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 THESIS FORMAT 
 

The thesis has been prepared using conventional structure, comprised of a series of 

chapters. There are seven chapters with an abstract outlining the main results that have 

been achieved in the conducted research. Chapter 1 is dedicated to an introduction into 

the topic of the research (concentrated solar thermal applications), with a review of the 

principal physical phenomena behind photo-thermal conversion and spectrally-selective 

mechanisms to enhance solar-to-heat conversion. The chapter is concluded with the 

literature review, analysing the spectrally-selective surfaces developed to date and the 

key problems they face if applied in high temperature concentrated solar thermal 

applications.  

Chapter 2 revises the methodology that has been used, explaining the principal work 

and mechanisms of device operation and physical processes behind it.  

Chapter 3, Chapter 4 and Chapter 5 describe the main results that have been achieved 

during my PhD research. Chapter 3 describes new findings in the family of spectrally-

selective surfaces based on noble metal cermets. Chapter 4 reflects on the semiconductor 

based approach of the solar absorber coatings using TiAlN family as the main solar 

absorbing component. Chapter 5 demonstrates a novel spectrally-selective solar absorber 

that is comprised of a multilayer stack with two Ta:SiO2 cermets. 

Chapter 6 analyses the deposition conditions of one of the main components of the 

spectrally-selective surface, an infrared back reflector leading to the highest possible 

ramp up in reflectance starting from 2500 nm. 

Finally, Chapter 7 is devoted to a discussion and conclusion of the main findings 

with some overlook for the future work. 
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Abstract 
 

The objective of this project is to enhance the efficiency of photo-thermal conversion 

by improving the optical and other properties of solar-absorbing surfaces. Designing a 

suitable coating for these surfaces involves a delicate balance between thermal stability, 

reflectance and emittance. As an added complication, it is necessary to have a coating 

with a spectral response that switches from highly absorptive in the visible and near-IR 

range to reflective at longer wavelengths. Despite extensive prior investigations in this 

area, there are still several problems that remained unsolved — in particular the 

maintenance of structural integrity and optical response of solar absorbers operating at 

higher temperatures (>500ºC). The results of the present work are highly relevant to 

various kinds of high temperature concentrated solar power (CSP) applications as well as 

to thermo-photovoltaic (TPV) systems.  

A number of advanced new spectrally-selective solar absorbers: Al/AlN/Au-

AuAl2:AlN/AlN/SiO2, Al/AlN/Au-AuAl2:AlN/AlN/ Au-AuAl2:AlN/AlN/SiO2, 

Pt/AlN/TiAlN/ AlN/SiO2, Pt/Ta:SiO2/Ta:SiO2/AlN/SiO2 and Ta/Ta:SiO2/ 

Ta:SiO2/AlN/SiO2 were investigated. All were produced by magnetron sputtering, and 

their optical properties and thermal stability assessed.  

This work has shown that the Au-based solar absorbing structures are strongly 

oxidation-resistant, however, their exploitation in CSP applications is currently limited 

due to coarsening and agglomeration of the Au inclusions in the dielectric host 

temperatures greater than 400ºC. A solution to this problem is proposed : the Au 

nanoparticles in the cermet layer are allowed to alloy with Al. This converts them to the 

intermetallic compound AuAl2, which is considerably more resistant to coarsening than 

pure gold. This was achieved by an introduction of the Al substrate to serve both as an 

IR-reflecting layer and as a source of the Al species to form more structurally and 

temperature stable AuAl2 nanoparticles in the AlN host. The alloying process was 

thermally induced at 200ºC and was finalised at 500ºC, where alloying of all Au 

inclusions present in the matrix was achieved. The resultant new structure was able to 

endure 168 hours annealing in vacuum at 500ºC without major change. Such stability has 

apparently not been achieved before for Au-based solar absorbers. Furthermore, the 

AuAl2 formation was shown to be also beneficial for the solar absorptance (𝛼𝑠) 

enhancement, leading to an increase in 𝛼𝑠 by 3%, from its initial 92% to a final 95%, 

while preserving low emittance.  
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Spectrally-selective coatings based on theTixAl1-xN system were also considered due 

to their known diffusion barrier properties, high thermal tolerance, and very suitable 

optical properties. The composition of TixAl1-xN, (effectively, the Ti/Al ratio) was 

selected to achieve a maximized solar absorptance of the overall stack.  A tandem 

absorber, which included top anti-reflective layers, was tested on a stainless-steel 

substrate in order to see how the stack design would serve in parabolic trough-based 

power plants that used stainless steel pipe to carry the heat-transfer fluid. The diffusion 

of the Fe present in stainless steel into the coating is known to normally start at 600ºC but 

this was successfully suppressed in the present work by an application of an AlN diffusion 

barrier. The whole TixAl1-xN-based stack, despite some structural modifications upon 

heating up to 900ºC, preserved its optical integrity with solar absorptance remaining 

unchanged at 92%.  

Finally, a new algorithm for designing a nearly ideal cermet-based spectrally-selective 

absorber was developed. This enabled achievement of 𝛼𝑠> 97%. There are only a few 

structures known to absorb solar energy with  𝛼𝑠 in the 97-98% range, however, their 

optical performance is degraded in the range 250ºC-500ºC due to surface oxidation, 

diffusion of the back reflector into the coating, shape and/or phase transformation of the 

nanoparticles. The result may be a significant drop in solar absorptance down to 84%. 

The new algorithm was exploited in the present project to design a novel spectrally-

selective coating, the heart of which was composed of two absorbing Ta:SiO2 layers with 

different Ta content, which showed not only an efficient light absorptance with 𝛼𝑠 = 

97.6%, but also preservation of its value up to 900ºC with simultaneously improved 

spectrally-selective performance due to recrystallization of the Pt or Ta back-reflectors. 

These effects lowered thermal emittance to 0.04 and 0.15 from initial values of 0.18 and 

0.21, respectively. The Ta:SiO2 cermet-based absorber on a Pt reflector showed good 

thermal stability up to 1000ºC, with a minor solar absorptance reduction to 95%, but high 

enough for an enhanced photo-thermal conversion. This would appear to be an 

unprecedented degree of stability at 1000°Ç  for a cermet-based solar absorber. 

In summary, this project has resulted in the development of new stack designs for use 

in high temperature conversion devices. A new way of enhancing thermal stability in a 

Au-based coating has been discovered, and a new procedure for designing coatings 

demonstrated. 
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