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ABSTRACT

tions of the intricate characteristics of that data. Existing methods for categori-

cal data representation usually assume data is independent and identically dis-
tributed (IID). However, real-world data is often hierarchically associated with diverse
couplings and heterogeneities (i.e., non-IIDness, e.g., various couplings such as value co-
occurrences and attribute correlation and dependency, as well as heterogeneities such
as heterogeneous distributions or complementary and inconsistent relations). Existing
methods either capture only some of these couplings and heterogeneities or simply as-
sume IID data in building their representations.

This thesis aims to deeply understand and effectively represent non-IIDness in cat-
egorical data. Specifically, it focuses on (1) modeling heterogeneous couplings within
and between attributes in categorical data; (2) disentangling attribute couplings with a
mixture of heterogeneous distributions; (3) hierarchically learning heterogeneous cou-
plings; (4) integrating complementary and inconsistent heterogeneous couplings; and
(5) adaptively identifying and learning dynamic couplings and heterogeneities.

Accordingly, this thesis proposes (1) a non-IID similarity metrics learning frame-
work to model complex interactions within and between attributes in non-IID categor-
ical data; (2) a decoupled non-IID learning framework to capture and embed hetero-
geneous distributions in non-IID categorical data with bounded information loss; (3)
a heterogeneous metric learning method with hierarchical couplings to learn and in-
tegrate the heterogeneous dependencies and distributions in non-IID categorical data
into a representation of a similarity metric; (4) an unsupervised heterogeneous coupling
learning approach to integrate the complementary and inconsistent heterogeneous cou-
plings in non-IID categorical data; and (5) an unsupervised hierarchical and heteroge-
neous coupling learning method to learn hierarchical and heterogeneous couplings on
dynamic non-IID categorical data.

Theoretical analyses support the effectiveness of the proposed methods and bound
the information loss in their generated high-quality representations. Extensive experi-
ments demonstrate that the proposed non-IID representation methods for complex cat-
egorical data perform significantly better than state-of-the-art methods in terms of mul-
tiple downstream learning tasks and representation-quality evaluation metrics.

Learning complex categorical data requires proper vector or metric representa-
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