UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

A NEXUS APPROACH TO ENERGY, WATER, AND FOOD SECURITY POLICY MAKING IN INDIA

By

Garima Vats

A dissertation submitted in the fulfilment of the requirement for the degree Doctor of Philosophy

Sydney, Australia

2019

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Garima Vats, declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the School of Information, Systems, and

Modelling under the Faculty of Engineering and Information Technology at the

University of Technology Sydney. This thesis is wholly my own work unless otherwise

reference or acknowledged. In addition, I certify that all information sources and

literature used are indicated in the thesis. This document has not been submitted for

qualifications at any other academic institution. This research is supported by the

Australian Government Research Training Program.

Production Note:

Signature: Signature removed prior to publication.

Date: 16. 08. 2019

iii

Dedicated to my parents

Acknowledgement

While I was engaged in exploring the concept of 'nexus' (the central idea of my thesis), I saw a striking similarity in the last few years of my life to this concept. This thesis examines the interlinkages or 'nexus' between energy, water, and food and associated policy trade-offs across different domains. My life in past few years seemed no different, what with the interlinkages in all its facets, and the trade-offs they demanded.

While I was the exploring the concept of energy, water, food nexus from different domains or perspectives, I simultaneously discovered some aspects of my own personality, barely known to me earlier. While examining the policy trade-offs, I recognized the ones real life offers us — either to comfortably survive in your "business-as-usual" or to push your own boundaries and step out of your comfort zone. No words can describe my experience of last few years, however, I can certainly articulate some words to thank those without whom I could not have initiated and completed this journey.

First and foremost, I am most thankful to God for blessing me with favourable circumstances so that I could use the best of my abilities to be where I am today. Most heartfelt and sincere thanks to Professor Deepak Sharma for his immeasurable guidance and support for the completion of this thesis. His philosophical insights and vision about the subject matter, life, and beyond helped me look at things in different light and also shaped me into a better individual. I would also like thank Dr. Ritu Mathur for her continuous support throughout my candidature. My sincere thanks to Mr. Ravindra Bagia for his prompt and invaluable feedback on my work whenever needed. I also take this opportunity to thank Dr. Suwin Sandu for sharing his knowledge on the subject. I would like to extend my thanks to professional editor Hazel Baker, who provided copyediting and proofreading services according to the IPEd guidelines for editing research theses.

I would like to thank my sister Neha and my brother Apoorva for giving me the strength and courage at all times to complete this journey. Special thanks to my friends and colleagues at the University of Technology Sydney, Kristy Mamaril, Avinash Singh, Phuong Nguyen, Dr. Muyi Yang, and Anushree Mistry. Your sharing of the journey's highs and lows made it so much more enjoyable. I would also like to thank some of my other friends, Ramandeep Kaur, Gaurav Kukreti, Hemraj Nagar, Tushar Saxena, Shegufa Zahedi, and Priyamvada Kayal who kept me motivated and helped me finish in their own capacities.

Lastly, I unreservedly dedicate this thesis to my parents, without whose incessant love and support I would not have been able to reach the final destination.

Table of Contents

CERTIFICA	ATE OF ORIGINAL AUTHORSHIP	iii
Acknowledg	gement	vii
Table of Co	ntents	ix
List of Figu	res	xii
List of Table	es	XV
	reviations	
Abstract		
	uction	
-		
	ound	
	ch Objectives	
1.3. Researc	ch Framework	15
1.4. Researc	ch Methods	17
1.5. Scope o	of Research and Data Considerations	20
1.6. Signific	cance of the Research	25
1.7. Organis	sation of the Thesis	25
Chapter 2 . A Rev	view of the EWF Nexus	29
2.1. Evolution	on of the EWF Nexus Research	30
2.1.	1. Energy-Water	30
2.1.3	2. Water-Food	34
2.1	3. Energy-Food	37
2.1.	4. Some Further Discussion	40
2.2. Nature	of the Nexus	40
2.2.	1. The Physical Domain	42
2.2.2	2. The Economic Domain	43
2.2.	3. The Environmental Domain	44
2.2.	4. The Social Domain	45
2.2.:	5. The Institutional Domain	45
2.3. Framing	g of the EWF Nexus	48
2.4. Summa	ry and Key Inferences	56
Chapter 3 . A Rev	view of Methods for EWF Nexus Assessments.	59
_	ls for EWF Nexus Assessment	
3.2 Critaria	for Review of Methods	62

3.3. Key Observations and Findings	64
3.4. Discussion	72
3.5. Methodological Selection: Input-Output Analysis	75
3.6. Summary and Key Inferences	
Chapter 4 . Energy, Water, and Food Security for India	
4.1. Origin of Energy, Water, and Food Securities	
4.1.1. The Concept of Security	
4.1.2. Re-conceptualisation of Security	81
4.2. EWF Security in India	83
4.2.1. Brief Historical Account of EWF Considerations	
4.2.2. EWF Security for India: Current Policies Pathway	91
4.3. Summary and Key Inferences	106
Chapter 5 . Development of Methodological Framework	107
5.1. Scenario Development	107
5.2. Analytical Framework	113
5.2.1. Development of Base-Year Information	115
5.2.2. Determination of Baseline Scenario	122
5.2.3. Implementation of Technological Change	126
5.2.4. Assessment of Price Impacts of Techno-economic Scenarios	126
5.3.5. Examination of Price-Induced Input Factor Substitution	128
5.2.6. Assessment of the Economy-wide Impacts of Technological Change	136
5.3. EWF Extended IO Model	136
5.3.1. Scenario Assumptions	136
5.3.2. Scenario Variables	141
5.3.3. Model Calibration and Validation	147
5.3.4. Key Data Sources and Preparation	148
5.3.5. Additional Discussion on the Methodological Framework	152
5.4. Impact Attributes	154
5.5. Summary and Key Inferences	162
Chapter 6 . Analysis of Alternative EWF Security Scenarios	164
6.1. Empirical Findings	164
6.1.1. Energy Security	164
6.1.2. Water Security	171
6.1.3. Food Security	
6.1.4. EWF Security: Trends and Trade-offs	177

6.1.5. Economic Outcomes	
6.1.6. Social Outcomes	190
6.1.7. Environment	197
6.1.8. Socio-Economic, Environmental: Trends and Trade-offs	203
6.1.9. Overall Trade-offs	208
6.1.10. Alternative Policy Scenarios versus the BAU Scenario	213
6.2. Policy Implications and Recommendations	223
6.3. Some Further Discussion	230
6.4. Summary and Key Inferences	233
Chapter 7. Conclusions and Recommendations	236
7.1. Summary and Conclusions	236
7.2. Limitations and Recommendations for Further Research	242
Appendices	248
Bibliography	352

List of Figures

Figure 1-1: SDGs and the EWF Nexus	_ 3
Figure 1-2: Research Framework	_ 16
Figure 1-3: Methodological framework	_ 18
Figure 1-4: Model Coverage	21
Figure 1-5: Structure of the Thesis	_ 27
Figure 2-1: EWF Nexus Domains	41
Figure 4-1: Maslow's Hierarchy of Needs	81
Figure 4-2: National Missions under NAPCC Contributing to EWF Security	92
Figure 5-1: Steps involved in the modelling procedure	115
Figure 5-2: Basic Layout of an IO table structure in GTAP (Walmsley et al. 2012)	117
Figure 5-3: Overview of IO coefficients table	123
Figure 5-4: Typical nesting structure of IO coefficients	129
Figure 5-5: Nesting Structure for Demand Side	132
Figure 5-6: Nested Structure for Electricity Generation, Petroleum Refining and Mining Sectors	135
Figure 5-7: Comparison of GDP Components between Upper middle and Lower middle economies (a); GDP	
Component Assumptions for India (2015-2047) (b)	139
Figure 5-8: Modelling Assumptions on GDP sectoral shares- India (2015-47)	140
Figure 5-9: EWF, Socio-economic and Environmental Attributes for India	155
Figure 6-1: Model Estimates of Energy Intensity of India (2015-47) across scenarios	165
Figure 6-2: Model Estimates of Per Capita Energy Consumption (2015-47) across scenarios	166
Figure 6-3: Model Estimates of Import Dependency of (a) Coal, (b) Gas, and (c) Oil	167
Figure 6-4: Model Estimates of Fuel Diversity for Electricity Generation (2015-47) across scenarios	169
Figure 6-5: Model Estimates of Value of net energy imports of total net imports (%) (2015-47) across scena	rios
Figure 6-6: Model Estimates of Households with access to modern cooking/heating fuels (%) (2015-47) acroscenarios	170 oss 171
Figure 6-7: Model Estimates of Freshwater Withdrawals per Capita (m³) (2015-47) across scenarios	172
Figure 6-8: Model Estimates of Water productivity in constant 2011 GDP/m3 of total water use (2015-47)	
across scenarios	173
Figure 6-9: Model Estimates of Relative Water Stress in percentage terms (2015-47) across scenarios	174
Figure 6-10: Model Estimates of Food Accessibility Index (2015-47) for India across scenarios	175
Figure 6-11: Model Estimates of Food Net Imports as % of Total Net Imports (2015-47) across Scenarios	176
Figure 6-12: Model Estimates of Rural (a) and Urban (b) Food Diversity Index (2015-47) across Scenarios _	177
Figure 6-13: Composite Indices for (a) Energy Security, (b) Water Security, and (c) Food Security	179
Figure 6-14: Model Estimates of Short-term Trade-offs between EWF Securities in India	183
Figure 6-15: Model Estimates of Medium-term trade-offs between EWF Securities in India	184
Figure 6-16: Model Estimates of Long-term Trade-offs between EWF Securities in India	185
Figure 6-17: Modelling Estimates for GDP per capita for India, 2015-47	186

Figure 6-18: Modelling estimates for Trade Balance per unit of economic output for India (2015-47)	188
Figure 6-19: Modelling estimates for Infrastructure Investment/GDP for India (2015-47)	189
Figure 6-20: Modelling estimates for employment as a percent of working population for India (2015-47)_	190
Figure 6-21: Modelling estimates for Skilled-to-Unskilled ratio for India (2015-47)	192
Figure 6-22: Modelling Estimates for Acceptability for India (2015-47)	193
Figure 6-23: Modelling estimates for Health Outcomes for India (2015-47)	194
Figure 6-24: Modelling estimates for Rural (a) and Urban (b) Food Affordability for India (2015-47)	195
Figure 6-25: Modelling estimates for Rural (a) and Urban (b) Energy Affordability for India (2015-47)	196
Figure 6-26: Modelling estimates of Per capita Carbon Emissions for India (2015-47)	198
Figure 6-27: Modelling estimates of Carbon Emissions per unit economic output for India (2015-47)	199
Figure 6-28: Modelling Estimates of Land requirement per capita for India (2015-47)	200
Figure 6-29: Modelling Estimates of Diversity Index for NPK Fertiliser Application for India (2015-47)	200
Figure 6-30: Modelling estimates of Fertiliser use in Tonnes per Billion Rupees of Crop Output for India (201	.5-
47)	201
Figure 6-31: Modelling estimates of per capita fugitive Emissions for India (2015-47)	202
Figure 6-32: Modelling estimates of Fugitive Emissions per unit economic output for India (2015-47)	203
Figure 6-33: Modelling Estimates of Composite Economic (a), Social (b), and Environmental (c) Outcomes_	205
Figure 6-34: Short term Socio-Economic, Environmental, and EWF Security Trade-offs for India	208
Figure 6-35: Medium-term Socio-Economic, Environmental, and EWF Security Trade-offs for India	209
Figure 6-36: Long-term Socio-Economic, Environmental, and EWF Security Trade-offs for India	210
Figure 6-37: Collective EWF security, socio-economic-environmental trade-offs in various scenarios	212
Figure 6-38: Energy security outcomes in the alternatives scenarios compared to the BAU scenario in short,	
medium and long term	217
Figure 6-39: Water security outcomes in the alternative scenarios compared to the BAU scenario in short,	
medium and long term	217
Figure 6-40: Food Security Outcomes in the Alternative Scenarios Compared to the BAU Scenario in the Sho	rt,
Medium and Long Term	219
Figure 6-41: Economic outcomes in the alternative scenarios compared to the BAU scenario in the short,	
medium, and long term	220
Figure 6-42: Social security outcomes in the alternative scenarios compared to the BAU scenario in the short	rt,
medium and long term	221
Figure 6-43: Environmental outcomes in the alternative scenarios compared to the BAU scenario in the sho	rt,
medium and long term	221
Figure 6-44: Aggregated security outcomes in alternative scenarios compared to the BAU scenario in short,	
medium and long term	223

List of Tables

Table 1-1: Data Considerations for Each Specific Objective	24
Table 2-1: Major Themes Covered in the Literature on Energy, Water, and Food Interconnections .	40
Table 2-2: Description of Nexus Domains	41
Table 2-3: Review Summary of Major Drivers in EWF Nexus Literature	50
Table 3-1: Review of Analytical Methods for EWF Nexus Assessment	65
Table 4-1: Key Existing Demand-side Energy Security Policies	93
Table 4-2: Key Existing Supply-Side Energy Security Policies	94
Table 4-3: Key Existing Water Security Policies	98
Table 4-4: Current and fully achievable sectoral water efficiencies in India	99
Table 4-5: Key Existing Food Security Policies	102
Table 5-1: Summary of scenario storylines	111
Table 5-2: Basic Layout of an IO Table	114
Table 5-3: Estimation of India GDP 2011-12 from GTAP: Factor and Expenditure Approach	117
Table 5-4: Model Coverage	119
Table 5-5: Values Assumed for Scenario Variables by the End of the Modelling Period across the D	ifferent
Scenarios	143
Table 5-6: Model Calibration	148
Table 5-7: Model Validation	148
Table 6-1: Component-wise GDP India for 2015 and 2047	186
Table 6-2: EWF Security, Socio-Economic and Environmental outcomes for alternative policy scend	arios, in
comparison with the Business-as-Usual (BAU) scenario	214
Table 6-3: Quantification of Security Outcomes compared to the BAU Scenario	215
List of Appendices	
Appendix A: Details of sectoral reclassification and the new IO matrix with 49 sectors and 5 factor	s of
production	248
Appendix B: Satellite Accounts	269
Appendix C: Nested elasticity structures	285
Appendix D: Crop-wise details on Agriculture and food sector scenario variables	289
Appendix E: Final Disaggregated Coefficient Matrix	294
Appendix F: Sources for development of satellite accounts	335
Appendix G: Assumed values and sources for elasticities of substitution	339
Annendix H: Energy, water, and food security attributes chosen for this research	347

List of Abbreviations

AAY Antyodaya Anna Yojana
AEZ Agro-ecological zoning
AoA Agreement on Agriculture

APDRP Accelerated Power Development and Reforms Programme

ASP Activated Sludge Process
BAT Best Available Technologies

BAU Business-as-Usual
BCM Billion Cubic Metres
BPL Below-poverty-line

BRICS Brazil, the Russian Federation, India, China, and South Africa

BTS Base Transceiver Station

CACP Commission for Agricultural Costs and Prices

CAGR Compounded Annual Growth Rate

CBM Coal Bed Methane

CCS Carbon Capture and Storage
CEA Central Electricity Authority
CES Constant elasticity of substitution
CET Constant Elasticity of Transformation

CGDS Capital Goods

CGE Computable General Equilibrium

CHP Combined Heat and Power

Comtax Commodity Tax

CPCB Central Pollution Control Board

CROPWAT Crop water requirements
CSP Concentrated Solar Power
DEA Data Envelopment Analysis

EEFP Energy Efficiency Financing Platform
EEIO Environmentally Extended Input-Output

ES Energy Security
EWF Energy-water-food

FAO Food and Agriculture Organization

FAOSTAT Food and Agriculture Organisation Statistics

FBEP Gross factor-based subsidies

FBR Fast Breeder Reactor FCV Fuel cell Vehicle

FDI Foreign Direct Investment

FEEED Energy Efficient Economic Development

FS Food Security

FTRV Gross Factor Employment Tax Revenue

GDP Gross Domestic Product

GHG Green House Gas
GoI Government of India
GST Goods and Services Tax

GTAP Global Trade Analysis Project

IADInstitutional Analysis and DevelopmentICDSIntegrated Child Development ServicesIESSIndian Energy Security Scenarios

IGCC Integrated Gasification Combined Cycle

IIUSE Intermediate Use

ILO Indian Labour Organisation

IMPACT International Model for Policy Analysis of Agricultural Commodities and

Trade

INM Integrated Nutrient Management

INR Indian Rupees IO Input-Output

ISA International Solar Alliance
ISEP Net Intermediate Input Subsidies

IWMPIntegrated Watershed Management ProgramIWRMIntegrated water resources managementJNNSMJawaharlal Nehru National Solar Mission

JNNURM Jawaharlal Nehru National Urban Renewal Mission

Kgoe Kilogram of oil equivalent

LEAP Long Range Energy Alternatives Planning system

LED Light Emitting Diode
LPG Liquefied Petroleum Gas
LUSET Land use evaluation tool
LWR Light Water Reactor
MARKAL Market and Allocation
MBR Membrane bio-reactors

MFAREV Export Tax Equivalent of Multi-Fibres Agreement (MFA) Quota Premia

MLD Million litres per Day MMT Million Metric Tonnes

MNRE Ministry of Renewable Energy

MNREGA Mahatma Gandhi National Rural Employment Guarantee Act

MoP Ministry of Power

MOSPI Ministry of Statistics and Programme Implementation

MoWR Ministry of Water Resources
MRIO Multi-Regional Input-Output
MSP Minimum Support Prices
MSW Municipal Solid Waste

MTEE Market Transformation for Energy Efficiency

MuSIASEM Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism

MW Mega Watts

NAPCC National Action Plan on Climate Change

NAS National Account Statistics

NCAER National Council of Applied Economic Research

NDC Nationally Determined Contribution

NEP National Environment Policy NHM National Health Mission NICRA National Initiative on Climate Resilient Agriculture

NITI National Institution for Transforming India

NMEEE National Mission for Enhanced Energy Efficiency NMSA National Mission on Sustainable Agriculture

NPK Nitrogen-Phosphorus-Potassium NSGM National Smart Grid Mission NSM National Solar Mission

NSSO National Sample Survey Organisation NTPC National Thermal Power Corporation NURM National Urban Renewal Mission

NWM National Water Mission

NWQSM National Water Quality Sub-Mission

PAT Perform, Achieve and Trade PDS Public Distribution System

PFA Power for All

PFCE Private Final Consumption Expenditure

PFI Population Foundation of India PHWR Pressurised Heavy Water Reactor PKVY Paramparagat Krishi Vikas Yojana

PLF Plant Load Factor PNG Piped Natural Gas

PPP Public-Private Partnership

PV Photovoltaic

PWHR Pressurized Heavy Water Reactor

R-APDRP Restructured Accelerated Power Development and Reforms Programme

RBI Reserve Bank of India

RGNDWM Rajiv Gandhi National Drinking Water Mission

RPOs Renewable Purchase Obligations

SAM Social Accounting Matrix SBR Submerged Bed Reactor

SC Super Critical

SDG Sustainable Development Goals

SEEP Super-Efficient Equipment Programme

SHM Soil Health Management
SMAF Sub-Mission on Agroforestry
SPM Suspended Particulate Matter

SWI Shannon Weiner Index

T&D Transmission and Distribution losses

TARIFREV Tariff Revenue

TFRV, ADV Ordinary import duty, ad valorem
TPDS Targeted Public Distribution System

UASB Upflow Anaerobic Sludge Blanket Reactor

UDAY Ujwal Discom Assurance Yojana

UIDSSMT Urban Infrastructure Development Scheme for Small and Medium Towns

UJALA Unnat Jyoti by Affordable LED for All

UNCED United Nations Conference on Environment and Development

UNDP United Nations Development Programme

UNESCAP United Nations Economic and Social Commission for Asia and the

Pacific

UNFCCC United Nations Framework Convention on Climate Change UNICEF United Nations International Children's Emergency Fund

UNU United Nations University
USC Ultra-Super Critical
USD United States Dollar

VDGM Domestic purchases, by government, at market prices VDPM Domestic purchases, by households, at market prices

VST Margin exports

VXMD Non-Margin Exports, At Market Prices

WEAP Water Evaluation and Planning,

WEF World Economic Forum
WEO World Energy Outlook
WRI World Resources Institute

WS Water Security

WSP Waste Stabilisation Ponds

WtE Waste-to-Energy

WTO World Trade Organization XTRV Ordinary Export Tax

Abstract

Prompted by the rising concerns about the security of Energy-Water-Food (EWF) – innate human needs – and premised upon the contention about the siloedness, and hence inadequacy, of current policy approaches to redress EWF security – this research examines the efficacy of EWF nexus-informed policy-approach for redressing EWF security in the context of India – a country whose future prosperity is critically dependent on the provision of adequate quantities of EWF, at affordable prices and by sustainable means. To achieve this objective this research has developed an EWF-extended Input-Output framework (model), supported by flexible production functions to accommodate price-induced input substitution possibilities. This framework is employed in this research to examine the impacts – in terms of selected attributes for EWF security, economic, social and environmental outcomes, over the period 2015-2047 – of (five) alternative policy pathways (scenarios). These scenarios include: Business-as-Usual (BAU), Energy Security (ES), Water Security (WS), Food Security (FS), and EWF-Nexusoriented (Nexus). Each scenario represents specific policy emphasis (e.g., ES scenario, on improving energy security; WS - water security, FS - food security, and Nexus - joint EWF security). Accordingly, each scenario is supported by a range of emphasis-relevant technologies and strategic measures to achieve its policy objective. The analysis in this research presents a rather insightful array of indications about EWF security, economic, social and environmental outcomes – over the short, medium, and long-term. For example, the ES scenario, while producing best energy security and economic outcomes in the long-term, is likely produce considerably worsened water security throughout the study period; and yield worst environmental outcomes in the short and medium-term. The FS scenario – while producing consistently superior food security outcomes, also produces the best water security outcomes in the short-term, and worst energy security outcomes in all time periods. The WS scenario, while producing considerably improved water security in the long-term, is likely to produce worst economic outcomes throughout the study period. Overall, the Nexus scenario produces the best joint EWF security outcomes, and considerably superior economic, social and environmental outcomes. These insights – especially cross-sectoral (e.g., energy, water, food), cross-domain (security, economic, social, environmental), and temporal (short, medium and long-term) tradeoffs – should provide the Indian policy-makers a robust platform for engendering policy debate and making appropriate policy choices for redressing the EWF security challenge, and for other pressing challenges underscored by multiplicity of interdependencies. Therein resides the significance of this research – it is argued.

