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Abstract

This paper presents a novel solution for
rectangular-shaped object pose estimation in
the robotic bin-picking problem, using data
from a single RGB-D camera collecting point
cloud data from a fixed position. The key ben-
efit of the presented framework is its ability to
accurately and robustly locate an object po-
sition and orientation, which allows for high-
precision robotic grasping and placing of such
objects in an open-loop motion execution sys-
tem. Firstly, intelligent grasping surface selec-
tion is performed, then Principal Component
Analysis is used for pose estimation and finally,
rotation averaging is integrated to significantly
improve noise-reduction over time. Compar-
isons between the resulting poses and ones es-
timated by a traditional Iterative Closest Point
technique, have demonstrated the framework’s
advantages for pose estimation tasks.

1 Introduction

Recent years have seen increased interest in autonomous
field operation, aided by high-precision perception capa-
bilities [Paul et al., 2016b] [Paul et al., 2016a] [Paul et
al., 2013]. The work presented in this paper has primar-
ily been motivated by the Mohamed Bin Zayed Interna-
tional Robotics Challenge (MBZIRC) 2020, to be held
in Abu Dhabi, UAE in February 2020. A fundamental
aim in MBZIRC is for an Unmanned Ground Vehicle
(UGV) to autonomously build a pre-designed structure
in a short time frame, which requires the demonstration
of robust and precise robotic pick-and-place capabilities.

This paper illustrates a perception solution for the
UGV to accurately estimate object shape for grasping
and releasing from a single viewing perspective for an
open-loop motion execution system. The solution pro-
posed involves identifying the surface of a single rect-
angular prism-shaped brick within a pile of unorgan-
ised bricks of predefined colour and size, and performing
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Figure 1: Proposed framework pipeline and its demon-
stration. (a) Pose estimation pipeline. (b) Simulation of
an arm-equipped robot detecting the best brick for pick-
ing from a pile, chosen brick is labeled with RGB-axes.
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highly accurate pose estimation and noise reduction by
exploiting a novel series of algorithms.

In the surface detection and segmentation stage, Prin-
cipal Component Analysis (PCA) is applied to the point
cloud data collected by the RGB-D camera. PCA is a
well-known technique used in dimensionality reduction,
feature extraction and distribution visualisation [Bishop,
2006]. The technique has been widely applied in vari-
ous scientific fields to accomplish numerous tasks such
as two-dimensional face recognition [Yang et al., 2004],
genome-wide single-nucleotide polymorphism data anal-
ysis [Abraham and Inouye, 2014], and robotic hands
posture and coordination synergies [Brown and Asada,
2007].

Due to the wall-building objectives of the MBZIRC
robot, the estimated pose of the brick must match the
center and natural orientation of the brick surface for ac-
curate picking. Knowledge of this pose can help with the
planning of a firm and robust grasping approach. Conse-
quently, accurate object placement for building construc-
tion becomes more straightforward. The added benefit
of accurate pose estimation is that it allows for a less-



constrained mechanical gripper design. On the one hand,
due to development time constraint, the robot grasping
mechanism offers limited error tolerance for successful
attachment. High-precision pose estimate becomes a rel-
atively cheaper option in this design activity. On the
other hand, data obtained from depth sensors typically
contains large amounts of noise, which may become the
major hindrance in achieving the system goal. For out-
door applications, especially in middle-eastern countries
where sunlight is particularly strong, sensor noise may
appear especially pronounced. The reason is that sun-
light consists of a strong infra-red (IR) light component
that can severely interfere with a camera’s IR stereo sys-
tem. PCA generated brick surface orientation estimates
will thus exhibit non-negligible variation from frame to
frame. To limit fluctuating pose problems due to noise,
multiple depth data sets can be collected over a short
time duration in which pose estimation is performed for
each time frame. By then applying a novel averaging
method it is possible to achieve the best estimate of face
orientation. Rotation averaging is thus a key component
of the presented high-precision pose estimation frame-
work.

1.1 Related Work

Previous works exploiting PCA-based feature extrac-
tion include, pulsed eddy current responses [Sophian et
al., 2003], change detection of multidimensional data
[Kuncheva and Faithfull, 2013], and colour retinal im-
ages [Li and Chutatape, 2004]. The proposed solu-
tion involves executing PCA feature extraction for three-
dimensional point cloud data.

To address the challenge of orientation robustness,
earlier works have proposed rotation averaging least
square solutions [Gamage and Lasenby, 2002], rotation
averaging for DNA helix [Wang, 1969], and large-scale
rotation averaging [Chatterjee and Madhav Govindu,
2013). [Hartley et al., 2013] provided a thorough review
on rotation averaging methods.

The methods can be categorised by the representation
domain they operate on. Rotations can be represented
in the angle-axis form in the Euclidean domain,

r = ¢u, peR, uek? u-ul =1 (1)
where vector r is a rotation of angle ¢ about an axis in
u. The definition is illustrated in Figure 2 [Sol, 2017].
Averaging boils down to finding the algebraic mean for
v. Rotations can also be represented in the Manifold do-
main of SO(3) (the group of all 3-dimensional rotations),
expressed as 3 X 3 rotation matrix R or unit quaternion,
q. The unit quaternion is defined as,

b=26 (2

q = (cos(),usin(9) ), 5

The set of all unit quaternions form a unit sphere, S in
R%. Figure 3 [Sol, 2017] illustrates rotation in the unit-
quaternion form. Averaging can be done as a Chordal
Ly-mean in the SO(3) domain.
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Figure 2: Rotation of a vector, x about the axis, u by
an angle, ¢ [Sol, 2017].

Figure 3: In unit 3-sphere manifold, quaternion q defines
an angle, 6 = %(;5 with a unit quaternion, q; [Sol, 2017].

The angle-axis rotation representation is inherently
error-prone as it allows representation ambiguity. Multi-
ple angle-axis values can all represent the same orienta-
tion. For example, the aforementioned angle-axis, r can
also be written as (2m — ¢)(—u). As another example,
a random angle, ¢ with a zero mean may show a small
magnitude due to noise: 0 < ¢ < e. Similarly, with a
small perturbation, it can swing in the opposite direction
and approach the maximum angle, ¢ — 27. Averaging
over such values will generally lead to a meaningless ori-
entation. For this reason, the SO(3) form, due to its
unique representation, has been chosen in the proposed
framework. In implementation, we use the unit quater-
nion for rotation parameterisation in SO(3) and perform
averaging by minimising the chordal error.

Alternatively, rotation averaging can also be viewed
from the perspective of the optimisation method in use.
Some SO(3) based methods may take an iterative form
to search where many steps are required to achieve solu-
tion convergence. There are also more elegant methods
that exploit simple linear algebra techniques if a closed-
form solution is theoretically guaranteed. For simplicity
and accuracy, this framework incorporates the simple
“Chordal Ly-Mean method” [Hartley et al., 2013].



1.2 Overview

The proposed framework can be described as a pipeline
that processes point cloud data received from an RGB-D
camera to robustly estimate the pose of a rectangular-
shaped object. The collected point cloud is first sim-
plified with a voxel grid filter [He et al., 1995]. Then,
it is filtered by distance, colour and number of points.
The filtered cloud is segmented into clusters of separate
surfaces, and PCA is applied onto these clusters for the
purposes of object recognition and pose estimation. Fi-
nally, and most importantly, rotation averaging is ap-
plied to the PCA outputs collected over multiple frames
for result stabilisation and noise reduction.

The remainder of this paper is structured as follows.
Section 2 describes region growing segmentation and
PCA, followed by the details of the proposed framework.
Section 3 documents the comparison between the pro-
posed solution and the Iterative Closest Points (ICP)
pose estimation method. The outcomes of Section 3 are
discussed in Section 4. Section 5 then concludes with a
summary of the proposed pipeline as well as potential
future research and development.

2 Methodology

This section first introduces the region growing segmen-
tation for point clouds and details the Principal Com-
ponent Analysis (PCA) that is used to determine the
primary axes. This is followed by a description of the
proposed framework for rectangular surface recognition
and pose estimation. The final subsection contains an
explanation of the rotation averaging method and details
of how it is integrated into the proposed framework.

2.1 Region Growing Segmentation

Region growing is a class of algorithm which is best
known for its “split and merge technique” [Adams and
Bischof, 1994]. Region growing might be used on point
cloud data to extract clusters of surface regions [Vo et
al., 2015].

Given a point cloud, P, the point, p; has a normal
vector, 7i; and a curvature value, ¢;. All normal vec-
tors are stored in the point normal set, N and curvature
values in the point curvature set, C.

Let R be the set of all regions extracted from the point
cloud and A be the remaining points. Initially, R = @&
and A =P\ R.

As long as A # @, region growing will choose the
starting point, p. with the minimum curvature value in
A to start the expanding process to determine the local
region of that point.

The chosen point, p. will then be added to the local
region set, R; and removed from A.

R; =R; U {p.} (3)

A=A\ {p.} (4)

Let N be the set of neighbours around p.. Each point,
pn € N, is checked to see if it satisfies a specific angle
threshold, 6;;, and curvature threshold, ¢;,. A qualifying
point set, Q will be added to R; and removed from A.

Q ={pn €N | O, > acos(7i,.Mc), ctn > cn —cet (5)
R, =R, UQ (6)

A=A\Q (7)

where 7,, and ¢, 7. and ¢, are the normal vector and
curvature values of points p,, and p., respectively.

After all neighbours of p. have been considered, R; will
be added to R. Then the algorithm will choose another
point in A and start the expanding process again until
A=o.

R=RUR, (8)

2.2 Principal Component Analysis

Principal component analysis (PCA) is a multivariate
technique with the goal being to extract and present
important data as principal components [Abdi and
Williams, 2010]. Initially, PCA was designed for digital
image processing but was later extended to be imple-
mented for point cloud data [Furferi et al., 2011].

In a point cloud, P with IV points, each point, p; is
presented as [x;,;,2]7 in the three-dimensional coor-
dinate system. P can be represented as a N columns
matrix:

P= [p17 P2, -5 Piy -oos pN] € RBXN
Pi = [xiayiwzi ]T € R3><17 (9)
i€Z,N>i>0

The empirical mean, M = [T, Ym, 2m]’ of P can be
calculated as,

N

N 1

m = N Z[aji,yi, zi]T (10)
i=1

It is then possible to obtain a zero-centered deviation
matrix, D € R**N by subtracting m from every point in
P,

D=P-mls«n (11)

The co-variance matrix, C € R3*? can then be calcu-
late as,
1

_ T
C= DD (12)



C is now symmetrical, and by applying eigen decom-
position the eigenvalues and eigenvectors of C are calcu-
lated,

C=VAVT,
A= diag( )\1,)\2,)\3), )\1 > )\2 > /\3, (13)
VVT = 15,5

where A is a diagonal matrix of dimension 3 x 3, with
the eigenvalues along the diagonal sorted in descending
order; and V is a unitary matrix whose columns are the
eigenvectors corresponding to the eigenvalues.

This operation is similar to performing Singular Value
Decomposition (SVD) on D as,

D =UA2VT,
(14)

A = diag(Af, A%, A7)
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Figure 4: PCA reveals the natural distribution of nor-
mally distributed data [Bishop, 2006]. Here eigenvectors
are labeled as u; and uy. The data mean is located
at the center of the surface. Standard deviations along
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each axis are the singular values A\ and A3. The ratio
P

of length-to-height is A7 : AJ.

The singular vectors and eigenvectors from both oper-
ations are the same. The difference is that the singular
values from SVD are square roots of the corresponding
eigenvalues. This is since the eigenvectors represent the
underlying orthogonal axis of uncorrelated data distribu-
tion. For a symmetrical geometrical shape, the eigenvec-
tors give the right choice of shape axis, and the empiri-
cal mean coincides with the shape’s centroid. In a cloud
patch, the PCA axis should be aligned with the rectan-
gle’s natural shape axis, and the PCA mean is at the
rectangle’s center. This concept is illustrated in Figure
4.

Moreover, the singular values are the standard vari-
ation of data distributions along each latent axis. The
singular value ratios should be indicative of the length-
to-height ratio of the rectangular brick surface, with each

class of brick having a unique length-to-height ratio (see
Table 4 for details). It is therefore possible to classify
the brick type by computing this singular value ratio,
or eigenvalue ratio. Performing eigen decomposition on
a symmetric matrix is much cheaper than SVD. Thus,
PCA is selected instead of direct SVD.

2.3 Proposed Framework

Preliminary Processing

Firstly consider a fixed RGB-D camera, a robotic arm
and the relative location of the camera in the robot’s
frame. Data collected from the camera is a colour point
cloud and all objects in the field of view are immobile.
Let the robotic arm’s base be the global frame, the cam-
era’s position and orientation be represented by a 3 x 1
translation vector, t, and a 3 x 3 rotation matrix, R:

Te

t= |y |,R=R:(7)Ry(B)Ra(c) (15)

Zc

where R;, Ry, R, are the rotation matrices about axes
X, v, z for roll, pitch, yaw angles «, 3, -y, respectively.

Note that the point cloud data, P. coming directly
from the RGB-D camera is noisy and contains a large
amount of information to be processed. In this paper,
a few layers of filters are implemented to improve the
quality of the received point clouds. Initially, the data
from the camera is run through a voxel grid filter to
reduce the number of points to a preferred resolution.
Voxel grid filtering also guarantees points in the cloud
are evenly distributed.

The down-sampled point cloud, Py is then filtered by
the Z-axis value of each point. Since noisy data can-
not be processed and points far away from the camera
are generally noisier, all p; that exceed a distance limit,
Ziimat Will be removed. Then,

P} ={Ps\pi | Pi €Pa,2i > Ztimar},  (16)

where lec is the point cloud after filtering by distance.
This point cloud is further filtered by the colour of the
object of interest. This filter layer’s purpose is not to
recognise the object but to limit the range of data to be
considered for later steps. Therefore, the colour range
does not have to be strict. The resulting cloud, P} can
be defined as,

§= {P}l \pi | pi € Ptfw hiowtim = hi > hpitim} (17)

where the considering point colour is described in HSV
colour space and hp;iim and hjowiin are the high limit
and low limit of the “Hue” value of the point.



Region Growing Segmentation

Region growing segmentation is then implemented on
P%. Region growing segmentation required each point in
Pf to have a corresponding normal vector. These normal
vectors are computed for each point by computing the
co-variance matrix of the query point and its neighbours.
The C of p; can be obtain using the following equation,

k
C=-> (pi—p)pi—p)", CF; = \;7;, j €{0,1,2}
i=1
(18)
where k is the number of neighbor points considered of
Pi, P is the centroid of p; and its neighbours, and A; and
v; are the j-th eigenvalue and eigenvector of C.

| =

Object Recognition And Pose Estimation

Region growing segmentation results is a set of clusters,
C,4. Each element in the cluster is a point considered to
be on the same surface. The result from region growing
segmentation is further filtered by the number of points,
Nyp, in clusters. This step is designed to removed clusters
that do not have enough points to produce an accurate
final result.

(Cfg = (Crg \Cuqv (19)

where Cfg is the set of qualified clusters and C, is a set
of clusters with less than Ny, points.

For surface, S; from (C-,’fg7 PCA is applied to obtain the
principal axes X, Y and Z and the centroid.

It is necessary that the unit vector of the Z-axis, @7 of
the obtained cloud on S;, points away from the camera’s
viewpoint. This requirement is checked by calculating
the dot product, d; of 47 and the unit vector of the Z-
axis of the camera, 47, . Since all calculations so far
are in the camera frame, @?,, = (0,0,1). If d; > 0
then 47 is pointing away from the camera. However, if
0 > d; then @} is pointing towards the camera and the
coordinate system obtained from PCA will be turn by 7
around the X-axis.

The geometric attributes of S; are considered in the
rectangular object recognition task. A comparison be-
tween the known model edges length with surface S;
edges is executed to determine if S; is a surface of the tar-
geted rectangular prism-shaped object. The edge length
calculations of S; are based on the maximum distance,
dy'*" and di*** from any point on S; to the X and Y
axes at the centroid of that surface.

The width, w and height, h of the surface will be twice
the value of d7'** and d;**. If the calculated values
are similar to the model, S; is a surface of the targeted
rectangular object.

w=2xd"T, h=2xdre (20)

Surface Selection

If the S; is a surface of the targeted rectangular prism-
shaped object, it will then be stored in a set, S, for the
best surface selection process.

S, =S, U{S;} (21)

Each surface S; of S,. contains a centroid point, ¢; and
unit vectors of that surface’s coordinate system. For
best surface selection the following parameters are con-
sidered: the distance of the centroid to the global frame
or the robotic arm’s base, df, the angle between S; and
the global frame, 7, and the number of points, N; belong
to the surface. Each of these parameters are calculated
and used as a metric in surface candidate selection. To
combine all tests fairly with equal voting power, each
raw value is mapped to the same score range [0..1] using
the Sigmoid function [Kros et al., 2006] as,

d 2
Si = 6(0.3_distance)
1+ exp 9@ 315 ance
s = 2 1 292
) 1+ exp G(0.0;Sngle) ( )
2
N
s, = —1
i 1+ exp 6(100(;65)0%:0unt)

where s¢ is the score for distance, s¢ is the score for the
angle, and sV for number of points in region. The final

score, sf is the product of all three scores,

slf = sfl * sf * sfv (23)

The product rule here is to ensure the candidate with
a poor score in either criterion will receive the highest
penalty. The surface with the highest score will be the
best surface with well-balanced attributes. This surface

is selected as the final output for subsequent processing.

2.4 Rotation Averaging

The robot is stationary while capturing depth data from
the camera. The best surface that is selected will al-
ways be the same for multiple runs, [1..N7] in this time
interval. To further improve the result, an averaging
calculation is applied over the calculated poses. The re-
sults of each run will be collected in Sy. The average
calculation will be executed for all elements of St.

There are two components needed to be averaged: the
centroid position and the orientation. Each surface, S; €
St has a centroid, c; and its orientation presented by the
coordinate system with unit vectors: @?, @}, and u3.
The averaged centroid position c.,g Will be calculated
as,

1 &
Cavg = 3~ ; c (24)



where N is the number of elements in the set S.

The best orientation, R4 from all results are achieved
by solving the single rotation averaging problem as de-
scribed in [Hartley et al., 2013]. During single rotation
averaging, several rotation estimates of a still target are
computed over time and then being averaged to give the
best result [Hartley et al., 2013], thereby reducing output
pose noise. To compute the optimal rotation, a rotation
difference metric is defined according to [Hartley et al.,
2013]

Let dchord(pv q) = Hp : qil - e”

where, p-q ' e R e=(1,0,0,0),
define p-q~! = (cos(v), sin(yp)u)
therefore: ||p-q ' — e| = 2sin(z/2).

(25)

This derivation suggests the distance between two unit
4-vector, also known as the chordal distance is directly
related to their separation angle, ¢. [Hartley et al., 2013]
then uses the chordal distance as the error metric to de-
fine a cost function, C'(Rqvg) under Lo chordal distance
as,
Nt
C(Ravg) - Z dchord (Ru Ravg)2
t=1
Nr

- Z dchord(qi, qavg)2

t=1

(26)

where Ry is a rotation of a surface S; € Sy and q; is Ry’s
SO(3) equivalent in unit quaternion form.

The rotation averaging problem is then to find Rgyg
such that C'(R) is minimised. To this end, the rotation
matrix R; € R3*3 is converted to the unit quaternion
form: q; = [qu, Gz @y, ¢=]7 € R**! and [qif| = 1.

Gw = /1 +Roo + Rt + Rz /2
¢z = (R21 — Ri2) / (4 qu)
¢y = (Ro2 — Rao) / (4 qw)
¢ = (Rio — Ro1) / (4 quw)

In the next step, the matrix, A € R**? is constructed
as the sum of dyadic product of g;qf over time.

(27)

Nt
A= T 28
qitqt ( )

t=1

Hartley et al., [Hartley et al., 2013] provided proof that
the eigenvector, S;,q, of matrix, A corresponding to its
largest eigenvalue minimises the cost function in (26).
Thus, s;qq is the averaged rotation in the optimal sense.

3 Experiments

Two experiments were conducted to display the result
of the proposed pipeline. The first compared the pose

estimated from the proposed framework with the well-
known ICP approach [Simon et al., 1994]. The results
are evaluated based on the ground truth data. The sec-
ond experiment tested the ratio between eigenvalues and
the size on multiple rectangular objects with different di-
mensions.

All experiments were conducted in the Gazebo sim-
ulation environment on a machine with an Intel Core
i7-7700HQ CPU, 16 GB RAM, and Geforce GTX 1050
GPU.

3.1 Comparative Study: Proposed
Framework and ICP

The simulation consists of a mobile base with a simulated
model of the Realsense D435 attached. The mobile base
will be placed in front of a pile of green bricks, which are
a class of brick with the same dimensions: 0.6 x 0.2 x 0.2
meters. Point cloud data is obtained directly from the
camera’s point cloud topic. Figure 5 shows five different
scenario of the experiment. For each scenario, the pro-
posed pipeline will be implemented to obtain the best
surface for the picking task. ICP will then try to fit this
surface to a generated model. This model is a cloud of a
surface with the same colour and size as the brick. The
model contains points evenly distributed, similar to the
result after the voxel grid filter process. The results from
ICP and the proposed framework are compared to the
ground truth value. Figure 6 shows the segmented point
cloud in each scenario. The bricks on which the selected
surfaces belong to can be observed. Then, the ground
truth value of the surface can be determined from the
Gazebo world model.

Each method result is evaluated by the distance error
and angular error. The distance error, ey is calculated
by the distance between the result’s centroid with the
ground truth data.

ea = |le: — ¢l (29)

where c; is the centroid point position from either of the
two methods, and ¢, is the ground truth value.

The angular error, ey, is calculated by the difference
between the Z-axis obtained from the result and the
ground truth Z-axis.

e = cos™ H(i? - i) (30)
where 4} and 4} are the unit vectors of the Z axes ob-
tained from roll, pitch and yaw values from the methods
and the ground truth data. The unit vector of Z-axis
can be calculated as,

cos asin S cosy + sinasin vy
sin azsin 3 cosy — cos asin 7y (31)
cos 3 cosy

@ =
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Figure 5: Experiment 1 scenarios.

) Scenario 2
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Figure 6: Segmented point cloud results from Experiment 1.

The comparative centroid estimation results are
recorded in Table 1. Table 2 contains the estimated ori-
entation and the calculated orientation error. Table 3
displays the execution time of each method in millisec-
onds and the ratio between the two methods.

Table 1: A comparison of the centroid estimation accu-
racy between ICP and our method.

Ground Output Centroid Error
Truth Centroid 1ICP Ours ICP | Ours
X |y Z X |y | 2 X |y | 2

-5.3|5.5| 0.1 ||-5.4(5.5]|0.1|[-5.4(5.5]0.1{/0.05|0.05
-5.714.9( 0.1 |/-5.9{4.6|0.1|[-5.7(/4.9({0.1]/0.31|0.01
-5.2(4.3| 0.1 ||-5.7{4.5|0.1||-5.2(4.3]0.1{/0.31|0.04
-4.6(4.2| 0.1 ||-4.5]{4.3/0.1|[-4.5(4.2{0.1{/0.13|0.06
-4.6(4.8| 0.1 |[-4.5(4.7|0.1|/-4.6|4.8/0.1]/0.08|0.06

Table 2: A comparison of the orientation estimation ac-
curacy between ICP and our method.

Ground Truth Output Orientation Error

Orientation ICP Ours ICP [ Ours
a | Bl vy lalBly]le]lB |~

1.6 |0.0] 0.5 ||-1.6] 0.0 |-2.7{ 1.6 | 0.0 | 0.5 || 0.06 | 0.00

0|0 |17 |-16[-0.0{-1.7( 1.6 | 0.0 | 1.5 |{0.16 | 0.02

-1.6(0.0| 2.8 ||-1.6] 0.0 |-0.3|/-1.6| 0.0 {-0.3|/0.06 | 0.06

0.0 0.0 0.6 ||-1.6(-0.0|-2.6|/-1.6] 0.0 | 0.6 {|0.06 | 0.01

3.110.0(-1.5|-1.6(-0.0| 1.7 ||-1.6 |-0.0| 1.7 |{ 0.06 | 0.06

3.2 Ratio Between Eigenvalue and Object
Dimensions

This experiment evaluates the relationship among the

eigenvalues ratios and the dimension ratio for each type

Table 3: A comparison of execution time between ICP
and our method.

ICP | Ours | Ratio
33 496 15.03
48 485 10.10
41 434 10.59
53 338 6.38

33 365 11.07

of brick. The simulation environment for this experi-
ment is similar to the previous experiment, with two ex-
tra piles of blue and orange bricks added. The newly
added blue bricks and orange bricks’ dimensions are
1.2 x 0.2 x 0.2 meters and 1.8 x 0.2 x 0.2 meters, re-
spectively. The mobile base is placed at multiple points
of view for each pile. PCA is then executed on the
point cloud that is recorded from each perspective. The
two larger eigenvalues, corresponding to the length and
height of a surface, are considered. Each brick colour has
a different length-to-height ratio. Therefore, the ratio of
the two larger eigenvalues obtained from PCA are ex-
pected to change between different bricks exponentially.
The experiment data are recorded in Table 4.

4 Discussion

The first experiment demonstrated the ability of the pro-
posed method to precisely estimated the pose of a single
rectangular surface within a pile of objects with simi-
lar colour and dimensions. In comparison with using
ICP for pose estimation, the results from the proposed
framework are superior for both locating the centroid
point and estimating the surface’s orientation.



Table 4: A comparison of the brick’s PCA ratio with size

ratio. (%)2 refers to the length-to-height ratio squared,

and \; refers to the i’th eigenvalue from PCA.

T
Brick | Expected |Expected Testg;: M/Ae = )\%'a;“"’
lour | dimension Ly2 | Test ™ Aa/Ao | = Ao
ot G| Test®: A /A ©)
FAM/A2 = Ao
green |length: 0.6 155.8 / 16.4|= 9.5
-brick | width: 0.2 9:1 84.3 / 8.86|=9.5
height: 0.2 1035 / 12.2| = 8.5
blue |length: 1.2 1223.7 / 31.8|= 38.5
-brick | width: 0.2 36: 1| 1042.6 /30.7|= 34.0
height: 0.2 1215.6/ 32.1| = 37.8
orange | length: 1.8 4033.6 / 47.9 | = 84.2
-brick | width: 0.2 81: 1| 4016.8 / 47.8|= 84.0
height: 0.2 1637.6 / 20.2 | = 80.9

Table 1 shows the distance error between the ground
truth value and the centroid points calculated by either
ICP or the proposed framework. It can be observed
that the results from the proposed framework are up
to 30 times better in terms of distance error. Further-
more, the distance error produced from the proposed
method are less than 0.1 meters, while that of ICP has
a higher chance (60%) to exceed 0.1 meters. The sug-
gested pipeline surpasses the ICP method because the
suggested approach takes into consideration the effect of
noise on point cloud data, while ICP did not.

Table 2 shows the rotation error between the normal
vectors of the ground truth plane and the Z-axis pro-
duced by either ICP or the presented approach. The ro-
tation estimated by both ICP and the proposed approach
has a high precision. However, implementing ICP on a
single surface results in multiple solutions. ICP is able
to find more than one possible solution since there are no
conditions set for the rotation obtained by ICP. There-
fore, the ICP results are inconsistent. Due to this in-
consistency, rotation averaging cannot be applied. Dur-
ing experiments, there is one scenario where the ICP
result is offset by =, which violates the requirement of
the Chordal Ls-Mean, i.e., the difference between two
input rotations must not exceed /4.

The second experiment displays the relationship be-
tween calculated eigenvalues ratio of PCA and length-to-
height ratio of the surface. Table 4 shows the calculated
eigenvalues ratio are within 10% of the expected value
over 9 tests on three different models.

Table 3 demonstrates the trade-off between accuracy
and processing time. Despite the proposed framework’s
high accuracy and robustness as discussed above, it re-
quires significantly more time to execute compared to
ICP.

5 Conclusions

This paper has presented an approach for the problem of
rectangular prism-shaped object recognition and precise
pose estimation. Experiments conducted have shown
that this approach is successful in obtaining the pose of
a single object within a set of multiple similar objects.
Experiments also proved the framework introduced in
this paper is more accurate and consistent compared to
the Tterative Closest Point (ICP) approach. Further-
more, since the proposed approach is designed for open-
loop systems, internal procedures can be easily modified
without damaging the overall framework.

Potential extensions to this approach include testing
with multiple models, and having different dimensions
and surface texture to determine the viability and ro-
bustness of the presented pipeline. Other criteria will
also be considered to further improve the accuracy and
efficiency.
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