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ABSTRACT
A partially-decentralised scheme for the semi-automatic control of network systems
with stabilising agents is presented in this paper. The semi-automatic control of in-
terconnected systems employing the stabilising agent whose installation is segregated
from the associated control algorithm has been presented previously. In this develop-
ment, the quadratic dissipativity constraint (QDC) associated with a non-negative
supply rate is newly introduced for the stabilising agent. The closed-loop system
having bounded disturbances is input-to-state stabilised with a non-monotonic Lya-
punov function when the QDC is used with model predictive control. The effec-
tiveness of the QDC for stabilising agents in the presented partially-decentralised
control architecture is demonstrated via simulation studies of a frequency regulation
problem in power systems.

KEYWORDS
Stabilising agent; Semi-automatic control; Quadratic dissipativity constraint;
Non-monotonic Lyapunov function.

1. Introduction

1.1. Semi-automatic control and stabilising agent

In a manufacturing or processing plant, there are always numerous feedback control
systems installed to help achieve the operational target with fewer operators. These
control systems often have two control modes, automatic and manual, thus from the
operation point of view, are semi-automatic. In a semi-automatic control scheme, the
control inputs can be from the control law in automatic control mode or the opera-
tor in manual control mode. Figure 1 depicts such a semi-automatic control scheme
in operation with an automatic controller and a plant operator. This semi-automatic
control scheme in the manufacturing and processing plants has not, however, been
wide-spread considered in the network systems due to the complex interactions be-
tween subsystems.

Among network system applications, the control of power systems and multi-agent
systems also has a mix of automatic control and operator manual control at each local
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Figure 1. Semi-automatic control with human operator.

subsystem or agent, partly owing to the possibility of communication interruptions
or temporary system failures. The semi-automatic control scheme should thus be in
place for these applications. This is particularly applicable to human-robot teaming
in a consensus or formation control problem, wherein some agents are controlled by
human operators while other agents are automatically controlled. The stability guar-
antee methods for the semi-automatic control scheme have not been addressed in the
literature except our previous work Tran, Tuan, Ha, and Nguyen (2011), as of our
knowledge.

In this paper, the quadratic dissipativity constraint (QDC) developed previously
(Tran, Maciejowski, & Ling, 2019) is employed in a distributed semi-automatic control
scheme for network systems with stabilising agents (SA) (Tran et al., 2011). The
method of stabilising network (interconnected) systems with external SA stems from
the idea of splitting the stabilising mechanism from the control algorithm, as explained
in (Tran & Ha, 2018b, Chapter 3). The SA is independent to both automatic control
and manual control actions. At each time step, the SA determines the stabilising
boundary derived from a dissipation-based constraint. The SA subsequently ensures
that the control inputs will be within this boundary by overriding (replacing) the
control inputs with the corresponding values on the stabilising boundary surface if
they are not. As a result, the concept of SA will facilitate the semi-automatic control
of network systems.

Quadratic Dissipativity Constraint vs Asymptotically Positive Realness Constraint:
The SA in this work is developed from the QDC presented in (Tran et al., 2019) for

systems having disturbances, as an alternative to the Asymptotically Positive Realness
Constraint (APRC) presented in (Tran et al., 2011) for systems without disturbances.
All the developments are in the discrete-time domain in both of these works. When
applying the QDC to Model Predictive Control (MPC), the closed-loop system is
input-to-state stabilised with a relaxed non-monotonic Lyapunov function under mild
conditions (Tran et al., 2019). The APRC of the following form

0 > ξi
(
k, xi(k), ui(k)

)
> γi(k) ξi

(
k−1, xi(k−1), ui(k−1)

)
∀k ∈ (0, ks], 0 < γi(k) < 1,

where ξi is a real-value and time-dependent quadratic function with respect to the
state and input pair of xi and ui of a subsystem Si in an interconnected system S
(i.e. network system) having h subsystems Si, has been used in (Tran et al., 2011) to
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achieve the ‘positive realness constraint’ status of

ξi
(
k, xi(k), ui(k)

)
> 0 ∀k > ks > k0 > 0,

such that the asymptotic stability is eventually obtained, as a direct result.
In this work, the QDC of the form

0 > ξi
(
xi(k), wi(k)

)
> βi ξi

(
xi(k − 1), wi(k − 1)

)
− ηi ∀k > 0, 0 < βi < 1, ηi > 0,

where ξi is a real-value, non-positive, and time-independent quadratic function with
respect to the state and input pair of xi and wi = Kix+ ui, x = [x1, ..., xh]

T , will be
employed for systems having state disturbances, such that

ξi
(
xi(k), wi(k)

)
→ −ηi as k → ∞, and ξi

(
xi(k), wi(k)

)
6 0 ∀k > 0.

The variable wi in the above QDC arises from the virtual perturbed state feedback
(PSF) strategy that allows for a limited communication between neighbouring sub-
systems and fast local computations, firstly introduced in (Tran & Ha, 2018a). Under
this PSF strategy, the control inputs have the virtual form of

ui(k) = wi(k) +
∑
j

Kijxj(k) = wi(k) +Kix(k),

where xj are the connected neighbours’ states, Kij is the state-feedback gain (for
clarity, we also call it cooperative-state feedback gain), and wi is the virtual pertur-
bation variable. This is only a virtual PSF form, and will not be applied directly to
control the corresponding subsystem. It is used to shape ui(k) that will be computed
independently: The MPC optimisation or the plant operator will determine the
control ui(k) directly, but not the virtual variable wi(k).

Contributions:
The application of QDC in a semi-automatic control scheme with SA is presented

in this work. This is a novel contribution since the QDC has only been implemented as
an enforced stability constraint for the MPC in (Tran et al., 2019). Furthermore, the
set-point-independent supply rate function ξi

(
(xi − x̄i), (wi − w̄i)

)
and non-negative

storage function Vi(xi − x̄i) = (xi − x̄i)
TPi(xi − x̄i), Pi ≻ 0, (v̄i is the steady state

of vi) will be adopted for this development together with bounded state disturbances
in the system model. In this QDC approach the relaxed Lyapunov function of the
closed-loop system is allowed to temporarily increase its value at certain time steps
(Tran et al., 2019), and is thus non-monotonic.

In this work, the PSF is used in a partially-decentralised SA scheme with decen-
tralised MPC. The automatic generation control (AGC) problem in power systems
has been studied with QDC as an enforced stabilising constraint for the MPC without
considering the semi-automatic control requirement in the previous work (Tran & Ha,
2018a). On the contrary, the SA algorithm is used here instead of MPC stabilising
constraints. The semi-automatic control of a network system is thus facilitated for in
this development. The resultant control performances with SA have been found com-
patible with those having QDC integrated into the MPC optimisation as a stabilising
constraint in the case study of AGC problem.
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1.2. Control with non-monotonic Lyapunov function

Non-monotonic Lyapunov functions have been presented and used previously in the
works of Michel, Hou, and Liu (2015) and others, but they had not attracted much
attention. Michel et al. (2015) have pointed out that “the roles of the monotonic
and the non-monotonic behaviour of Lyapunov functions along system motions were
perhaps not fully appreciated” in the past. Partly owing to “the development of the
stability and boundedness theory involving non-monotonic Lyapunov functions was
incomplete.” Only until recently, the non-monotonic Lyapunov functions have started
appearing in the developments for switched and hybrid systems, as well as networked-
control systems (Chen, Yang, & Li, 2019; Linsenmayer, Dimarogonas, & Allgöwer,
2019; Yu & Wu, 2017). In the work of Yu and Wu (2017), the Lyapunov functions may
increase their values during some proper time intervals, and decrease with sufficiently
fast rates otherwise. Both discrete-time and continuous-time switched systems have
been considered, and the so-called generalized Lyapunov theorems have been derived
therein. Discrete-time switched nonlinear time-varying systems have been considered
in the work of Chen et al. (2019) together with a weak dissipative-form input-to-state
stability (WD-ISS) Lyapunov function having non-monotonic characteristics. As a
result, several relaxed stability conditions have been derived for switched systems.
Elsewhere, the work of Linsenmayer et al. (2019) has demonstrated how easy it is
when non-monotonic Lyapunov functions are employed in the analysis and design of
event-triggered strategies for networked-control systems in the discrete-time domain.
The stability theorem for discontinuous dynamical systems (DDS) - the terminology
used in the work of Michel et al. (2015), has been extended to deal with intermittent
data losses. Apart from those, our previous work in (Tran et al., 2019) has presented a
general dissipativity constraint (GDC) for the control design of continuous linear and
nonlinear systems with disturbances in the discrete-time domain. In that work, the
storage function of the closed-loop system is non-monotonic, and the input-to-state
stability is obtained under a mild condition of the initial control law continuity. In
this work, we apply the GDC in the form of QDC to networked-control systems
exploiting the non-monotonic characteristics, such that the stability condition is less
conservative. Thus, it is suitable for use with SA that is segregated from the control
algorithm.

The remaining of this paper is organised as follows. Notations, system models,
problem formulations and the QDC derivation are outlined in Section 2. The nominal
stability condition based on the QDC and non-monotonic sotrage function is then given
in Section 3. The stability condition for systems having disturbances and suffering
from a deterministic data lost process is also stated here. In Section 4, we provide the
simulation results for the illustrative example of a four control-area power system with
the automatic generation control problem. Section 5 concludes this paper.

2. Preliminaries and Problem Formulation

2.1. Notation

Capital and lower case letters denote matrices and column vectors, respectively. (.)T

denotes the transpose operation. In and 0n denote the nn identity and zero matri-
ces, respectively. diag[Ai]

N
1 stands for the block-diagonal matrix with diagonal entries

Ai, i = 1, 2, ..., N . ∥ui∥2
is the ℓ2−norm of vector ui. ∥xi∥Q is the weighted ℓ2−norm
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of xi, Q ≻ 0. λmax(.) indicates the maximum eigenvalue of the argument. R+
0 is the

set of non-negative real numbers. A function γ : R+
0 → R+

0 is called of class K if
it is continuous, strictly increasing and γ(0) = 0. In symmetric block matrices, we

use ∗ to denote the off-diagonal symmetric blocks, e.g.,
[
X Y

∗ Z

]
=

[
X Y

Y T Z

]
. In the

discrete time domain, the time index is denoted by k, k ∈ Z. The bold typeface letters
in optimisation formulations are used to emphasise that they are variables.

2.2. Control System Model

2.2.1. Subsystem model

Consider an interconnected system Σ consisting of h nodes representing h subsystems,
each denoted as Si, indexed by the elements of the set N := {1, . . . , h}, and has a
discrete-time state space model of the form:

Si : xi(k + 1) = Aixi(k) +Biui(k) + Eivi(k) + Lidi(k), (1)

where Ai ∈ Rni×ni , Bi ∈ Rni×mi , Ei ∈ Rni×mvi , Li ∈ Rni×qi ; ui ∈ Rmi and xi ∈ Rni are
local control and state vectors, respectively; vi ∈ Rmvi is the interactive, or dynamic
coupling, vector; di ∈ Rqi is the disturbance vector. The disturbance is unknown but
bounded: ∥di∥22 6 θi. In the power system applications, the disturbance di(k) can be
a constant, e.g. di(k) = dci ∀k > kdi

> 0. For the MPC problem, we consider the state
and control constraints: xi ∈ Xi ⊂ Rni and ui ∈ Ui ⊂ Rmi . The block diagram of Σ
with decentralised MPC and SA is depicted by Figure 2.

Figure 2. Network system with decentralised MPC and stabilising agents. The inter-area communication
network has multiple connection topologies. The inter-area communication channels may become unavailable

from time to time.

2.2.2. Network graph

A network system is identified by a graph G = (N ,S, E), where S = {S1, ...,Sn} is the
set of nodes, and E ⊆ {(Si,Sj) : Si,Sj ∈ S, i, j ∈ N | i ̸= j} is the set of edges. The
graph is undirected (or bidirectional) if for any i, j ∈ N , (Si,Sj) ∈ E ⇔ (Sj ,Si) ∈ E . A
node Si ∈ N is connected to a node Sj ∈ N if there is a path from Si to Sj in the graph
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following the orientation of the arcs. If (Si,Sj) ∈ E , we say that Sj is neighbor to Si.
The set of all neighbors to node i ∈ N is denoted as Ni(G) = {j, j ∈ N : (Si,Sj) ∈ E}.

Herein, we consider a network of fixed subsystem dynamic couplings, or intercon-
nections, as shown in Figure 2, denoted as Gs = (N ,S, Es), and a flexible inter-system
communication network, denoted as Gc(k) = (N ,S, Ec) (the top network in Figure 2).
In this work, a set of cooperative-state feedback gains Kij will be determined, each
corresponds to a Gc.

2.2.3. System model with perturbed state feedback

Subsystem model is recast with the control ui(k) = wi(k) + zi(k), as follows:

xi(k + 1) = Aixi(k) +Biwi(k) +Bizi(k) + Eivi(k) + Lidi(k), (2)

zi(k) =
∑

j∈Ni(Gc)

Kij xj(k), vi(k) =
∑

j∈Ni(Gs)

Fjxj(k). (3)

Here, a global coupling matrix Hs is used to describe the connection structure of
Gs. The elements of Hs are either 1 or 0 only. Similarly, the communication network
Gc is associated with the matrix Hc. By denoting the ith block-row of Hs and Hc, as
Hs[i] and Hc[i], respectively, we have

vi = Hs[i]Fx, zi = [Kij ][i]Hc[i]x, (4)

where x := [x1
T . . . xh

T ]T , F := diag[Fj ]
h
1 , and [Kij ] is the matrix having the block

elements Kij .
The global system Σ now becomes

Σ : x(k + 1) = AΣx(k) +Bw(k) + Ld(k), (5)

where AΣ := A+ EHsF +BKHc, K := [Kij ], in which

A := diag[Ai]
h
i , B := diag[Bi]

h
i , E := diag[Ei]

h
i , L := diag[Li]

h
i , K := [Kij ],

w = [w1
T ... wh

T ]T , u = [u1
T ... uh

T ]T , d = [d1
T ... dh

T ]T , w ∈ Rm, u ∈ Rm, x ∈ Rn.

Assumption 1. (i) All subsystem pairs (Ai, Bi), i = 1, 2, . . . , h, and the global sys-
tem pairs (A,B) and (A+EHsF,B) are controllable. (ii) The matrices Ini

−Ai, i =
1, 2, . . . , h, and In −A−EHsF are non-singular. (iii) The updating time instants are
synchronised between all subsystems and their controllers.

Assumption 1 is applied throughout this paper.

2.2.4. Deterministic data losses

In this development, a sensor/device network is installed for updating the state mea-
surements (xi) and actuating the control devices (ui). This is represented by the middle
blocks in Figure 2 with “intermittent data loss”. The intermittent state and control
data loss processes are described as follows:

• The state vector xi of Si becomes x̃i beyond the network interface inside the
respective controllers. When the state vector xi(k) at the time instant k is trans-
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mitted successfully, we have x̃i(k) = xi(k), otherwise x̃i(k) = xi(k−1) (i.e. when
the data is lost).

• The intermittent data loss also occurs to the data exchanged between subsystems
similarly to xi(k), i.e. x̃j(k) is received by its neighbors.

• For the control input (ui), the last successfully received value of ui will be applied
to the plant during the data lost time, i.e. ui(k) = ui(k − 1), otherwise ui(k) =
ũi(k).

If we represent the consecutive updating instants of x̃i(k), x̃j(k) and ũi(k) with a
sequence of integer numbers J = {j1, ..., jq, ..., jκ, ...}, the time interval between jq and
jq+1 can be treated as one transmission period. If the communication data is perfect
at time k, we have jκ = k. The upper bound of the successful transmission period is
denoted as µ (or MATI - maximum allowable transmission interval).

µ := max
jq∈J

(
τ(q)

)
, τ(q) := jq − jq−1. (6)

The intermittent data losses are accounted for by updating the control ui at every
time step - the rolling principle of MPC. This means, the data losses are compensated
for in real time, right after each incident, thanks to the MPC together with the QDC
that also satisfies the condition of data-lost robust dissipation defined in (11).

2.3. Quadratic Dissipativity Constraint with Non-zero Set-point

Denote the set-point-independent input and state vectors as w△i(k) := wi(k) −
w̄i, x△i(k) := xi(k)− x̄i, where x̄i and w̄i are, respectively, the steady state values of
xi and wi. Define a dynamic quadratic supply rate in the perfect data environment
for node Si, as follows:

ξi
(
w△i, x△i

)
:= wT

△iRiw△i + 2xT△iSiw△i + xT△iQix△i, (7)

where Ri, Si, Qi are the coefficient matrices with symmetric Ri and Qi.

In the deterministic data-lost environment of (6), the supply rates w.r.t. the revived
time step jq are considered. For conciseness, ξik(x△i(jq), w△i(jq)) is denoted as ξi(q).

Definition 2.1. The controlled system Si (1) is said to satisfy the quadratic dissipa-
tivity constraint, or simply QDC, if the following inequality holds for all jq ∈ J (i.e.
for all k > 0):

0 > ξi(q) > βi ξi(q−1) − ϵi θi. (8)

The small positive number ϵi θi is added to the QDC in (8) for systems having
non-zero disturbances di(k) ̸= 0, ∥di(k)∥2

2
6 θi. When the disturbance vanishes

di(k) = 0, the nominal QDC will become 0 > ξi(q) > βi ξi(q−1), i.e. ϵi = 0.

The right-hand-side inequality can be expressed as an inequality w.r.t u△i when
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the local and respective neighbouring states are known, as follows:

wT
△iRiw△i + 2xT△iSiw△i + xT△iQix△i − βi ξi(q−1) + ϵi θi > 0

⇔ uT
△iRiu△i + 2Γiu△i + ψi > 0, (9)

where Γi := xT△iSi − vT△iK
T
i Ri,

ψi := vT△iK
T
i RiKiv△i − 2xT△iSiKiv△i + xT△iQix△i − βi ξi(q−1) + ϵi θi.

The non-positive supply rate can be obtained by having

[
Qi Si

ST
i Ri

]
≺ 0.

The inequality (9) will be adopted by a stabilising agent (SA) in this work to find
the stabilising boundary (for ui) at every time step jq, as described in Subsection
1.1. The second condition on the data-lost-robustly dissipative system for (5) is also

required here. In this second condition, the global supply rate ξ̆ :=
∑h

i=1 ξ̆i, where

ξ̆i(x△i, w̆△i) = w̆T
△iR̆iw̆△i + 2xT△iS̆iw̆△i + xT△iQix△i, (10)

in which R̆i := diag[Ri]
τ
1 , S̆i := diag[Si]

τ
1 , w̆△i := [wT

△i w
T
△i... w

T
△i]

T , is considered.

Denote x△ := [xT△1 x
T
△2 . . . x

T
△h]

T , d̆i := [di(k − τ + 1)T di(k − 1)T . . . di(k)
T ]T ,

x̄ := [x̄T1 x̄T2 . . . x̄
T
h ]

T , and w̄ := [w̄T
1 w̄T

2 . . . w̄
T
h ]

T .

Definition 2.2. A controlled system Σ (5) subject to the data lost process (6) is said
to be data-lost robustly-dissipative w.r.t the global supply rate with disturbance of the
form −ξ̆+

∑h
i=1 d̆

T
i Z̆id̆i, if there exists a storage function V (x△) := xT△Px△, P ≻ 0, P

is full row rank, such that for all controlled motions
(
x(k), u(k)

)
and steady states x̄

and ū, the following dissipation inequality is satisfied irrespectively of the initial state
x(0) for all k > 0:

V
(
x△(k + τ)

)
− σ V

(
x△(k)

)
6 −

h∑
i=1

[
ξ̆i
(
x△i(k), w̆△i(k)

)
− d̆Ti Z̆id̆i

]
,

∀τ ∈ {1, 2, . . . , µ}, 0 < σ < 1.

(11)

Similarly to the traditional dissipative condition with linear matrix inequality (LMI)
in the literature, see, e.g., (Brogliato, Lozano, Maschke, & Egeland, 2006), an LMI can
be derived from the dissipation inequality above using the model (5). The problem is
firstly stated below.

2.4. Problem Description

The task here is:-

(1) To implement the conventional model predictive control (MPC) algorithm (Ma-
ciejowski, 2002) using the nominal non-interactive model in the prediction for
each single subsystem (node) Si (1), i.e. the interactive variables vi and wi and
disturbance di vanish in the objective function of each local MPC. The global
system may be open-loop unstable. Each node Si possesses some communication
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channels to its neighbours, but not necessarily with all nodes in G. The data
dropouts may occur intermittently in these communication channels, as well as
in the local state measurements and in the control activations, as defined in (6)
above.

(2) To implement a stabilising agent for each Si to guarantee that the global system
Σ is asymptotically attractive. In other words, we are concerned with the design
of h decoupled stabilising agents associated with the local MPCs of h subsystems
Si, i = 1, 2, . . . , h, such that the global system Σ (5) is asymptotically attractive.

To fulfill the task, the control of the form ui(jq) = wi(jq) +
∑

j Kijvi(jq) will be
adopted. Here, all nodes in the system must update the available communication links
in real time and synchronously apply the updated gains Kij when the communication
network changes its connection structure (topology). In the automatic control mode,
the control ui(jq) will be calculated online by the local MPC directly without knowing
wi(jq). In the manual control mode, ui(jq) will be generated by the operator or un-
changed from the previous revived step. To ensure the stability, the control ui(jq) will
be overridden by ũi(jq) generated by the SA once the QDC (9) can not be verified, as
described in Subsections 1.1 and 2.5. The decoupled MPC objective function of the
following form is considered for each single subsystem (node):

Ji(k) =

Ni∑
j=0

∥xTi (k + j)− x̄i∥Qi
+ ∥uTi (k + j)− ūi∥Ri

,

where Qi,Ri are the weighting matrices (to be chosen by the users), and Ni is the
predictive horizon. The current local state xi(k) and neighbouring states xj(k), j ∈
Ni(G), at the time step k (or at the revived time step jq, when data are lost) are
known. The local optimisation problem of minimising Ji(k) subject to the local model
(1), the control constraint ui ∈ Ui and the local state constraint xi ∈ Xi, in the
following:

min
û

Ji(k)

subject to (1), vi = 0, wi = 0, di = 0, ui ∈ Ui, xi ∈ Xi,
(12)

is then solved for the minimising sequence û∗
i which consists of Ni + 1 elements of

u∗i (k + j), j = 0, 1, ..., Ni. Only the first element u∗i (k) is used to control Si. This
rolling process is repeated at the next time step, and continues thereon. By virtue
of the decoupled objective functions above, the online calculations is computationally
less expensive than the other conventional cooperative control schemes with coupled
objective functions.

Assumption 2. The h local MPC optimisations (12), i = 1, 2, . . . , h, are recursively
feasible at every reviving time step jq; see, e.g., (Mayne, Rawlings, Rao, & Scokaert,
2000).
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2.5. Stabilising Agent

The optimisation problem to determine the stabilising bound ũi of a stabilising agent
is as follows (Tran et al., 2011):

min
ũi

∥ũi − ûi∥2,

subject to ũT
△iRiũ△i + 2Γiũ△i + ψi > 0 and ∥ũi∥2 ∈ Ui,

(13)

where Ri, Γi, ψi are given in (9).

This means the control ûi(jq) from the MPC (or from the operator in the manual
control mode) will be overridden by ũi(jq) from the above optimisation whenever the
QDC-based inequality (9) is not verified. This means, the stabilising agent will have
to verify the satisfaction of the QDC-based inequality (9) at every revived time step
jq.

3. Nominal Stability with PSF Strategy

This section outlines the nominal stability conditions that can be used to determine the
cooperative-state feedback gains Kij and the QDC (9). We firstly restate the nominal
convergence condition for the global system when there are not any disturbances or
data losses.

Lemma 3.1. Consider Σ (5) with vanishing d(k), and a non-positive real-value supply
rate ξ

(
x(k), w(k)

)
, ξ : Rn ×Rm → R+

0 , ξ
(
x(0), u(0)

)
is finite. Let σ ∈ R+, σ < 1, and

β ∈ R+, β < 1. Suppose there are two K∞ functions α(∥x∥), α(∥x∥) and a real-value
non-negative function V

(
x(k)

)
, V : Rn → R+

0 , such that for each finite x(0) ∈ Rn the
following conditions holds for all k > 0:

(1) α
(
∥x(k)∥

)
≤ V

(
x(k)

)
≤ α

(
∥x(k)∥

)
,

(2) V
(
x(k)

)
− σ V

(
x(k − 1)

)
6 −ξ

(
x(k), w(k)

)
,

(3) 0 > ξ
(
x(k), w(k)

)
> β ξ

(
x(k − 1), w(k − 1)

)
,

with some control sequences {u(k) ∈ Rm}; Then x(k) remains finite and ∥x(k)∥ → 0
as k → ∞.

Proof. In Appendix B.

Next, the robust invariant set (Kerrigan & Maciejowski, 2000) is defined below.

Definition 3.2. Assuming ui(k) ∈ Ui and vi(k) ∈ Vi, a set Xi is called robustly
constrained control invariant with respect to Ui and Vi for the subsystem (node) Si (1),
nominally, if for all xi(k) ∈ Xi, there exist ui(k) ∈ Ui such that xi(k+1) ∈ Xi ∀k > 0,
where xi(k + 1) = Aixi(k) +Biui(k) + Eivi(k) with ui(k) ∈ Ui and vi(k) ∈ Vi.

Assumption 3. Xi is a robustly constrained control invariant set with respect to Ui

and Vi for the subsystem Si with the PSF (2).

The nominal stability condition for Σ with the PSF (5) without any data losses
and disturbances is then stated in the next theorem, wherein the global block-diagonal
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matrices P := diag[Pi]
h
1 , Q := diag[Qi]

h
1 , S := diag[Si]

h
1 , R := diag[Ri]

h
1 are the LMI

variables.

Theorem 3.3. Let 0 < σ < 1. Consider the nominal controlled system Σ (5) without
any data losses and disturbances, i.e J = Z+ and di(k) = 0, that have the controls
ui(k) = u∗i (k) from the decentralised MPC optimisations (12), or taken the values
from the respective operators, i = 1, 2, . . . , h. Suppose that

(1) Assumptions 3 holds true;
(2) The following LMIs are feasible:

P PAΣ PB −PB

∗ σP −Q −S S + (σP −Q)B

∗ ∗ −R R+ STB

∗ ∗ ∗ BT (σP −Q)B − 2BTS −R

 ≻ 0, (14)

[
Qi Si

ST
i Ri

]
≺ 0, i = 1, . . . h, (15)

where B := (In −A)−1B and AΣ = A+ EHsF +BKHc;

(3) (a) ui(k) = ũi(k) if the control ui(k) does not verify (9), where ũi(k) is a
solution to (13),

(b) xi(k + 1) ∈ Xi ∀k > 0, xi(k + 1) = Aixi(k) +Biũi(k) + Eivi(k),

i = 1, . . . , h;

Then the nominal system Σ (5) is guaranteed stabilised by h stabilising agents in the
sense that x(k) remains bounded and x(k) → 0 as k → ∞.

Proof. In Appendix B.

Remark 1. The condition (4) in Theorem 3.3 is required for the recursive feasibility
of MPC since the optimisation of the stabilising agent in (13) does not (and can not)
include the state constraint in the problem formulation. Nevertheless, this has not
been found an issue with the AGC problem in the simulation studies.

In order to solve the matrix inequality (14) in Theorem 3.3 and determine the gains
Kij of the form Kij = YijP , similarly to the development in (Kothare, Balakrishnan,
& Morari, 1996), the following LMI is employed instead of (14):

P (A+ EHsF )P +BY BP −BP

∗ M −S S +MB

∗ ∗ −R R+ STB

∗ ∗ ∗ BTMB − 2BTS −R

 ≻ 0, (16)

11



whereP := P−1, M := σP−Q, Y := diag[
∑
j

Y ij ]
h
1 . The matrixQ can be recovered

from P = P−1 and M . With the zero steady states, the above LMI becomesP (A+ EHsF )P +BY BP

∗ M −S

∗ ∗ −R

 ≻ 0. (17)

The following theorem states the stability condition for Σ when there are intermit-
tent data losses and state disturbances.

Theorem 3.4. Let 0 < σ < 1. Consider the controlled system Σ (5) with the data lost
process (6) and non-zero disturbance di(k) ̸= 0, that have the controls ui(k) = u∗i (k)
from the decentralised MPC optimisations (12), or taken the values from the respective
operators, i = 1, 2, . . . , h. Suppose that

(1) Assumptions 3 holds true;
(2) The dissipation inequality (11) is fulfilled;
(3) (a) The supply rate ξi

(
x△i, w△i

)
(7) is non-positive,

(b) ui(k) = ũi(k) if the control ui(k) does not verify (9), where ũi(k) is a
solution to (13),

(c) xi(k + 1) ∈ Xi ∀k > 0, xi(k + 1) = Aixi(k) +Biũi(k) + Eivi(k),

i = 1, . . . , h;

Then the controlled system Σ (5) is guaranteed stabilised by h stabilising agents in
the sense that x(k) remains bounded and x(k) converges to a ball centred on 0 whose
radius is a K-function of ρ, where ρ > 0 depends on θi and ϵi, i ∈ {1, 2, . . . , h}.

Proof. In Appendix B.

The LMI dissipative condition in (2) of Theorem 3.4 is as follows:

P PA PB −PBA −P (L − LA)

∗ σP −Qτ −Sτ Sτ + (σP −Qτ )BA QτLA

∗ ∗ −Rτ Rτ + ST
τ BA ST

τ LA

∗ ∗ ∗ BT
A(σP −Qτ )BA − 2BT

ASτ −Rτ (ST
τ − BT

AQτ )LA

∗ ∗ ∗ ∗ Zτ − L T
AQτLA


≻ 0,

for all τ ∈ {1, 2, . . . , µ},
(18)

where

B := [(AΣ)
τ−1B (AΣ)

τ−2B . . . AΣB B],

L := [(AΣ)
τ−1L (AΣ)

τ−2L . . . AΣL L],

A := (AΣ)
τ , BA := (I − A )−1B, LA := (I − A )−1L ,

Qτ := diag[Qi]
τ
1 , Sτ := diag[S̆i]

τ
1 , Rτ := diag[R̆i]

τ
1 , Zτ := diag[Z̆i]

τ
1 .

12



It is derived by substituting the model of Σ (5) and the predictive state vec-

tor of the form x(k + τ) = A x(k) + Bw̆(k) + L d̆(k), and the steady state

x̄ = (I − A )−1B ˘̄w + (I − A )−1L d̆(k), into the dissipation inequality (11), then re-

arranging the matrices to form the inequality in the variables x(k), w̆(k), ˘̄w, and d̆(k).

We will firstly determine the feasible Qi, Si, Ri, Pi, and Kij from the LMI (16),
then re-use the resultant Ri and Pi to determine Si and Qi from the LMI (18) having
only Si, Qi and Zi as variable, as follows:

P PA PB −PBA −P (L − LA)

∗ σP −Qτ −Sτ Sτ + (σP −Qτ )BA QτLA

∗ ∗ −Rτ Rτ + ST
τ BA ST

τ LA

∗ ∗ ∗ BT
A(σP −Qτ )BA − 2BT

ASτ −Rτ (ST
τ − BT

AQτ )LA

∗ ∗ ∗ ∗ Zτ − L T
AQτLA


≻ 0,

for all τ ∈ {1, 2, . . . , µ}.
(19)

The control algorithm with the PSF for each single subsystem consisting of a local
MPC, an operator, and a stabilising agent is as follows:

Procedure 1. − Partially Decentralised Semi-Automatic Control with MPC and PSF

(1) Off-line: Select the parameters σ, βi, and ϵi, i = 1, 2, . . . , h. Determine the QDC
coefficient matrices Qi, Si, Ri and the cooperative-state feedback gains Kij for
all possible connection structures Gc (with different Hc) from LMIs (16) and
(19).

(2) Online: At every revived time step jq > 0,
(a) Solve the MPC optimisation (12) for the minimising vector u∗i (k) using the

known local state xi(jq).
(b) Send the value u∗i (k) to the stabilising agent.
(c) The stabilising agent then

(i) Receives the control ûi(k) from the MPC (i.e. ûi(k) = u∗i (k)) in the
automatic control mode or from the operator in the manual control
mode.

(ii) Receives the neighbouring states xj(jq) via the available communica-
tion channels.

(iii) Updates the QDC inequality (9) using the calculated x△i(jq), ξi(q−1),
and the local states xi(jq), as well as the off-line computed coefficient
matrices Qi, Si, Ri, and the respective gains Kij .

(iv) Verifies the satisfaction of (9) with ûi(k).
• If (9) holds true, outputs the control ûi(k) to manipulate the sub-
system Si.

• Otherwise solves the optimisation (13) for ũi, then overrides ûi(k)
with ũi and outputs the control ũi to manipulate the subsystem Si.

(d) Return to the first online step a).

Numerical simulation with the AGC problem for a power system having four control
areas is studied in Matlab R2015b environment with Yalmip toolbox and SeDuMi v1.3
SDP solver in the next section.
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4. Illustrative Example

4.1. Automatic Generation Control - A Power System Application

Power systems are typical examples of interconnected systems whose subsystems are
dynamically coupled. Among many alternating current (AC) power system appli-
cations, the ‘automatic generation control’ problem (Wood, Woolenberg, & Sheblé,
2013), in which a large-scale power system is formed by interconnected subsystems
called ‘control areas’, has been identified as the key participant in the secondary con-
trol layer to regulate the electrical frequency and the ‘tie-line’ power flows (linearly
approximated power flows) between the control areas.

In a traditional AC power system, the electrical frequency of a synchronous gener-
ator is regulated to maintain a near constant nominal value of 50 Hz or 60 Hz. For
a turbine-generation set (power generation source), a ‘governor’ is installed in a local
control panel for this task. The governor is a controller in a feedback control loop with
the frequency as a controlled variable. For a multiple-machine power system (multi-
ple power generation sources), such local governors will not be able to eliminate the
steady-state offset values, in other words, deviations from the nominal values in the
steady state, when there are non-negligible permanent load changes.

The current technique to solve this problem, i.e. to bring the frequency back to
the nominal value within acceptable deviations, is to adjust the output powers of
generators at respective local control areas. Such adjustments can be computed from
the small-signal model (with incremental variables) that also includes the tie-line power
flows between the allocated control areas and the mechanical powers required from the
corresponding prime-movers − the turbines. A centralised control scheme is often the
norm for this problem which is usually referred to as ‘automatic generation control’
(Wood et al., 2013) problem representing a conventional multi-variable supplement
frequency control scheme. It is called ‘supplement’ because the primary frequency
regulation is the responsibility of the local governor.

The AGC problem with small-signal models of a power system defines a multi-
variable control problem of a state-coupled control-decoupled interconnected system as
in the control literature, see, e.g. (Lunze, 1992). Furthermore, there is always an option
for manual manipulations of a local subsystem in this AGC application. Therefore, the
SA algorithm that is segregated from the control algorithm for guaranteeing the global
system stability is a suitable solution for this application.

It is worth noting here that, AGC is a classical problem in power systems. There
are currently progressive research works on new control problems in power systems
that integrate sustainable energy sources and smart grids, see e.g. (Weitenberg et al.,
2018), and this is outside the scope of this illustrative example. The semi-automatic
control scheme with stabilising agents is, nevertheless, applicable to generic network
systems described in Section 2.

4.2. Case studies

The small-signal model without local losses is treated as a linear state-space model for
the multi-variable control design, similarly to the work in (Tran & Ha, 2018a). The
(global) open-loop system is unstable. The simulation studies here have re-used the
model parameters and settings in (Tran & Ha, 2018a), as follows (and Appendix A):

Sampling and updating time: Ts = 2. Initial state vectors: x1 = 0; x2 = 0; x3 =
0; x4 = 0. State constraint: (−∞, +∞). Control constraint: |ui(k)| 6 0.5. Weighting

14



Figure 3. Control areas are serially connected via tie-lines (Tran & Ha, 2018a).

coefficients: Wx = diag{50 50 0 0 50 50 0 0 50 50 0 0 50 0 0}, Wu = diag{1 1 1 1}.
Predictive horizon: N = 4. Permanent (constant) load disturbance: In this simulation
study, the load in area 2 increases 25% while the load in area 3 decreases 25% from
the time step 2 onward (∆PL). The weighting coefficients for the two state variables
∆Pmech and ∆Z are set to 0. The trajectories of state and control elements from the
centralised MPC are shown in Figure 4a.

4.3. Simulation results without the PSF strategy in a perfect data
environment

Case study 1a:
The centralised MPC with the predictive horizon of N = 12 provides a good per-

formance for this example. However, the centralised MPC with N = 4 is unstable
without the stabilising agent as shown in Figure 4b.
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(a) With a longer predictive horizon N = 12. The steady states are reached after 70 seconds, approx-

imately.

(b) With a shorter predictive horizon N = 4. The system is not stabilised.

Figure 4. Centralised MPC without the stabilising agent.

Case study 1b:
In a fully-decentralised MPC (DeMPC) that uses the same predictive horizons of

N = 4 for all subsystems, the system is not unstable, but the control performance
is much worse than that in the centralised MPC with N = 12. When the DeMPC is
implemented with SA developed in this paper using Procedure 1 and N = 4, the time
responses in Figure 5 show a control performance comparable to the centralised MPC
having a longer predictive horizon N = 12, as in Figure 4a. The settling time with
DeMPC is, however, 25% longer, approximately.
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Figure 5. Fully decentralised MPC with stabilising agent and a predictive horizon N = 4. The control

performance is comparable to that of the centralised MPC with N = 12 in Figure 4a. The steady states are
reached after 120 seconds, approximately, which is longer than that in the centralised MPC.

4.4. Simulation results with the PSF strategy in a perfect data
environment

Case study 2:
We now implement the PSF strategy with cooperative-state feedback gains to this

AGC problem. The control performances of the DeMPC with PSF and SA have been
improved with the smaller steady states of tie-line power flows in these two case studies,
one with the full cooperative states from all neighboring control areas in Figure 6a
(case study 2a), and the other with only a part of the cooperative states in Figure 6b
(case study 2b).

In Figure 6a, the cooperative states are from the control area 2 → 1, 1 → 2, 3 → 2,
2 → 3, 4 → 3, and 3 → 4. In Figure 6b, the cooperative states are from the control
areas 2 → 1, 1 → 2, 3 → 2, and 3 → 4 only, i.e. two communication links are missing.

The tie-line power steady states with partial cooperative states in case study 2b are
similar to those with full cooperative states in case study 2a, but the control moves
are slightly larger. They are much smaller than those in the DeMPC of case study 1b
without any cooperative state feedbacks shown in Figure 5.
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(a) Case study 2a - Full cooperative states. The steady states are reached after 140 seconds, approx-

imately. The tie-line power steady states shown in the top sub-figure are much smaller than those in
the DeMPC in Figure 5.

(b) Case study 2b - Partial cooperative states. The steady states are also reached after 140 seconds,
approximately. Two communication links (to the control area no. 3) are missing. The tie-line power

steady states are still similar to those with full cooperative states in case 2a above, but the control

moves are slightly larger.

Figure 6. Decentralised MPC with PSF and stabilising agent, predictive horizon N = 4 - Two case studies
with full and partial cooperative states. The tie-line power steady states are much smaller than those in the

DeMPC without any cooperative state feedbacks shown in Figure 5.

Case study 3:
Now, we assume that only two communication links are available in the next case

study: The cooperative states are from the control areas 2 → 1 and 3 → 4 only, i.e. four
communication links are missing. The resulting time responses are shown in Figure
7a.
Case study 4:

In this fourth case study, two communication links are missing similarly to the case
study 2b, but they are different links. The cooperative states are from the control
areas 2 → 1, 2 → 3, 4 → 3, and 3 → 4. The resulting time responses are shown in
Figure 7b.

18



The performances in both case studies 3 and 4 in Figures 7a and 7b are briefly
summarised as follows: The tie-line power steady states and the settling times are
slightly worse than those in the case study 2a with full cooperative states, but are
better than those in case studies 1b without any cooperative states shown in Figures
5. Notably, they are also slightly worse than those in the case study 2b with a different
set of partial cooperative states. The control moves in case study 4 are, however,
smaller than those in case study 3. This can be explained by comparing the number
of communication links available: four communication links are missing in case study
3 while only two are missing in case study 4.

(a) Case study 3 - Partial cooperative states. The steady states are also reached after 140 seconds,

approximately. The communication links to and from both the control areas no. 2 and 3 are missing.
The tie-line power steady states are larger than those with full cooperative states in case study 2a,

but still smaller than those in DeMPC shown in Figure 5.

(b) Case study 4 - Partial cooperative states. The steady states are only reached after 170 seconds,

approximately. Only the communication links to and from both the control area no. 2 are missing.

The tie-line power steady states are larger than those with full cooperative states in case study 2a,
but still smaller than those in DeMPC in Figure 5. The control moves are, nevertheless, smaller than

those in Case 3 above.

Figure 7. Decentralised MPC with PSF and stabilising agent, shorter predictive horizon N = 4 - Two case
studies of partial cooperative states. The tie-line power steady states are smaller than those in the DeMPC

without any cooperative states shown in Figure 5.
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4.5. Simulation results with the PSF strategy in an intermittent data lost
environment

The system becomes unstable with a centralised MPC without using SA in the
presence of intermittent data losses with µ = 7. The unstable trajectory is not printed
out here. The data lost process of µ = 7 has been simulated with random-walk
variables.

Case studies 5a, 5b, and 5c:
Decentralised MPC with PSF and SA in the presence of intermittent data losses.

Case study 5a corresponds to case study 1a with full cooperative states. Case study
5b corresponds to case study 3 with partial cooperative states. Case study 5c also
corresponds to case study 3 but with a different data lost sample.

The time responses from case study 5a are shown in Figures 8-(a) and -(b). The time
responses from case study 5b are shown in Figures 9-(a) and -(b). The time responses
from case study 5c are shown in Figures 10-(a) and -(b).

The performances in both case studies 3 and 4 in Figures 8, 9, and 10 are briefly
summarised as follows: The system is stable in these three case studies thanks to the
algorithm of SA in Procedure 1. The settling times, however, become longer. Notably,
the tie-line power steady states are not too much different compared to those in case
studies 3 and 4 without data losses.

The most relevant result here is that without SA, the system is unstable in all cases
of full and partial cooperative states, also in centralised MPC, when the data are lost
intermittently with µ = 7.
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(a) The control and three states

(b) All elements of the global state vector when the data are lost intermittently, µ = 7.

Figure 8. Decentralised MPC with PSF and stabilising agent. Case study 5a - Full cooperative states with

intermittent data losses. The system remains attractive.
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(a) The control and three states

(b) All elements of the global state vector when the data are lost intermittently, µ = 7.

Figure 9. Decentralised MPC with PSF and stabilising agent. Case study 5b - Partial cooperative states

with intermittent data losses. The system remains attractive.
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(a) The control and three states

(b) All elements of the global state vector when the data are lost intermittently, µ = 7.

Figure 10. Decentralised MPC with PSF and stabilising agent. Case study 5c - Partial cooperative states

with intermittent data losses. The system remains attractive.

5. Conclusion

A partially decentralised scheme for off-line and online computations of the semi-
automatic generation control for power systems has been presented. By applying the
stabilising agents in an open-loop setup, the semi-automatic control that is involved
with remote human operators and local automatic control systems becomes imple-
mentable. In this approach, intermittent data losses are treated with the model-based
predictions and the data-lost robust dissipativity of the controlled system. The incor-
porated perturbed cooperative state feedback strategy effectively reduces the demands
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on the communication links and online data by adopting the static cooperative state
feedback gains and the local optimising control variables. This incorporation has re-
sulted in the decoupled objective function for the local MPC. Not only simplifying
the optimisation and using less online data, the approach offers some advantages of a
semi-automatic control paradigm in an imperfect data environment. Hereby, the fu-
sion between cooperative controls and human-machine interfaces is realisable. From
the control perspective, a relaxed non-monotonic Lyapunov function has been em-
ployed in the stabilizability condition to make the decentralised control design less
conservative.
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6. Appendices

Appendix A. State Realization Matrices, Gains and QDC Coefficient
Matrices

The global model of the four control-area AGC problem is as follows:

A =



−0.75 −.025 0.25 0 0 0 0 0 0 0
2.54 0 0 0 −2.54 0 0 0 0 0
0 0 −0.2 0.2 0 0 0 0 0 0
−8.33 0 0 −0.25 0 0 0 0 0 0
0 0.025 0 0 −.06875 −0.025 0.025 0 0 0
0 0 0 0 1.5 0 0 0 −1.5 0
0 0 0 0 0 0 −0.1 0.1 0 0
0 0 0 0 −0.5714 0 0 −0.04 0 0
0 0 0 0 0 0.01 0 0 −0.0571 −0.0286
0 0 0 0 0 0 0 0 2.5 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1.667 0
0 0 0 0 0 0 0 0 0 0.025
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0.0285 0 0 0 0
0 0 −2.5 0 0
−0.05 0.05 0 0 0
0 −0.0667 0 0 0
0 0 −0.06875 −0.025 0
0 0 0 −0.1 0.1
0 0 −6.667 0 −0.2



,

B =


B11 0 0 0
0 B22 0 0
0 0 B33 0
0 0 0 B44

 ,
where B11 = [0 0 0 .25]T ; B22 = [0 0 0 .04]T ; B33 = [0 0 0 0.0667]T ; B44 = [0 0 0 .2]T .
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The QDC coefficient matrices when Gc = Gs:

R1 = −0.0755, Q1 =


−10.1187 3.1033 −3.5984 0.8876
3.1033 −1.6280 1.2583 −0.7481
−3.5984 1.2583 −2.1875 0.1233
0.8876 −0.7481 0.1233 −0.6123

 , S1 =


0.7706
−0.3267
0.3128
−0.0881

 ,

R2 = −0.0704, Q2 =


−8.0863 −0.6573 −0.1680 0.6735
−0.6573 −0.9972 −0.0167 −0.0166
−0.1680 −0.0167 −0.6755 −0.1246
0.6735 −0.0166 −0.1246 −0.8771

 , S2 =


0.0567
−0.0002
−0.0047
−0.0750

 ,

R3 = −0.0714, Q3 =


−18.6982 −1.7467 −0.4830 2.2475
−1.7467 −0.9403 −0.0510 −0.0125
−0.4830 −0.0510 −0.8342 −0.0100
2.2475 −0.0125 −0.0100 −0.7751

 , S3 =


0.3216
0.0008
0.0041
−0.1325

 ,
R4 = −0.0809, Q4 =

−77.0974 −1.4406 4.7235
−1.4406 −0.7103 −0.0098
4.7235 −0.0098 −0.6141

 , S4 =
 2.3260

0.0474
−0.2192

 .
The cooperative state feedback gains when Gc = Gs:

K12 = 10−13 ×
[
0 −2.747 0 0

]
,

K21 =
[
0 −4.8246 0 0

]
, K23 =

[
−48.677 −4.795× 10−12 0 0

]
,

K32 =
[
−6.961× 10−12 −4.8024 0 0

]
, K34 =

[
−5.809 0 0

]
,

K43 = 10−12 ×
[
−0.3096 0 0

]
.

The structures of Kij have been declared for the variable prior to forming the LMIs.

Appendix B. Proofs

Proof. Lemma 3.1:

From the conditions (2), the following inequality is obtained for all k > 0:

V
(
x(k)

)
6 σV

(
x(k − 1)

)
+
∣∣ξ(x(k), u(k))∣∣ (B1)

6 σ
[
σV

(
x(k − 2)

)
+
∣∣ξ(x(k − 1), u(k − 1)

)∣∣]+ ∣∣ξ(x(k), u(k))∣∣
6 σ2V

(
x(k − 2)

)
+
[
σ
∣∣ξ(x(k − 1), u(k − 1)

)∣∣+ ∣∣ξ(x(k), u(k))∣∣].
Continuing in this way, we get

V
(
x(k)

)
6 σkV

(
x(0)

)
+

k−1∑
ℓ=0

σℓ
∣∣ξ(x(k − ℓ), u(k − ℓ)

)∣∣. (B2)

Since
∣∣ξ(x(k), u(k))∣∣ → 0 as k → ∞ due to the condition (3), applying the convolution

sum to the second term on the right hand side of (B2), we have both the first and
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second terms on the right hand side of (B2) goes to zero as k → ∞ with 0 < σ < 1.
A detailed proof for this convergence can be found in (Tran et al., 2019). Accordingly,
with the condition (1) we conclude that x(k) is finite for all k > 0 and ∥x(k)∥ → 0 as
k → 0.

Proof. Theorem 3.3:

Attractivity: (i) - With the conditions (1) and (4), the MPC optimisation (12) is
recursively feasible with each xi(0) ∈ Xi, see, e.g., (Kerrigan & Maciejowski, 2000).
(ii) - With the conditions (2) and (3), the nominal controlled system Σ with the PSF
(5) is dissipative w.r.t. h supply rates −ξ(x△i, w△i), i = 1, 2, . . . , h, as per Definition
2.2 (with x̄ = Bw̄) and the QDCs (8) of all subsystems are fulfilled for all k > 0. We
thus obtain from Lemma 3.1 that for each xi(0) ∈ Xi, i = 1, 2, . . . , h, x(k) remains
bounded and x(k) → 0 as k → ∞.

Stability: For the global system Σ, let ε > 0 be such that the ball of
Bε = {x| ∥x∥ < ε} is a subset of X: Bε ⊂ X, X is compact (x(k) ∈ X ⊂ Rn).
Assume ∃ ∥x(k)∥ 6 δ1 ⇒ V (x(k)) 6 µ1 and {x|V (x) 6 µ1} ⊂ Bε, and there is µ2 ≥ µ1
such that ∃ ∥x(k)∥ 6 δ2 ⇒ V (x(k)) 6 µ2 and {x|V (x) 6 µ2} ⊂ Bε, and in addition,
{x|V (x) 6 µ1} ⊂ {x|V (x) 6 µ2} ⊂ Bε, with the continuous V (x).

Now, suppose ∥x(0)∥ 6 δ1 ⇒ V (x(0)) 6 µ1. From the proof of Lemma 3.1 above,
we obtain

V (x(k)) 6 σkµ1 + βk−1|ξ0|πσ, where πσ > 0 is a constant depending on σ,
ξ0 := ξ

(
x(0), u(0)

)
,

or V (x(k)) 6 σkµ1 + σk−1|ξ0|πβ, where πβ > 0 is a constant depending on β.

Then, there always exist a time κ > 0 such that V (x(κ)) 6 µ2, due to

(i) σkµ1 + |ξ0|max(βk−1πσ, σ
k−1πβ) < µ2, with σ < 1 and β < 1, and

(ii) the assumption on the QDC feasibility 0 > ξ(x(k), u(k)) > βξ(x(k−1), u(k−1)).

Therefore, there exits δ2 ≥ δ1 such that ∥x(0)∥ 6 δ2 ⇒ ∥x(k)∥ 6 ε ∀k > k∗ > κ.

This is different to the Lyapunov stability in that, the above is only achieved
∀k > k∗ > κ > 0, instead of ∀k > 0 and the storage function V (x(k)) of the
closed-loop system is a relaxed non-monotonic Lyapunov function.

This theorem has stated that the system Σ (5) is stabilised in the sense that x(k)
remains bounded and x(k) → 0 as k → ∞, but not asymptotically stabilised in the
Lyapunov sense, similarly to the proof in (Tran et al., 2019). The proof is complete.

Proof. Theorem 3.4:

In brief, the proof is similar that for Theorem 3.3 with the addition of ϵi θi.

Denote τ := λmax(Z̆). From the data-lost robust dissipation inequality (11) in the
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condition (3) and dT (k)d(k) 6 θ, the following inequality is obtained for all k > 0:

V
(
x(jq)

)
6 σV

(
x(jq−1)

)
+
∣∣ξ(x(jq), u(jq))∣∣+ τθ

6 σ
[
σV

(
x(jq−2)

)
+
∣∣ξ(x(jq−1), u(jq−1)

)∣∣+ τθ
]
+
∣∣ξ(x(jq), u(jq))∣∣+ τθ

6 σ2V
(
x(jq−2)

)
+
[
σ
∣∣ξ(x(jq−1), u(jq−1)

)∣∣+ ∣∣ξ(x(jq), u(jq))∣∣]+ (σ + 1)τθ.

Continuing in this way, we get

V
(
x(jq)

)
6 σqV

(
x(0)

)
+

q−1∑
κ=0

σκ
∣∣ξ(x(jq−κ), u(jq−κ)

)∣∣+ τθ

q−1∑
κ=0

σκ. (B3)

Apply the QDC equality (9), which is also true with the stabilising agent due to the
conditions (2) and (4), to the second term on the right hand side of (B3), we obtain

V
(
x(jq)

)
6 σqV

(
x(0)

)
+
∣∣ξ(x(0), u(0))∣∣ q−1∑

κ=0

σκβq−κ + θ
(
τ

q−1∑
κ=0

σκ + ϵ

q−3∑
κ=0, κ>2

σκβq−κ + 3ϵ
)
(B4)

(B5)

Therefore,

V
(
x(jq)

)
6 σqV

(
x(0)

)
+

∣∣ξ(x(0), u(0))∣∣max
(
βq−1 1− σq

1− σ
, σq−1 1− βq

1− β

)
+ ϵθmax

(
βq−3 1− σq−2

1− σ
, σq−3 1− βq−2

1− β

)
+ θ

(
τ
1− σq

1− σ
+ 3ϵ

)
, (B6)

in which σqV
(
x(0)

)
→ 0, σq−1 1−βq

1−β → 0, βq−1 1−σq

1−σ → 0, σq−3 1−βq−2

1−β → 0,

βq−3 1−σq−2

1−σ → 0, as q → ∞ (i.e. as k → ∞), and θ
(
τ 1−σq

1−σ + 3ϵ
)
is a finite number.

V (x) = xTPx, P ≻ 0, P is full row rank, and (B6) ⇒ ∥x(jq)∥ → 0 as jq → ∞ if
θ = 0.

Furthermore, with the conditions (1) and (5), the MPC optimisation (12) is recur-
sively feasible with each xi(0) ∈ Xi, similarly to Theorem 3.3. Therefore, x(k) remains
bounded and x(k) goes to a neighbourhood of the origin as k → ∞. The result for the
case of θ ̸= 0 is a direct result of Theorem 2 in (Tran et al., 2019).
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