase Grid-connected Voltage Source	
		Invert	er (VSI)	49
		3.3.1	Mathematical model of grid-connected VSI	49
		3.3.2	Conventional FCS-MPC	
			3.3.2.1 Simulation results	. 52
			3.3.2.2 Experimental results	53
		3.3.3	FCS-MPC based on space vector modulation	
			3.3.3.1 Simulation results	. 57
			3.3.3.2 Experimental results	. 57
		3.3.4	Time-delayed FCS-MPC	. 57
			3.3.4.1 Simulation results	. 59
			3.3.4.2 Experimental results	60
		3.3.5	Quantitative comparison and discussion	62
	3.4	Case	Study II: Three-level Three-phase Grid-connected Neutral Point	
		Clamp	oed Voltage Source Inverter	65
		3.4.1	Three-level three-phase grid-connected neutral point clamped	
			voltage source inverter	65
		3.4.2	Mathematical model of grid-connected NPC-VSI	66
		3.4.3	Conventional FCS-MPC	
			3.4.3.1 Simulation and experimental results	
		3.4.4	Time-delayed FCS-MPC	
			3.4.4.1 Simulation and experimental results	
		3.4.5	Quantitative comparison and discussion	
	3.5	Summ	•	
4	FCS	S MDC	C OF POWER CONVERTERS: LONGER PREDICTION	NT.
4		RIZOI		81
	4.1		luction	. 81
	4.2		of the Art	
	4.3		ef Theory	
	4.4		ager Prediction Horizon	
	4.5		Study: Three-level Three-phase Grid-connected Neutral Point	
			ped Voltage Source Inverter	. 86
		-	Simulation and experimental results	
	4.6		nary	
۲	ECC	S MDC	COE DOWED CONVEDTEDS, WEIGHTING EACTOR	0.5
5			C OF POWER CONVERTERS: WEIGHTING FACTOR	
	5.1		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	5.2			. 90
	5.3		sed FCS-MPC Algorithm with Online Tuning of Weighting Fac-	. 96
		5.3.1		
		5.3.1	Fuzzy-based self-tunig FCS-MPC	
	5.4		Study I: 2L-3Ph Grid-connected VSI	
	0.4		budy 1. 2D-91 if Grid-Collifected VDI	
		5/1/1	Mathematical model of 21 3Dh grid connected VCI	07
		5.4.1	Mathematical model of 2L-3Ph grid-connected VSI	
		5.4.1 5.4.2	Mathematical model of 2L-3Ph grid-connected VSI	. 100

		5.4.2.2 Experimental results	102
		5.4.3 Quantitative comparison and discussion	103
	5.5	Case Study II: 3L-3Ph Grid-connected Neutral Point Clamped VSI	105
		5.5.1 FCS-MPC for 3L-3Ph NPC-VSI	105
		5.5.2 Simulation and experimental results	107
		5.5.2.1 Simulation results	107
		5.5.2.2 Experimental results	108
		5.5.3 Quantitative comparison and discussion	110
	5.6	Summary	113
6		DEL PREDICTIVE CONTROL OF PARALLEL INVERTERS	
	6.1	Introduction	117
	6.2	Parallel Grid-tied Inverters	118
	6.3	Load Sharing	119
		6.3.1 Droop-based active and reactive power flow control	120
		6.3.2 MPC-based direct power control	121
		6.3.2.1 Mathematical model of system	121
		6.3.2.2 Cost function	122
	6.4	Simulation	122
		6.4.1 Case Study I	123
		6.4.2 Case Study II	125
		6.4.3 Comparison and discussion	127
	6.5	Summary	128
7	CO	NCLUSION and FUTURE RESEARCH	131
8	AP	PENDIX A:PUBLICATIONS BASED ON THE THESIS WOR	K133
	8.1	Published papers	133
	8.2	Published papers: Collaborations	133
	8.3	Submitted papers	134

List of Figures

1.1	Hierarchical control of microgrids	4
2.1	Hybrid AC-DC microgrid structure	12
2.2	Hierarchical control of microgrids [23]	14
2.3	Control algorithms for power converters	15
2.4	Criteria of MPC techniques	
2.5	Two-level three-phase grid-tied inverter	19
2.6	3L-3Ph NPC inverter	20
2.7	Grapgical representation 3L-3Ph NPC inverter voltage vectors	21
2.8	Direct matrix converter topology [81]	21
2.9	FCS-MPC (a) Block diagram (b) Implementation stages	22
2.10	A Typical block diagram for distributed MPC [107]	26
3.1	Behavior of simulation program versus RTI	46
3.2	Receding horizon control principle	47
3.3	FCS-MPC principle	47
3.4	Graphical representation of time-delayed MPC	48
3.5	Two-level three-phase grid-tied inverter	49
3.6	The graphical representation of the voltage vectors	50
3.7	Block diagram of grid-tied VSI controlled by FCS-MPC	51
3.8	Conventional FCS-MPC flowchart	52
3.9	Power flow control (a) $L = 4.6 mH$ (b) $L = 8.84 mH$	53
	Output currents in ABC-frame and grid voltages in $\alpha\beta$ -frame (a)	
	L = 4.6 mH (b) $L = 8.84 mH$	53
3.11	Experimental set-up	54
	Experimental power flow control (a) $L = 4.6 mH$ (b) $L = 8.84 mH$.	54
	Experimental output currents in ABC-frame and grid voltages in $\alpha\beta$ -	
	frame (a) $L = 4.6 mH$ (b) $L = 8.84 mH$	54
3.14	Voltage vectors and sectors of 2L-3Ph VSI	55
3.15	Conventional FCS-MPC flowchart	56
3.16	Block diagram of MPC-SVM	57
3.17	Power flow control	57
3.18	Output current and grid voltage	58
3.19	Experimental power flow control	58
3.20	Experimental output current and grid voltage	58
3.21	Flowchart of time-delayed FCS-MPC	60
	Power flow control	61
3.23	Output current and grid voltage	61
3 24	Experimental power flow control	61

3.25	Experimental output current and grid voltage	. 61
3.26	FFT analysis of conventional FCS-MPC	. 64
3.27	FFT analysis of MPC-SVM	. 64
3.28	FFT analysis of time-delayed FCS-MPC	. 64
3.29	Topology of 3L-3Ph NPC-VSI	. 65
	Voltage vectors of 3L-3Ph NPC-VSI	
	Experimental set-up	
	Block diagram of the experimental set-up	
3.33	Power flow control (a) Simulation (b) RTI	. 71
	Output current (a) Simulation (b) RTI	
	Capacitor voltages and neutral point voltage (a) Simulation (b) RTI	
	Power flow control (a) Simulation (b) RTI	
	Output current (a) Simulation (b) RTI	
3.38	Capacitor and neutral point voltage (a) Simulation (b) RTI	. 73
	FFT analysis (experimental) (a) Conventional FCS-MPC (b) Time-	
	delayed FCS-MPC	. 74
4.1	Block diagram of the grid-connected inverter with MPC controller .	. 84
4.2	Graphical representation of voltage vectors generated by the 2L-3Ph	
	inverter	. 85
4.3	Graphical representation of voltage vectors generated by the 3L-3Ph	
	inverter	. 85
4.4	Prediction of the output voltage vectors considering different input	
	sequences. a) One-step prediction b) Two-step prediction c) Simpli-	
	fied two-step prediction	. 86
4.5	Power flow tracking via two-step prediction (simulation) for scenario	1 88
4.6	Power flow tracking via two-step prediction (simulation) for scenario	
4.7	Block diagram of the experimental set-up	
4.8	Power flow tracking via two-step prediction (experimental) for sce-	
	nario 1	. 89
4.9	Power flow tracking via two-step prediction (experimental) for sce-	
	nario 2	. 90
5.1	Block diagram for FCS-MPC of a grid-connected inverter	
5.2	Fuzzy logic control technique	
5.3	Flowchart of proposed method	
5.4	Block diagram of 2L-3Ph grid-tied inverter	
5.5	Fuzzy logic control technique	
5.6	Fuzzy rules for λ	
5.7	Power flow control (simulation) (a) scenario 1 (b) scenario 2	. 101
5.8	Output currents in ABC-frame (simulation) (a) scenario 1 (b) sce-	404
- 0	nario 2	
5.9	Membership function for Err_{PWR}	
	Weighting factors surface curve for λ	
	Experimental power flow control (a) scenario 1 (b) scenario 2	
	Output currents in ABC-frame (a) scenario 1 (b) scenario 2	
	FFT analysis (experimental) (a) scenario 1 (b) scenario 2	
	Block diagram of grid-connected 3L-3Ph NPC-VSI	
5.15	Fuzzy logic control technique	. 107

5.16	Fuzzy rules for λ_1 and λ_2
5.17	Power flow control (simulation) (a) scenario 1 (b) scenario 2 108
5.18	Output current (simulation) (a) scenario 1 (b) scenario 2 109
5.19	Capacitor voltages and neutral point voltage (simulation) (a) scenario
	1 (b) scenario 2
5.20	Weighting factor surface curve for λ_1
5.21	Weighting factor surface curve for λ_2
5.22	Experimental set-up
5.23	Block diagram of the experimental set-up
5.24	Power flow control (experimental) (a) scenario 1 (b) scenario 2 112
5.25	Output current (experimental) (a) scenario 1 (b) scenario 2
5.26	Capacitor voltages and neutral point voltage (experimental) (a) sce-
	nario 1 (b) scenario 2
5.27	FFT analysis (experimental) (a) scenario 1 (b) scenario 2
6.1	Parallel inverters in microgrids
6.2	Equivalent diagram of parallel grid-tied inverters
6.3	Droop characteristics in inductive grids
6.4	Droop characteristics in resistive grids
6.5	Schematic of the parallel inverter with MPC controller
6.6	Frequency and active power droop characteristic
6.7	Flow chart for $P-f$ droop characteristic
6.8	Active and reactive power flow - Droop control
6.9	Power flow control for individual DG - MPC
6.10	Power flow control for net power to the grid - MPC
6.11	The current and voltage of the AC common bus - MPC 126
6.12	Power flow control for individual DG - MPC
	1 0 WOL HOW COMMON TO I MANY MAKEN BO THE CONTROL OF THE CONTROL O
6.13	Power flow control for net power to the grid - MPC

List of Tables

2.1 2.2 2.3 2.4 2.5	Voltage Vectors of 3L-3Ph NPC Inverter	17 20 23 24 30
3.1 3.2 3.3 3.4	Switching pattern for Sector I	52 56 62
3.5	Quantitative comparison of experimental results at the operating point of $P=0W$, $Q=200Var$	63
3.6 3.7 3.8	Voltage vectors of 3L-3Ph NPC inverter based on the magnitude 6	66 66 69
3.9	Time-delayed FCS-MPC with different τ , at the operating point of	73
3.10	Quantitative comparison of experimental results at the operating point of $P=1680W,Q=0Var$	74
4.1 4.2	Quantitative comparison of experimental results at the operating	87 91
5.1 5.2	Parameters of the system	
5.3 5.4	point of $P = -500 W$ and $Q = 0 Var$	80
6.1 6.2 6.3	System Parameters of Case Study I	26

List of Acronyms

ADC Analog to Digital Conversion

APF Active Power Filter

CHB Cascade H-bridge

CCS-MPC Continuous set based Model Predictive Control

DMC Direct Matrix Converter

DG Distributed Generation

DPC Direct Power Control

DTC Direct Torque Control

DSP Digital Signal Processor

ESS Energy Storage System

EV Electric Vehicle

FC Flying-capacitor

FCS-MPC Finite set based Model Predictive Control

FLC Fuzzy Logic Controller

FPGA Field Programming Gate Array

HVDC High Voltage DC

ILS Integer Least Square

MF Membership Function

MI Mutual Interference

MIPS Million Instructions per Second

MPC Model Predictive Control

NPC Neutral Point Clamped

PMSM Permanent Magnet Synchronous Motor

PV Photovoltaic

PWM Pulse Width Modulation

rL-sPh r-Level s-Phase

RTI Real-time Implementation

SAPF Shunt Active Power Filter

SHE Selective Harmonic Elimination

SSE Steady State Error

STATCOM Static Synchronous Compensator

THD Total Harmonic Distortion

UPS Uninterruptable power supply

VSI Voltage Source Inverter

VSR Voltage Source Rectifier

Abstract

This thesis focuses on finite control set model predictive control (FCS-MPC) of power converters in distributed generation (DG) and microgrids. In any network with an adequately high number of DG units, a hierarchy of control is one of the approaches to coordinate the system. Developments in the control of microgrids increase their potential to interact more efficiently with the main grid. Hierarchical control of the microgrid includes four levels: the component (zero) level, primary, secondary, and tertiary controls.

The FCS-MPC uses an internal model of the plant to predict the future progress of the controlled variables over the next prediction interval. An objective function is minimized via an exhaustive search to acquire the optimal control input sequence. While FCS-MPC carries some benefits, the algorithm needs to be reformed for various applications, mostly due to the variety of the plant characteristics that cause some challenges for the design.

The thesis is divided into two parts: The first part is devoted to theory and algorithms of FCS-MPC for power converters in DGs at the component (zero) level of the grid-connected microgrid, whereas the second part tackles power sharing, at the primary control level of microgrid, among DGs in the grid-connected microgrid.

The first part, Chapters 3, 4, and 5, investigate the main concerns of FCS-MPC algorithm with respect to implementation in terms of delay time compensation, computational burden in longer horizon, and weighting factor design. A time-delayed model with an advanced and flexible control algorithm is developed. As a result, the system is reliable in terms of applying the optimal sequence at the right interval. In order to decrease the computational burden and consequently prediction horizon, a simplified MPC can be utilized. To achieve robustness of the MPC technique under different operating conditions, a self-tuning MPC for power flowcontrol and power quality improvement in grid-connected power converters is proposed.

The second part of this thesis, Chapter 6, employs MPC scheme for the power sharing problem of parallel DGs in a grid-connected microgrid, to attain autonomous power sharing and power quality improvement. Generally, the droop control is used as the conventional control method of parallel inverters for regulating active power and reactive power in microgrids. The proposed scheme is modeled mathematically and simulated via MATLAB SIMULINK for two case studies. Case 1 consists of two parallel 2L-3Ph VSIs, whereas in case 2, a 2L-3Ph VSI and a 3L-3Ph neutral point clamped VSI are paralleled. The MPC algorithm shows a better performance than the droop control in terms of power sharing between two parallel grid-connected inverters. The measurements show that although the active and reactive power ripples are not compensated much by the MPC approach, the rise time and settling time are reduced considerably. As a result, the MPC scheme provides a better transient dynamics than the droop control scheme.