Algal Bioproducts – Investigating the Effect of Light Quality on Metabolite Production by Photosynthetic Diatoms

Kenji Iwasaki

B. Sci (Hons)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

in Science

Climate Change Cluster (C3), School of Life Sciences

University of Technology Sydney

October 2019

Supervised by: Prof. Peter Ralph & Dr. Milan Szabó

ii

Certificate of Original Authorship

I, Kenji Iwasaki declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the Climate Change Cluster, Faculty of

Science at the University of Technology Sydney. This thesis is wholly my own work

unless otherwise referenced or acknowledged. In addition, I certify that all information

sources and literature used are indicated in the thesis. I certify that this document has

not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature: Signature removed prior to publication.

Kenji Iwasaki

Date: October 2019

Acknowledgements

Thank you to my supervisors, Peter Ralph and Milán Szabó for their endless support, guidance and critique throughout my candidature. Thank you to all the past and present members of the Algae Biosystems and Biotechnology Group at UTS, Chris Evenhuis, Bojan Tamburic, Janice McCauley and Alonso Cordova, who have provided continuous support that has allowed for the completion of this thesis. Chris Evenhuis, in particular for developing the empirical model used in this thesis. Wayne O'Connor who had enabled facility visits to Port Stephens Fisheries Institute and provided invaluable insights to hatchery operations. Leo Hardtke and Phil Lawrence for their expertise in constructing the LED panel used in this thesis. Unnikrishnan Kuzhiumparambil and Taya Lapshina for their assistance and guidance in the chemical analysis required in this thesis. The technical staff who had maintained the laboratories and facilities that have allowed for experiments to run as smoothly as possible.

Lastly, to all my friends and colleagues at UTS who have made this PhD an enjoyable experience.

Preface

This thesis has been prepared in publication format, whereby each chapter represents a manuscript ready for submission to a peer-reviewed journal. Therefore, there will be some duplication in Introduction and Materials and Methods. At present, no individual chapter has been submitted for publication in a peer-reviewed journal.

Table of Content

Algal Bioproducts – Investigating the Effect of Light Quality on M	etabolite Production
by Photosynthetic Diatoms	i
Certificate of Original Authorship	ii
Acknowledgements	iii
Preface	iv
Table of Content	V
List of Figures	X
List of Tables	xix
Abstract of Thesis	xxi
Chapter 1 General Introduction	1
1.1. Introduction to Microalgae	1
1.2. Physiology and Importance of Diatoms	2
1.2.1. Importance of Diatoms in Aquaculture	5
1.2.2. Importance of Chaetoceros muelleri in Australian Aq	uaculture8
1.2.3. Photosynthetic Mechanisms in Diatoms	10
1.3. Photosynthesis in Microalgae	11
1.4. Dynamics of CO ₂ Availability in Microalgal Culture	15
1.5. Dynamics of Light Availability in Microalgal Culture	18
1.5.1. Light quality in aquatic environments	20
1.5.2. How Diatoms Respond to Light Intensity	21
1.5.3. Mechanisms to sense light quality in diatoms	22
1.6. Light Emitting Diodes as Light Source for Culturing Diator	ns24
1.6.1. Using light emitting diodes to manipulate biochemical of	content in diatoms .25
1.7. Summary	26
1.8. Aims of Thesis	26
1.9. Thesis structure	27
1.10. Ethics and Permits	28
1.11. References	28
Chapter 2 Light and CO ₂ availability to enhance growth rate in the	diatom Chaetoceros
muelleri for aquaculture	49
2.1. Introduction	49
2.1.1. Diatoms as feed for aquaculture	49

	2.1.2.	How diatoms respond to light	51
	2.1.3.	How light effects diatom growth	52
	2.1.4.	Light limitations in current aquaculture practices	54
	2.1.5.	Light emitting diodes and their potential role in aquaculture	57
	2.1.6.	Measuring steady-state light curves	58
	2.1.7.	Carbon limitation in current aquaculture practices	59
2.2.	Aims	and Objectives	61
2.3.	Mater	ial and Methods	62
	2.3.1.	Culturing Chaetoceros muelleri	62
	2.3.2.	Photobioreactor setup	63
	2.3.3.	Experimental design	65
	2.3.4.	Steady-state light curve measurements	67
	2.3.5.	Dissolved oxygen measurements using optical sensors and measuring	net
	photosy	nthesis	68
	2.3.6.	Automated Chaetoceros muelleri growth measurements	69
	2.3.7.	Light attenuation measurements	70
	2.3.8.	Dissolved inorganic carbon	71
	2.3.9.	Modelling net photosynthesis of Chaetoceros muelleri	71
2.4.	Resul	ts	72
	2.4.1.	Steady-state light curve of Chaetoceros muelleri	72
	2.4.2.	Growth rates of <i>Chaetoceros muelleri</i> under different light and CO ₂	
	availabi	lity	73
	2.4.3.	Modelling light availability of two LED configurations	77
	2.4.4.	Net photosynthesis rates of Chaetoceros muelleri under varying light a	and
	carbon a	availability	82
	2.4.5.	Observing carbon availability	86
2.5.	Discu	ssion	87
	2.5.1.	Growth	88
	2.5.2.	Net photosynthesis	90
2.6.	Concl	usion	91
2.7.	Refere	ences	92
2.8.	Suppl	ementary Materials	.106

Cha	pter 3 In	vestigating the Effect of Light Quality on Primary Metabolite Product	ion
by C	Chaetoce	ros muelleri	109
3.1.	Introd	luction	109
	3.1.1.	Diatoms	109
	3.1.2.	Importance of diatoms in aquaculture	110
	3.1.3.	Importance of Chaetoceros muelleri in aquaculture	112
	3.1.4.	Light emitting diodes and their potential role in aquaculture	113
	3.1.5.	Selecting light quality to grow microalgae	114
	3.1.6.	Defining cost efficiencies in using LEDs for microalgae culturing	117
	3.1.7.	Balancing light quality	119
	3.1.8.	Measuring photosynthetic performance from cultures grown using	
	differen	t light qualities	121
	3.1.9.	Light quality research in diatoms	122
3.2.	Aims	and Objectives	124
3.3.	Mater	ial and Methods	125
	3.3.1.	Culturing Chaetoceros muelleri	125
	3.3.2.	Photobioreactor system	125
	3.3.3.	Growth light	126
	3.3.4.	Calculating growth rate	128
	3.3.5.	Light measurements and calibration	130
	3.3.6.	Dissolved oxygen measurements and measuring net photosynthesis u	ısing
	optical	sensors	131
	3.3.7.	Rapid light curve measurement	132
	3.3.8.	Pigment analysis with high performance liquid chromatography	134
	3.3.9.	Sample preparation for protein, lipid and carbohydrate analysis	135
	3.3.10.	Total protein analysis from total nitrogen measurements	136
	3.3.11.	Total lipid and fatty acid methyl ester extraction and analysis	136
	3.3.12.	Total carbohydrate analysis	137
	3.3.13.	Cost efficiency of different light qualities	138
3.4.	Resul	ts	139
	3.4.1.	Effects of light quality on Chaetoceros muelleri growth	139
	3.4.2.	Light attenuation in <i>Chaetoceros muelleri</i> cultures	141

	3.4.3.	Primary metabolic composition of <i>Chaetoceros muelleri</i> grown with	
	differen	t light qualities	. 143
	3.4.4.	Effects of light quality on the FAME composition of Chaetoceros mue	lleri
		145	
	3.4.5.	Effects of different light quality on the pigment composition of C.	
	mueller	i 146	
	3.4.6.	Light quality and production efficiency	.147
	3.4.7.	Effects of different light quality on net photosynthesis rates of	
	Chaeto	ceros muelleri	.151
	3.4.8.	Effects of light quality on rapid light curve	.153
3.5.	Discu	ssion	.157
	3.5.1.	Growth	.157
	3.5.2.	Metabolite production	.159
	3.5.3.	Pigments	.159
	3.5.4.	Photosynthesis	.162
	3.5.5.	Cost efficiency	.164
3.6.	Concl	usions	.165
3.7.	Refere	ences	.166
3.8.	Suppl	ementary Materials	.186
Cha	pter 4 Cł	nange in photon diet – Light quality shifting to tailor metabolite content	and
thei	r digestib	oility in Chaetoceros muelleri	.187
4.1.	Introduc	tion	.187
	4.1.1. D	Piatoms in aquaculture	.187
	4.1.2. S	electing light quality to grow diatoms in aquaculture	.188
	4.1.3. L	ight shifting in microalgae	.189
	4.1.4. L	ight shifts in diatoms	.192
	4.1.5. D	Digestibility analysis	. 193
4.2.	Aims an	d Objectives	.196
4.3.	Material	and Methods	.197
	4.3.1. C	ulturing Chaetoceros muelleri	.197
	4.3.2. P	hotobioreactor system	.198
	4.3.3. G	rowth light	.199
	4.3.4. G	rowth rate	.200

	4.3.5. Light attenuation measurements	202
	4.3.6. Rapid light curve measurements	202
	4.3.7. Pigment analysis with HPLC	205
	4.3.8. <i>In vitro</i> digestion assay	206
	4.3.9. Sample preparation for protein and lipid analysis	208
	4.3.10. Total protein analysis from total nitrogen measurements	209
	4.3.11. Total lipid and fatty acid methyl ester extraction and analysis	209
4.4.	Results	211
	4.4.1. Effects of light shift on <i>Chaetoceros muelleri</i> growth	211
	4.4.2. Light attenuations of <i>Chaetoceros muelleri</i> culture	213
	4.4.3. Effects of light shift on rapid light curve parameters of Chaetoceros mue	elleri
		214
	4.4.4. Effect light shift on the pigment composition of Chaetoceros muelleri	216
	4.4.5. Primary metabolic composition of Chaetoceros muelleri with light shift	217
	4.4.6. Digestibility of desired metabolites	218
	4.4.7. Effects of light shift on the fatty acid methyl ester composition of	
	Chaetoceros muelleri	221
	4.4.8. Digestibility of fatty acid methyl ester	222
4.5.	Discussion	224
	4.5.1. Growth rate	225
	4.5.2. Metabolite production	226
	4.5.3. Digestibility	228
	4.5.4. Pigments	229
	4.5.5. Photosynthesis	230
4.6.	Conclusions	232
4.7.	References	233
4.8.	Supplementary Materials	248
Cha	pter 5 General Discussion	251
5.1.	Key Findings	252
	5.1.1. Chapter 2	252
	5.1.2. Chapter 3	253
	5.1.3. Chapter 4	254
5.2.	Future Research	254

	5.2.1.	Chapter 2
	5.2.2.	Chapter 3
	5.2.3.	Chapter 4
5.3.	Conc	clusion
5.4.	Refe	rences
Lis	t of Fi	gures
Figu	ire 1.1 S	Scanning electron image of different diatom species. A. Thalassiosira
	psei	udonana, B. Cocconeis sp. C. Lampricus sp. D. Gyosigma balticum, E.
	Cyc	lotella cryptica, F. Nitzschia sp. G. Thalassiosira weissflogii, H. Achnanthes
	sp. I	mage from Hildebrand et al. (2012)2
Figu	ire 1.2 V	Venn diagram representing shared/unique gene families in Phaeodactylum
	trice	ornutum, Thalassiosira pseudonana, Viridiplantae and red algae and other
	euka	aryotes (including chromalveolates and opisthokonta (fungi and metazoan)).
	Gen	e families consisting of a single gene is denoted 'orphans'. Image from
	Bow	vler et al. (2008)4
Figu	ıre 1.3 I	Oocosahexaenoic acid structure. Image from Ruxton et al., (2007)7
Figu	ire 1.4 <i>A</i>	Average percentage of DHA, EPA, arachidonic acid (ARA) in 40 microalgae
	spec	eies held in the Australian National Algae Culture Collection. Image from
	Blac	ekburn and Volkman, (2012)
Figu	ire 1.5 S	Simplified scheme of photosynthesis water is consumed in the light reaction
	to p	roduce oxygen, NADPH and ATP, which are then consumed alongside CO ₂
	to p	roduce carbohydrates. Image from Masojídek, Torzillo and Koblížek (2013).
	•••••	
Figu	ire 1.6 (Carbon fixation and photorespiration pathways catalysed by RuBisCO,
	ribu	lose-1,5-biphosphate (RuBP) and both CO ₂ or O ₂ . In carbon fixation, the
	first	stable product is 3-phosphoglycerate (PGA), and in photorespiration, the
	first	stable product is a molecule of PGA and 2-phosphoglycolate (PG). Both
	reac	tions are facilitated by NADPH and ATP produced during the light stage of
	phot	tosynthesis. Image from Bloom (2009)14
Figu	ire 1.7 <i>A</i>	A schematic diagram of the carbon equilibrium in a PBR, where gaseous CO ₂
	and	O ₂ are introduced to the cultures and equilibrates with the CO ₂ and O ₂

	produced by the microalgae during photosynthesis (P) and photorespiration (R)
	at an overall mass transfer rate ($k_{L}a$). Image from Tamburic <i>et al.</i> (2015) 17
Figure	1.8 The electromagnetic spectrum is shown, with the visible spectrum range (380
	to 750 nm) enlarged. Within the visible range the photosynthetically active
	radiation (PAR) exists between 400 to 700 nm. Image from Masojídek, Torzillo
	and Koblížek (2013)
Figure	1.9 Rate of light transmission is dependent on the depth (metres) and wavelength
	(nm) of the light. In clear oceans the light becomes increasingly dominated by
	blue/green wavelengths at depths beyond 45 metres. Image adapted from Levine
	and MacNichol (1982)
Figure	2.1 Simplified relationship of increasing light intensity and cell growth of
	microalgae where regions are 1) light limited region where light is too low to
	grow, 2) region between light limited and light saturated (I _s) where growth
	increases with light intensity 3) light saturated region where no increase in
	growth is seen with an increase in light intensity 4) photoinhibited (I _d) region
	where a decrease in growth is seen with an increase in light intensity. Image
	from Carvalho <i>et al.</i> , 2011
Figure	2.2 Schematic of ePBR. Light is provided with a white LED array and culture
	temperature is controlled with a peltier jacket. pH, dissolved oxygen and
	temperature is measured with sensors. The culture was mixed with a magnetic
	stirrer. Image from Tamburic et al., 2014
Figure	2.3 Side view schematic of experimental design. A) LL-CO ₂ : LED illumination
	from the top (Top-LED) with no CO ₂ addition. B) LL+CO ₂ : LED illumination
	with Top-LED with CO ₂ addition. C) HL-CO ₂ : LED illumination from both
	sides (Side-LED) with no CO ₂ addition. D) HL+CO ₂ : LED illumination with
	Side-LED with CO ₂ addition. All conditions were constantly aerated66
Figure	2.4 Steady-state light curve (SSLC) of <i>C. muelleri</i> grown under standard growth
	conditions (section 2.4.1). Black dots indicate mean values of relative electron
	transfer rates (rETR) at each irradiance level, error bars indicate standard
	deviation ($n = 3$) and red line indicates the fitted Platt function (Eqn. 2.4).
	Parameter values: $\alpha = 0.278 \pm 0.007$, rETR _{max} = 59.867 \pm 1.877, $I_k = 215.5 \pm$
	9.614

Figure 2.5 The cell density for each condition as a function of time is shown in paired
graphs (above and below), where: the black dots indicate mean cell density, error
bars indicate standard deviation ($n = 3$), the red line indicates the logistic
function applied (Eqn. 2.5). Panels represent A) LL-CO ₂ (low light without CO ₂
addition), B) LL+CO2 (low light with CO2 addition), C) HL-CO2 (high light
without CO ₂ addition) and D) HL+CO ₂ (high light with CO ₂ addition)73
Figure 2.6 Measured photon flux density (PFD) values for each light condition as a
function of cell density is shown where: the black circles indicate the measured
PFD value (error bars indicate standard deviation (n = 3) and the blue line
indicates the fitted decay function and the red dotted line indicates 0 irradiance
(Eqn. 2.7). LL samples had a path length of 20 cm (left panel) and HL cultures
had a path length of 2.5 cm (right panel)
Figure 2.7 Modelled rate of light attenuation of two light conditions across the relevant
path lengths: 20 cm for Top-LED (left panel) and 2.5 cm for Side-LED (right
panel) with each line (blue, orange, green, red, purple, brown and pink)
corresponding to incrementally increasing cell density (1x10 ⁶ mL ⁻¹): 0, 0.5, 1, 2,
4, 8 and 12 respectively. Black dotted line indicates I_k (215.5 \pm 9.614)
(Calculated from Figure 2.4)
Figure 2.8 Modelled data of photosynthetic activity shown for each condition: A) Top-
LED and B) Side-LED based on model explained in Eqn. 2.8 where black line
indicates the rETR as a function of cell density of each culture, the dotted blue
line indicates the initial cell density and red dotted line indicates the theoretical
cell density limit where nitrogen is depleted. Modelled data assumes CO2 replete
conditions81
Figure 2.9 An example dataset showing a typical spike in the dissolved oxygen (DO) in
μmol L ⁻¹ , which was used to calculate net photosynthesis (photosynthesis –
respiration). Dissolved oxygen equilibrium between microalgae photosynthesis
during 'Bubbling On', aeration stopped during 'Bubbling Off' and
photosynthetic DO is allowed to accumulate, DO equilibrium is allowed to be
re-established once aeration restarts with 'Bubbling On'
Figure 2.10 Example dataset of dissolved oxygen (DO) represented with a black line
during the light phase in early exponential phase with DO spikes occurring
every 2 hr for 10 min (red zones indicate 'Bubbling Off' as in Figure 2.9). Small

d	ecreases in DO are due to CO ₂ dosages, as shown by the pH data represented
W	with a blue dashed line where a decrease in pH corresponds to CO2 dosage. Grey
\mathbf{Z}	ones indicate the dark phase84
Figure 2.	11 The calculated net photosynthetic oxygen production rates85
Figure 2.	12 Representative data of pH (red line) and calculated HCO ₃ ⁻ concentrations
(1	blue broken line) of C. muelleri grown in conditions A) LL-CO ₂ , B) HL-CO ₂
a	nd C) LL+CO ₂ and HL+CO ₂ . Grey areas indicate dark phase while white areas
ir	ndicates light phase87
Figure 2.	13 The relative absorption spectra of <i>C. muelleri</i> represented with brown line
a	nd the spectra of the two LEDs used in this study: Top-LED represented as a
b	roken black line and Side-LED represented as a black dotted line106
Figure 2.	14 View of the LED chips and their arrangements in the custom LED panel
u	sed in the study. The larger chips are the CREE® XLamp® XM-L Color and the
Si	maller chips are the Cree [®] XLamp [®] XP-E photo-red107
Figure 2.	15 Comparison of conventional light sources with white LEDs of varying
S]	pectra. Power consumption (W), maximum intensity in lumens (lm), light
0	utput (lm/W), energy conversion efficiency (%) and theoretical maximum
0	utput (lm/W) are shown. Sourced from article published on DIAL website
(1	https://www.dial.de/en/blog/article/efficiency-of-ledsthe-highest-luminous-
e	fficacy-of-a-white-led/)
Figure 3.	1 Wavelength spectra of LEDs used in experiment and the relative absorption
S]	pectra of C. muelleri. Brown line represents the absorption spectra of C.
n	nuelleri, blue dotted line represents blue LED spectra, green 'line & dot' style
1i	ne represents green LED spectra, red broken line represents red LED spectra,
a	nd black 'long line & short line' style line represents white LED spectra 127
Figure 3.	2 Schematic of ePBR geometry (inverted conical frustum) and light
n	neasurement. A quantum 4π sensor were used to measure PFD in situ. There are
tŀ	nree LED chips in each LED panel mounted at the front and back of ePBR
v	essel. LED illumination is showed for demonstrative purposes and are not
il	lustrative of the actual LED emission angles
Figure 3.	3 Cell density are shown as a function of time for four light qualities of equal
p	hotosynthetically utilized radiation (500 μmol photons m ⁻² s ⁻¹). Blue circles
iı	ndicate cultures grown using blue light (BL), green inverted triangles indicate

	cultures grown using green light (GL), red squares indicate cultures grown using
	red light (RL) and black triangles indicate cultures grown using white light
	(WL). The data points prior to day zero indicate the cell density of the starting
	inoculum of cultures before the first experimental cell count (day one). The
	black dotted line indicates the target cell density of > 6 x 10 ⁶ cells mL ⁻¹ for
	metabolite analysis. Values represent the mean and standard deviation ($n = 5$).
Figure	3.4 Irradiance measured in situ from cultures grown using different light
	qualities as a function of time. Blue circles represent BL, green inverted
	triangles represent GL, red squares represent RL and black triangles represent
	WL. Note that RL cultures were grown for five days and BL, GL and WL
	cultures were grown for three days, as growth rates were significantly lower and
	was hence grown for longer to harvest enough biomass for analysis. Irradiance
	at t ₀ represents the irradiance levels in media with no cells as detailed in section
	3.3.5. Values represent the mean and standard deviation $(n = 5)$
Figure	3.5 Cellular content of total dry biomass (mg ml ⁻¹) on the left y-axis, total
	protein, lipid and carbohydrates (mg mg ⁻¹) on the right y-axis are shown for each
	light quality used to grow C. muelleri. Red bars with diagonal patterns represent
	dry weight, blue bars with horizontal patterns represent total protein, orange bars
	with vertical patterns represent total lipid and green bars with cross patterns
	represent total carbohydrates. Values represent mean and standard deviation of
	total metabolite samples ($n = 3$) and dry biomass samples ($n = 9$). One-way
	ANOVA performed with Tukey method at 95% confidence: the same letter
	indicates no significant difference, or if no letters are present, no significant
	differences between conditions were detected, and different letters indicate
	significant difference between light treatments
Figure	3.6 Fatty acid methyl ester (FAME) content per mg dry weight (μ g mg ⁻¹) of C .
	muelleri grown using different light qualities. Blue bars: BL cultures, green bars:
	GL cultures, red bars: RL cultures and black bars: WL cultures. One-way
	ANOVA performed with Tukey method at 95% confidence: same letter indicate
	no significant difference, different letters indicate significant difference, and
	where no letters are present no significant differences were detected between
	conditions. Values represents mean and standard deviation (n = 3)145

Figure 3	3.7 Pigment content per culture volume ($\mu g L^{-1}$) of <i>C. muelleri</i> harvested after
٤	grown using different light qualities. Values are mean and error bars indicating
S	standard deviation ($n = 5$). Blue bars: BL grown cultures, green bars: GL grown
(cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-
,	way ANOVA performed with Tukey method at 95% confidence: the same letter
i	indicates no significant difference and different letters indicate significant
(difference147
Figure 3	3.8 Dry biomass (mg mL ⁻¹ kWh ⁻¹ ; left y-axis) and total metabolite (mg mg ⁻¹
1	kWh ⁻¹ ; right y-axis) yield based on power consumption for each light quality is
S	shown. Red bars with diagonal patterns represent dry weight, blue bars with
1	horizontal patterns represent total protein, orange bars with vertical patterns
1	represent total lipid and green bars with cross patterns represent total
(carbohydrates. One-way ANOVA performed with Tukey method at 95%
(confidence: the same letter indicates no significant difference and different
1	letters indicate significant difference. Values represent mean and standard
(deviation of total metabolite samples $(n = 3)$ and dry biomass samples $(n = 9)$.
	148
Figure 3	
_	
(3.9 FAME content based on power consumption (μg mg ⁻¹ kWh ⁻¹) for each light
1	3.9 FAME content based on power consumption (µg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures,
1	3.9 FAME content based on power consumption (µg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way
1	8.9 FAME content based on power consumption (µg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate
1	8.9 FAME content based on power consumption (µg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate no significant difference, different letters indicate significant difference, and
1 1 1	8.9 FAME content based on power consumption (µg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate no significant difference, different letters indicate significant difference, and where no letters are present no significant differences were detected between
Figure 3	3.9 FAME content based on power consumption (μ g mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate no significant difference, different letters indicate significant difference, and where no letters are present no significant differences were detected between conditions. Values represents mean and standard deviation (n = 3)
Figure 3	3.9 FAME content based on power consumption (μg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate no significant difference, different letters indicate significant difference, and where no letters are present no significant differences were detected between conditions. Values represents mean and standard deviation (n = 3)
Figure 3	3.9 FAME content based on power consumption (μg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate no significant difference, different letters indicate significant difference, and where no letters are present no significant differences were detected between conditions. Values represents mean and standard deviation (n = 3)
Figure 3	8.9 FAME content based on power consumption (μg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate no significant difference, different letters indicate significant difference, and where no letters are present no significant differences were detected between conditions. Values represents mean and standard deviation (n = 3)
Figure 3	8.9 FAME content based on power consumption (μg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate no significant difference, different letters indicate significant difference, and where no letters are present no significant differences were detected between conditions. Values represents mean and standard deviation (n = 3)
Figure 3	3.9 FAME content based on power consumption (μg mg ⁻¹ kWh ⁻¹) for each light quality is shown. Blue bars: BL grown cultures, green bars: GL grown cultures, red bars: RL grown cultures and black bars: WL grown cultures. One-way ANOVA performed with Tukey method at 95% confidence: same letter indicate no significant difference, different letters indicate significant difference, and where no letters are present no significant differences were detected between conditions. Values represents mean and standard deviation (n = 3)

Figure 3.11 Net photosynthesis of cultures grown using different light qualities as a
function of time. Blue circle: BL grown cultures, green inverted triangle: GL
grown cultures, red squares: RL grown cultures and black triangles: WL grown
cultures. Dotted line indicates zero net photosynthesis. Values represent mean
and standard deviation (n = 5)152
Figure 3.12 Rapid light curve plot parameters where Φ_{PSII} (maximum quantum yield of
photosystem II) are shown in boxes a, b, c and d, rETR _{max} (relative maximum
electron transfer rate) in boxes e, f, g and h and NPQ (non-photochemical
quenching) in boxes i, j, k and l. Condition blue light are shown in boxes a, e,
and i, green light in boxes b, f and j, red light in boxes c, g, and k, and white
light in boxes d, h and l. Measurements were taken at day one (t ₀) represented as
blue circles and at day three (tf) represented as red squares. All samples at tf were
diluted with $F/2$ media to achieve similar F_0 values prior to the measurement.
Values represent mean and standard deviation (n = 5)154
Figure 3.13 View of the LED chips and their arrangements in the custom LED panel
used in the study. The larger chips are the CREE® XLamp® XM-L Color and the
smaller chips are the Cree® XLamp® XP-E photo-red
Figure 4.1 Conceptual diagram of a) traditional illumination of microalgae with white
light b) illumination with constant red light c) a light shift from blue light to red
light which induces an increase in division in Chlamydomonas vulgaris by
increasing cell volume in blue light and subsequently shifting to red light to
induce division (image adapted by Ooms et al. 2016; original image from Kim
et al. 2014)
Figure 4.2 Wavelength spectra of LEDs used in experiment and the relative absorption
spectra of <i>C. muelleri</i> . Brown line represents the absorption spectra of <i>C.</i>
muelleri, blue dotted line represents blue LED spectra, red broken line
represents red LED spectra, and black 'long line & short line' style line
represents white LED spectra
Figure 4.3 Cell concentration as a function of time and treatment. Black dots: cell count
data, coloured shades indicating the light quality of growth light: blue for blue
light, red for red light, white for white light and grey for dark phase. A) Constant
blue light (BLctrl), B) BL shifted to red light for 10 h during day three (BLRL),
C) constant white light (WLctrl) and D) WL shifted to red light for 10 h during

day three (WLRL). Values represents the mean and standard deviation $(n = 7)$.
21
Figure 4.4 Rate of light attenuation of different light qualities as a function of time. Blue
circles: blue light grown (BL), blue squares: blue light grown subsequently red
shifted on day three shown as blue/red square (BLRL), black circles: white light
grown (WL) and black squares: white light grown subsequently red shifted on
day three shown as black/red square (WLRL). Irradiance at t0 represents the
initial irradiances as detailed in section 4.3.3. Grey area indicates dark phase and
white area indicates light phase. Values represents the mean and standard
deviation $(n = 7)$.
Figure 4.5 Rapid light curve plots where Φ_{PSII} (a, b, c, d) is maximum electron transfer
rate, $\text{rETR}_{\text{max}}\left(e,f,g,h\right)$ is maximum quantum yield of photosystem II and NPQ
(i, j, k, l) is non-photochemical quenching. Condition are grouped as: BLctrl (a,
e, i), BLRL (b, f, j) , WLctrl (c, g, k) and WLRL (d, h, l) . Rapid light curve
measurements were taken at day one (t ₀) represented as blue circle and at 3 time
points at day three (t_f) : 0 h (t_{f0}) , 5 h (t_{f5}) and 8 h after light shift (t_{f8}) ;
represented as red square, black inverted triangle and orange triangle
respectively. All samples at T_f were diluted with F/2 media by $\frac{1}{4}$ as to not
oversaturate the measurement. Values represents the mean and standard
deviation $(n = 7)$
Figure 4.6 Pigment content of <i>C. muelleri</i> harvested after grown in different light
qualities in $\mu g \ L^{\text{-1}}$. Blue bars: BLctrl, green bars: BLRL, black bars: WLctrl and
orange: WLRL. One-way ANOVA performed with Tukey method at 95%
confidence: same letter indicate no significant difference, different letters
indicate significant difference, and where no letters are present no significant
differences were detected between conditions. Values represents the mean and
standard deviation $(n = 7)$.
Figure 4.7 Total and released protein and FAME from undigested and digested <i>C</i> .
muelleri cultures grown under different light qualities. Blue bars with horizontal
line pattern represent total protein in mg mg-1 dry weight (left y-axis), red bars
with cross line pattern represent total FAME in µg mg ⁻¹ dry weight (right y-
axis), green bars with diagonal line pattern represent released protein in mg mg
dry weight, and yellow bars with diagonal crossing line pattern represent

	released FAME in µg mg ⁻¹ dry weight. One-way ANOVA performed with Tukey
	method at 95% confidence: same letter indicate no significant difference,
	different letters indicate significant difference, and where no letters are present
	no significant differences were detected between conditions. Values represents
	the mean and standard deviation (n = 3)
Figure	4.8 Percentage digested protein and total FAME shown where blue bars with
	horizontal line pattern represent total protein and red bars with crossing line
	pattern represent total FAME. One-way ANOVA performed with Tukey method
	at 95% confidence: same letter indicate no significant difference, different letters
	indicate significant difference, and where no letters are present no significant
	differences were detected between conditions. Values represents the mean and
	standard deviation (n = 3).
Figure	4.9 Total and released individual fatty acid species from undigested and digested
	C. muelleri cultures grown under different light qualities in µg mg ⁻¹ dry weight.
	Total FAME is represented by coloured bars with no line pattern, and released
	FAME is shown with diagonal line pattern. One-way ANOVA performed with
	Tukey method at 95% confidence: same letter indicate no significant difference,
	different letters indicate significant difference, and where no letters are present
	no significant differences were detected between conditions. Data represents the
	$mean \pm standard \ deviation \ (n=3)222$
Figure	4.10 Percentage FAME digestibility of <i>C. muelleri</i> grown under different light
	qualities are shown. One-way ANOVA performed with Tukey method at 95%
	confidence: same letter indicate no significant difference, different letters
	indicate significant difference, and where no letters are present no significant
	differences were detected between conditions. Data represents the mean \pm
	standard deviation (n = 3)
Figure	4.11 Total lipids from undigested and digested <i>C. muelleri</i> cultures grown under
	different light qualities. Purple bars with horizontal patterns represent total lipids
	in $\mu g \ mg^{-1} \ dry$ weight from undigested samples and green bars with crossing
	patterns represent total lipids in $\mu g \; mg^{1} dry$ weight from digested samples. One-
	way ANOVA performed with Tukey method at 95% confidence: no letters
	indicate no significant difference and different letters indicate significant
	difference. Data represents the mean \pm standard deviation (n = 3)250

List of Tables

Table 1.1 Main chlorophyll, carotenoid and phycobilin of phototrophs. Image from Ye	n
et al. (2013).	10
Table 2.1 Specific growth rate (μ), division rate (t_d) and final cell density (t_f density) of	f
C. muelleri in four different conditions LL-CO2, LL+CO2, HL-CO2 and	
$HL+CO_2$ (mean \pm stdev). One-way ANOVA performed with Tukey method at	
95% confidence: same letter indicate no significant difference and different	
letters indicate significant difference. Values shown are the mean and standard	
deviation $(n = 3)$.	75
Table 2.2 Comparison of growth rate of C. muelleri grown indoors in different light an	nd
carbon availabilities. Light intensity (µmol photons m ⁻² s ⁻¹), method of CO ₂	
addition and/or pH (representing carbon availability) control and specific grow	/th
rate (μ) are shown. p-test results (if available) are shown where same letters	
indicate no significant difference.	76
Table 3.1 Specific growth rates (μ), approximate doubling time (t _d), mean final dry	
weight (mean dw) in mg mL $^{\text{-1}}$ and mean final cell density (mean t_{f} cells) in cel	ls
mL-1. Treatments were BL for blue light grown cultures, GL for green light	
grown cultures, RL for red light grown cultures and WL for white light grown	
cultures. One-way ANOVA performed with Tukey method at 95% confidence:	
same or no letters indicate no significant difference and different letters indicate	te
significant difference. Values represent mean and standard deviation (SD) (n =	:
5)	41
Table 3.2 Rapid light curve parameters are shown for cultures grown under blue (BL).	,
green (GL), red (RL) and white (WL) light where F ₀ and F _m is minimum and	
maximum fluorescence yield of PSII in dark-adapted a is slope of light-limited	1
region, rETR $_{max}$ is maximum electron transfer rate, I_k is minimum saturating	
irradiance and Φ_{PSII} is maximum quantum yield of photosystem II. Two RLC	
measurements were taken during each growth cycle at to and tf. One-way	
ANOVA performed with Tukey method at 95% confidence: same or no letters	
indicates no significant difference and different letters indicate significant	
difference. Values indicate mean and standard deviation $(n = 5)$	56

Table 4.1 Conditions for the <i>in vitro</i> static digestion model using typical monogastric
proteolytic enzymes pepsin and pancreatin. Based on modifications of Moyano
& Savoie (2001)
Table 4.2 Specific growth rates (μ) , division rate (td) , average dry weight (mean dw) in
mg mL ⁻¹ , average final cell density (mean t _f cells) in cells mL ⁻¹ . One-way
ANOVA performed with Tukey method at 95% confidence: same or no letters
indicate no significant difference and different letters indicate significant
difference. Data represents the mean and standard deviation ($n = 7$)212
Table 4.3 Rapid light curve data at t_0 where, a is photosynthetic rate in light-limited
region of RLC, rETR $_{max}$ is maximum electron transfer rate, I_k is minimum
saturating irradiance, Fo is minimum fluorescence of dark-adapted microalgal
culture, $F_{\rm m}$ is maximum fluorescence yield of dark-adapted microalgal culture
and Φ_{PSII} is maximum quantum yield of photosystem II. One-way ANOVA
performed with Tukey method at 95% confidence: same letter indicate no
significant difference and different letters indicate significant difference. Values
shown are mean \pm standard deviation (n = 7)
Table 4.4 Rapid light curve data at t _f where, a is photosynthetic rate in light-limited
region of RLC, rETR $_{max}$ is maximum electron transfer rate, I_k is minimum
saturating irradiance, Fo is minimum fluorescence of dark-adapted microalgal
culture, F_{m} is maximum fluorescence yield of dark-adapted microalgal culture
and Φ_{PSII} is maximum quantum yield of photosystem II. Measurements were
taken at 3 time points during day three (T _f ,): 0 h (T _f 0), 5 h (T _f 5) and 8 h after
light shift (Tf 8). One-way ANOVA performed with Tukey method at 95%
confidence: same letter indicate no significant difference and different letters
indicate significant difference. One-way ANOVA was used to analyse the same
cultures at different time points. Values shown are mean \pm standard deviation (n
= 7)

Abstract of Thesis

In Australia, between 2016 and 2017, aquaculture products made up 44% of Australian seafood product in value, reaching over \$1.35 billion in production value. One of the top five profitable Australian aquaculture products during this period were edible oysters which is worth more than \$112 million in production value.

Oysters are fed with live microalgae (including diatoms) during the larval, juvenile and adult stages of growth, as are other shellfish, some crustaceans, shrimps/prawns and fish. The rearing of oysters and other aquaculture products rely on the constant production of live diatoms as feed. Diatom production in Australian hatcheries are commonly recognised as the major bottleneck in oyster production, estimated to be on average, 30-40% of hatchery operational cost. In order to meet the increasing production demand diatom production must be improved, while making it economically feasible and environmentally sustainable.

In this thesis, *Chaetoceros muelleri*, a common feed for oysters, was studied for their responses to a variety of environmental growth conditions including light. To achieve this, laboratory scale photobioreactors were used to continuously monitor environmental factors to record biological responses of *C. muelleri* to different environmental conditions including light wavelengths. A brief introduction to diatom physiology and its application to aquaculture will be provided in Chapter one. The

second chapter assessed the two key environmental limitations in diatom cultivation in aquaculture facilities, light and CO2. An empirical process model was developed to analyse the importance of light configuration to maximise light availability. High CO₂ availability coupled with high light availability significantly increased growth rates and maximum cell density. The third chapter then assessed the growth, metabolic content and cost efficiency of different colour LEDs (blue, green, red and white) based on the findings in Chapter 2. Blue light was found to be the most cost efficient in biomass and metabolite production, requiring less than half the Watt hours of other LEDs. In the fourth chapter, the wavelength of the growth light was shifted to assess its feasibility to modify metabolic content, as well as its effects on growth, photosynthesis and digestibility. The final chapter discussed the key findings of the thesis and the future research prospects. Several important avenues were identified to improve diatom production in aquaculture, such as improving light availability to increase the efficiency of CO₂ usage, blue LEDs to improve cost efficiency of biomass production and the utilization of wavelength shifting to manipulate diatom metabolite content.