

Faculty of Engineering & Information Technology

EXPERIMENTAL AND NUMERICAL STUDY OF A FIXED MULTI-CHAMBER OSCILLATING WATER COLUMN DEVICE (MC-OWC)

A thesis submitted for degree of

Doctor of Philosophy

MOHAMMAD MOUSA ODEH SHALBY

Faculty of Engineering & Information Technology School of Mechanical and Mechatronics Engineering

EXPERIMENTAL AND NUMERICAL STUDY OF A FIXED MULTI-CHAMBER OSCILLATING WATER COLUMN DEVICE (MC-OWC)

Done by: MOHAMMAD MOUSA ODEH SHALBY

Supervisor: Dr. Paul Walker
Co–supervisor: Dr. Phuoc Huynh
External supervisor: Prof. David Dorrell
External supervisor: Dr. Ahmed Elhanafi

Course code: C02018

Subject Number: 49986 Doctor of Philosophy (PhD)

Dates: 24/02/2015 to 18/02/2018

University of Technology Sydney (UTS)

P.O. Box 123, Broadway, Ultimo, N.S.W. 2007

Australia

Certificate

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as part of the

collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis. This research is supported by the Australian Government Research Training

Program.

Signature of Student:

Production Note:

Signature removed prior to publication.

Date: 18 February 2019

i

Acknowledgements

First and foremost, my sincere thanks go to Allah, who endowed me to complete this doctorate and for creating the grand power of ocean waves I have had the honour of studying in such depth. In particular, I am grateful to AL–Hussein bin Talal University, Ma'an, Jordan for their financial support of this project.

Most of all, I wish to thank my supervisory team, Dr.Paul Walker, Dr Phuoc Huynh and Professor David Dorrell for giving me the opportunity to perform this work and having guided and helped me throughout the project. Their assistance and advice have made this a rewarding experience. I would also like to extend my sincere gratitude to Dr. Ahmed Elhanafi for his dedicated help, expertise, advice, inspiration, encouragement and continuous support, throughout my studies.

I express my thanks to Manly Hydraulic Laboratories for allowing me to use their laboratory facilities for my experimental work and I would like to acknowledge Mr. Indra Jayewardene and other staff in Manly Hydraulic Laboratories for their assistance during my research. I offer my thanks to Mr.Christopher Hamid, Mr. Michael Diponio and Eng. Vahik Avakian from the School of Mechanical and Mechatronic Engineering for their cooperation, encouragement and for facilitating the requirements for this research work.

I am extremely grateful to my mother, father, brothers and sisters for all of the sacrifices that you've made on my behalf. Your prayers for me have sustained me thus far. I will never be able to pay back the love and affection showered upon me by my family. I especially wish to thank my wife, Hafsa, who has been extremely supportive of me throughout this entire process and has made countless sacrifices to help me get to this point.

Finally, I would like to give my special thanks to my great friends. Their motivation and continuous support have helped make this project happen and a more than enjoyable experience. I am really very grateful for all you have done for me.

Abstract

This thesis focuses on preliminary investigating the hydrodynamic performance of a fixed Multi-Chamber OWC (MC-OWC) wave energy converter, which consists of a linear array of four OWC chambers aligned in the same direction of the incident wave propagation. These investigations address the gaps found in previous works by putting forward detailed explanations of the effect of wave height, wave period, device draught and power take-off (PTO) damping on MC-OWC device performance using a combined numerical and experimental approach.

The research methodology was based on two series of experimental sessions and two numerical models. The first experimental campaign was conducted in a small wave flume in the University of Technology Sydney (UTS) for a MC–OWC device at a model–scale of 1:25. This experiment was performed mainly to validate the numerical models and initially observe device response when subjected to limited regular wave conditions. The second experimental session was carried out in the wave flume at the Manly Hydraulic Laboratory (MHL) in New South Wales, Australia for a MC–OWC devices at a model–scale of 1:16. This experiment was designed to 1) assess the device performance over a wide range of regular and irregular wave conditions, 2) study the impact of wave height, wave period and device draught on the performance of a MC–OWC device, and 3) investigate the effect of the pneumatic damping induced by the power take–off (PTO) system on device performance.

The first validated numerical model was a MATLAB time-domain model that was based on a coupling between the rigid piston model and the thermodynamic forces on a MC-OWC device to get a preliminary understanding of device performance. The second numerical model was a fully nonlinear 3D Computational Fluid Dynamics

(CFD) model that was constructed using the commercial code STAR-CCM+. After being validated in good agreement against the physical scale model tests, the CFD model was utilised to study the influence of the power take-off (PTO) damping on the water surface elevation inside the chamber, the differential air pressure, the airflow rate and the device capture width ratio under different incident regular wave conditions.

The extensive analysis of 198 physical tests and 84 CFD simulations revealed that the water surface elevation, differential air pressure, and airflow rate had a similar response in all chambers to the wave conditions, device draught and PTO damping. However, the first chamber always played the primary role in wave energy extraction, and the performance gradually decreased down to the fourth chamber where the lowest performance was found. The maximum capture width ratio of the whole MC–OWC device was found to be 2.1 under regular wave conditions and 0.95 under irregular wave conditions. These ratios were the highest among all similar concepts that have been reported in previous research.

Table of Contents

Certific	cate .		l
Acknov	wledg	gements	ii
Abstrac	ct .		iii
Table o	of Cor	ntents	v
List of	Figur	res	X
List of	Table	es	XV
Acrony	ms aı	nd Abbreviations	xvi
Chapte	er 1 I	NTRODUCTION	1
1.1	Bac	ekground and Prospects	1
1.2	Res	search Objective	4
1.3	Ori	ginal Contributions	6
1.4	Pul	olications from this Thesis Work	7
1.5	The	esis Layout	8
Chapte	r2 L	LITERATURE REVIEW OF MC–OWC DEVICE	11
2.1	Bac	ekground	11
2.2	Wa	ve Energy Converters	11
2.3	De	veloping Challenges	13
2.4	Wo	orking Principles	17
2.5	Mu	ılti–Chamber OWC Device Development	18
2.5	5.1	Initial Concept Validation	19
2.5	5.2	Proof of Concept	22
2.5	5.3	Design Model	24

2.6 Th	neory of Operation	26
2.6.1	Surface Elevation	27
2.6.2	Airflow Velocity and Pressure Change	29
2.6.3	Power Available at the Turbine	30
2.7 Tu	urbine Design and Testing	31
2.7.1	Wells Turbine	32
2.7.2	Savonius Turbine	34
2.7.3	Alternative PTO Systems	36
2.8 Su	ımmary	37
Chapter 3	BACKGROUND THEORY	38
3.1 Ge	eneral	38
3.1.1	Ocean Wave	38
3.2 Li	near Wave Theory (LWT)	39
3.2.1	Limitations of the Linear Theory	39
3.2.2	Governing Equations	40
3.3 W	ave Modelling	44
3.3.1	Regular Wave	45
3.3.2	Irregular Wave	45
3.4 Nu	umerical Model Development	48
3.4.1	Time–domain model	49
3.4.1.1	Rigid Piston Model	50
3.4.1.2	Thermodynamics Model	51
3.4.2	Computational Fluid Dynamics Modelling	52
3.4.3	Modelling the Power Take–off (PTO) System	54
3.5 M	odelling of the Device Performance	58
3.6 Re	esonance	60

3.7	Summary	61
Chapte	er 4 PHYSICAL MODEL EXPERIMENTS	62
4.1	Introduction	62
4.2	Experimental Testing	63
4.3	First Experimental Test (UTS Wave Flume)	63
4.3	.1 Model Geometry	63
4.3	.2 Overview of UTS Wave Flume	64
4.3	.3 Test Conditions	66
4.4	Instrumentation and Measurement	67
4.4	.1 Wave Height Measurement	67
4.4	.2 Pressure Measurement	67
4.4	.3 Airflow Measurement	68
4.4	.4 Calibration of the Orifice Plates	69
4.5	Data Analysis of the UTS Wave Flume	70
4.6	Second Experimental Testing (MHL)	73
4.6	Overview of Manly Hydraulics Laboratory Wave Flume	73
4.6	5.2 MC–OWC Model Geometry	74
4.6	Experimental Setup	76
4.6	.4 Regular Wave Tests	77
4.6	.5 Irregular Wave Tests	92
4.7	Uncertainty Analysis and Repeatability	95
4.8	Summary	101
Chapte	er 5 TIME–DOMAIN MODEL	102
5.1	Introduction	102
5.2	Mathematical Model	102

5.2	2.1	Theoretical Considerations	103
5.2	2.2	Rigid Piston Model	103
5.2	2.3	Thermodynamics Model	108
5.3	MA	ATLAB/Simulink Model Structure	112
5.4	Va	lidation of the Numerical Model	117
5.5	Suı	mmary	120
Chapte	er 6 (CFD MODELLING	121
6.1	Int	roduction	121
6.2	Nu	merical Model	121
6.2	2.1	Numerical Settings	123
6.3	MO	C-OWC Device Performance	126
6.4	Va	lidation of the CFD model	126
6.5	Res	sults and Discussion	128
6.5	5.1	Test Conditions	128
6.5	5.2	Estimating Device Resonance	128
6.5	5.3	Effect of PTO Damping on Device Performance	129
6.5	5.4	Effect of Wave Height on Device Performance	131
6.6	Suı	mmary	135
Chapte	er 7 (CONCLUSIONS AND RECOMMENDATIONS FOR	FUTURE
W	ORK	ζ	137
7.1	Ov	erall Conclusion	137
7.2	Re	commendations for Future Work	140
Appen	dix A	Experiments Photos	142
Annen	dix B	Irregular Wave Test	145

D. C		155
Appendix D	MATLAB/Simulink Model Diagrams	151
Appendix C	Experimental Uncertainty Analysis	148

List of Figures

Figure 1.1. Methodology adopted in this work
Figure 2.1. Summary of standard classification for wave energy converters, adapted from [56]
Figure 2.2. Schematic of multi–chamber OWC,(a) Two chambers [42], (b) Three chambers [61, 62]
Figure 2.3. Chamber cross section: (a) Parallel configuration; (b) Orthogonal configuration [62]
Figure 2.4. Power against turbine speed: (a) Face positioning; (b) Orthogonal positioning [62]
Figure 2.5. Segmented OWC devices arrangement, (a): Schematic showing the arrangement of MC–OWC with Savonius rotor; (b): A photo of the physical scale model three–segment OWC with Savonius rotor; (c): Schematic showing the arrangement of MC–OWC with Wells turbine; (d): A photo of the physical scale model arrangement with Wells turbine [80, 81].
Figure 2.6. Schematic of two-segmented OWC [42].
Figure 2.7. Device variables definitions [42]27
Figure 2.8. Wells turbine rotor: (a): Monoplane (single stage); (b): Biplane (double stage) [71]
Figure 2.9. Savonius turbine, (a): Savonius rotor dimensions; (b): CFX model for Savonius turbine [62]
Figure 2.10. Alternative PTO systems, (a): Multiple chambers with linked turbines and one generator; (b): Cascaded chambers with linked chambers and turbines and one generator; (c): a Single unidirectional turbine with high and low–pressure ducts [97]36
Figure 3.1. Definition of progressive surface wave parameters
Figure 3.2. Wave model suitability, adapted from Ref. [108]
Figure 3.3. PTO mechanisms utilised for the wave energy conversion, adapted from [83]
Figure 4.1. A photo of the MC–OWC model tested in the UTS wave flume64

Figure 4.2. MC–OWC model geometry tested in UTS wave flume64
Figure 4.3. A photo of UTS wave flume65
Figure 4.4. The layout of the experiment conducted in UTS wave flume
Figure 4.5. Pressure transmitters (model: 616–20B, ±0.25% F.S)
Figure 4.6. Orifice calibration test rig70
Figure 4.7. Experimental data collection and processing flow chart71
Figure 4.8. Sample time–series data of (a): free surface elevation (η), (b): the airflow rate (Q), (c): differential air pressure (Δp) in each chamber for a wave condition of $H=0.087$ m and $T=1.0$ s
Figure 4.9. A photo of MHL wave flume74
Figure 4.10. Geometry and dimensions of the MC–OWC model tested in MHL wave flume
Figure 4.11. Photo of MC–OWC model tested in MHL wave flume76
Figure 4.12. Experimental setup of the MC–OWC model in MHL wave flume77
Figure 4.13. Sample of time–series data of (a): water surface elevation η , (b): airflow rate through the orifice Q , (c): differential air pressure Δp , (d): pneumatic power P_n in each chamber for a wave condition of H =100 mm, T =1.5 s, a draught d = 250 mm and an orifice of D = 60 mm
Figure 4.14. Effect of wave height on water surface elevation η (1 st row), airflow rate Q (2 nd row), differential air pressure Δp (3 rd row), and pneumatic power P_n (4 th row) for different wave periods under a constant orifice opening ratio $R_2 = 1.35$ % and a draught $d = 250$ mm
Figure 4.15. Sample time—series data of (a): the water surface elevation η , (b): airflow rate Q , (c): the differential air pressure Δp , (d): and the pneumatic power P_n in the first chamber over four different wave periods at constant wave height H = 50 mm and opening ratio R_2 = 1.35 %
Figure 4.16. Capture width ratio (ε_c) for each chamber of the MC–OWC device at a constant wave height $H=50$ mm, a device draught $d=250$ mm and an orifice opening ratio $R_2=1.35$ %

Figure 4.17. Effect of wave height on the total capture width ratio (ε) of the MC–OWC device for different wave periods at a constant device draught $d=250$ mm and an opening ratio $R_2=1.35$ %
Figure 4.18. Effect of the draught on the water surface elevation η (1 st row), airflow rate Q (2 nd row), the differential air pressure Δp (3 rd row), and the pneumatic power P_n (4 th row) at constant wave height (H =50 mm) and an orifice opening ratio R_2 = 1.35 %86
Figure 4.19. Effect of the draught change on the total capture width ratio (ε) at constant wave height H =50 mm and an orifice opening ratio R_2 = 1.35 %88
Figure 4.20. Impact of PTO damping on the water surface elevation η (1 st row), airflow rate Q (2 nd row), the differential air pressure Δp (3 rd row), and the pneumatic power P_n (4 th row) at constant wave height (H =50 mm) and device draught (d = 250 mm) over the wave period listed Table 4.1.
Figure 4.21. The impact of three orifice opening ratios (PTO damping) and two wave heights on the total capture width ratio (ε) under constant draught $d = 250$ mm91
Figure 4.22. JONSWAP energy spectrum, $S(\omega)$, of the two irregular wave tests described in Table 4.6. (a): Test–1, (b): Test–293
Figure 4.23. Effect PTO damping Variation on the pneumatic power (<i>P</i> _n) of the MC–OWC under the irregular wave conditions listed in Table 4.694
Figure 4.24. Effect of PTO damping on the total capture width ratio (ε _{irrg}) of the MC–OWC under the irregular wave conditions listed in Table 4.695
Figure 4.25. Sample time–series data of the experiment repeatability for a wave condition of $H=50$ mm, $T=1.6$ s and a constant opening ratio of $R_i=1.34\%100$
Figure 4.26. Sample time–series data of the experiment repeatability for a wave condition of $H=100$ mm, $T=1.6$ s and a constant opening ratio of $R=1.34\%$
Figure 5.1. Schematic representation of the numerical model OWC105
Figure 5.2. OWC chamber free body diagram
Figure 5.3. The complete single chamber OWC model in MATLAB/Simulink112
Figure 5.4 Sample of the temporal data of MATLAB/ Simulink for single chamber OWC device at $H=87$ mm and $T=1$ s for (a): water surface elevation inside chamber η , (b): airflow rate Q , (c): the differential pressure Δp , (d): pneumatic power P_n

Figure 5.5. Sample of the temporal data of MATLAB/ Simulink for four chambers OWC device at $H=87$ mm and $T=1s$ for (a): water surface elevation inside chamber η (b): airflow rate Q , (c): the differential pressure Δp , (d): pneumatic power P_n
Figure 5.6. Comparisons between simulation and experimental values of the water surface elevation (η)
Figure 5.7. Comparisons between simulation and experimental values of the airflow rate through the orifice (Q)
Figure 5.8. Comparisons between simulation and experimental values of the pressure difference (Δp)
Figure 6.1. Computational fluid domains
Figure 6.2. Comparison experimental and CFD results for device performance parameters under a regular wave of height $H=87$ mm, period $T=1.0$ s and orifice diameter $D_2=36$ mm. (a): water surface elevation (η), (b): airflow rate (Q) and (c) differential air pressure (Δp)
Figure 6.3. The relation between the air volume velocity (Q) and the instantaneous differential air pressure (Δp) for different PTO damping conditions simulated via various orifice opening ratios R_i (listed in Table 6.3)
Figure 6.4. Impact of PTO damping coefficient (τ) on the values of (a): the instantaneous water surface elevation inside chamber (η) , (b): the airflow rate (Q) , (c) differential air pressure (Δp) and (d): the pneumatic power (P_n)
Figure 6.5. Effect of PTO damping on the capture width ratio (ε) of each chamber for different wave periods and a constant wave height (H2 = 87 mm)
Figure 6.6. Effect of wave height on the water surface elevation η (1st row), airflow rate Q (2nd row), differential air pressure Δp (3rd row) and the pneumatic power P_n (4th row) for different wave periods and a constant orifice opening ratio R_5 (2.5%)
Figure 6.7. Variation of the capture width ratio (ε_c) of each chamber under different wave heights (H1, H2), wave periods (T0, T1, T2, T5, T7) and a constant orification opening ratio ($R_5 = 2.5 \%$)
Figure 6.8. Effect of wave height on the total capture width ratio (ε) for (a): different wave periods at constant opening ratio R_5 , (b): different orifice opening ratios (R_i) under resonant period T1
Figure A.1. Front view of MC-OWC device in UTS wave flume

Figure A.2. Front view of the UTS wave flume
Figure A.3. Data acquisition in the UTS wave flume during the experiment143
Figure A.4. Wave moving towards the test area in MHL wave flume143
Figure A.5. MHL wavemaker system
Figure A.6. Wave generation and data acquisition system
Figure A.7. The MC–OWC model during installation stage
Figure B.8. Sample time—series data of the internal water surface elevation η and incident wave η_{in} in each chamber for a wave condition of Test–1 and constant opening ratio of $R_2 = 1.35\%$.
Figure B.9. Sample time–series data of the internal water surface elevation η and differential air pressure Δp in each chamber for a wave condition of Test–1 and constant opening ratio of $R_2 = 1.35\%$
Figure B.10. Sample time—series data of the differential air pressure Δp and pneumatic power $P_{\rm n}$ in each chamber for a wave condition of Test–1 and constant opening ratio of $R_2 = 1.35\%$.
Figure B.11. Sample time—series data of the effect of PTO damping on the internal water surface elevation η in each chamber for a wave condition of Test–1 and three values of opening ratio.
Figure B.12. Sample time–series data of the effect of PTO damping on the differential air pressure Δp in each chamber for a wave condition of Test–1 and three values of opening ratio.
Figure B.13. Sample time—series data of the effect of PTO damping on the pneumatic power P_n in each chamber for a wave condition of Test–1 and three values of opening ratio.
Figure C.14. Experiment repeatability at $H=100$ mm, $T=1.2$ s and $Ri=1.34\%150$
Figure D.15. Single chamber simulation model diagram
Figure D.16. The pressure drop inside the chamber Δp (Eq.(5.24)) model diagram152
Figure D.17. Newton's second law model diagram Eq.(5.10)
Figure D.18. four chambers MATLAB/Simulink model diagram

List of Tables

Table 2.1 The main stages and study history of the OWC device considered in this chapter	19
Table 3.1. Wave classification	41
Table 4.1. Experimental test conditions and parameters	78
Table 4.2. Orifice diameter and its opening ratio	79
Table 4.3. The absolute average of the changes in the significant parameters as a result of wave height change from 50 mm to 100 mm	
Table 4.4. OWC chamber approximated resonant period	87
Table 4.5. PTO damping coefficient (τ)	89
Table 4.6. Irregular wave test conditions and parameters	92
Table 4.7. The capture width ratio (ε_{irrg}) under irregular wave conditions for different PTO damping	
Table 4.8. Repeatability test conditions	97
Table 4.9. Experiment uncertainty	99
Table 5.1. Geometrical parameters of the MC–OWC device illustrated in Figure 4.2.1	13
Table 5.2 NRMSE of the MATLAB/Simulink1	18
Table 6.1. The correlation coefficient R and NRMSE between the CFD and the experimental results for water surface elevation (η) , airflow rate (Q) and differential air pressure (Δp)	27
Table 6.2. Orifice diameter and its opening ratio1	28
Table 6.3. The wave period values used in CFD1	28
Table C.1. Standard uncertainty Type A calculation. 1	48
Table C.2. Standard uncertainty Type B calculation	49

Acronyms and Abbreviations

Notations

A_I	Chamber area	(m^2)
A_2	Orifice opining area	(m^2)
а	Wave amplitude	(m)
В	Hydrodynamic damping coefficient	$(Ns m^{-1})$
C_{d}	Coefficient of discharge	(-)
$C_{ m g}$	Group velocity	$(m s^{-1})$
c	Wave velocity	$(m s^{-1})$
\mathcal{C}_{S}	Speed of sound	$(m s^{-1})$
D	Orifice diameter	(m)
$D_{ m pipe}$	Internal diameter of the pipe	(m)
d	Draught of the water column	(m)
d'	The added draught due to added mass	(m)
E	Total energy	(J)
$E_{ m k}$	Kinetic energy	(J)
E_{p}	Potential energy	(J)
F	Force	(N)
F_a	Added mass force	(N)
$F_{\Delta p}$	Force due to the varying air pressure	(N)
F_{FK}	Froude-Krylov force	(N)
F_d	Damping force	(N)
F_{ex}	Exciting force (heave mode)	(N)
f	Frequency	(Hz)
f_e	Peak frequency	(Hz)
fn	Natural frequency	(Hz)
Δf	Frequency bands width	(Hz)
Gi	The wave sensors	(-)
G_{in}	The incident wave height sensor (in the front of the device)	(-)
G_{out}	The wave height sensor in the device rear	(-)
g	Acceleration due to gravity	$(m s^{-2})$
H	Wave height	(m)
H_s	Significant wave height	(m)
h	Water depth	(m)
h_{in}	The height of the top cover of the chamber relative to the	(m)
	water surface level inside the chamber	

h_{a0}	The height of the top cover of the chamber relative to the SWL	(m)
K	Hydrostatic restoring coefficient	$(N m^{-1})$
k	Wavenumber	(m^{-1})
k_c	The coverage factor	(-)
L	Wave length	(m)
L_C	Chamber length	(m)
l	Length scale	(-)
M	Mass of the column of water	(kg)
M_{a}	Added mass (heave mode)	(kg)
m	Air mass	(kg)
m	Mass flow rate	$(kg s^{-1})$
N	Number of calibration sample	(-)
n	Number of repeated observations	(-)
P_n	Pneumatic power	(W)
\overline{P}_n	Time-averaged pneumatic power	(W)
P_{in}	Mean incident power per meter of the wave crest	$(W m^{-1})$
P_w	Input power in the OWC	(W)
P_t	The power due to pressure	(W)
P_a	The power is due to airflow velocity	(W)
p_c	Pressure inside a chamber	(Pa)
p_{atm}	Atmospheric air pressure at standard temperature and	(Pa)
	pressure	
Δp	Differential air pressure $(p - p_{atm})$	(Pa)
p_{wave}	Dynamic pressure field	(Pa)
Q_w	Airflow rate	$(m^3 s^{-1})$
Q_p	Volumetric airflow	$(m^3\ s^{-1})$
Ŕ	The ideal gas constant which is equal to 287.1 for dry air	$(J \; kg^{-1} \; K^{-1})$
Ri	Opening ratio	(-)
R	Correlation coefficient	(-)
Ŕ	Ideal gas constant	$(J \; kg^{-1} \; K^{-1})$
$S(\omega)$	Spectral variance density	(-)
S	Standard deviation	(-)
S	Wave steepness	(-)
t	Time	(s)
Δt	Time step	(s)

T	Wave period	(s)
T_R	Resonant period	(s)
T_p	Peak period	(s)
T_k	The ambient temperature is in Kelvin	(K)
T_c	The chamber temperature is in Kelvin	(K)
U_S	Standard uncertainty	(-)
$U_{S ext{-}A}$	Standard uncertainty Type A	(-)
$U_{S ext{-}A}$	Standard uncertainty Type B	(-)
V	Air volume	(m^3)
V_{i}	Air flow velocity	$(m. s^{-1})$
Y_i	The calibrated data	(-)
\grave{Y}_i	The fitted value	(-)
z	The vertical co-ordinate	(m)
и	Fluid velocity in the x-direction	$(m s^{-1})$
ν	Fluid velocity in the y-direction	$(m s^{-1})$
w	Fluid velocity in the z-direction	$(m s^{-1})$
η	Water surface elevation	(m)
arepsilon	Capture width ratio	(-)
\mathcal{E}_{c}	Chamber capture width ratio	(-)
ϕ	Velocity potential	$(m^2 s^{-1})$
τ	Damping coefficient	$(kg^{1/2} m^{-7/2})$
γ	The heat capacity ratio	(-)
δ	Calibration factor	(-)
$ ho_w$	Water density (= 998.2 at 293 K)	$(kg m^{-3})$
$ ho_{air}$	Air density (=1.2 for dry air at 293 K)	$(kg m^{-3})$
θ	Angular length of the chamber	(rad)
ω	Angular frequency	(s^{-1})
ω_n	Natural frequency	$(rad s^{-1})$
Γ	Viscous stress tensor	(-)
α	Constant that relates to the wind speed and fetches length	(-)
β	Pipe diameter ratio	(-)
Υ	Peak enhancement	(-)
σ	Spectral shape factor	(-)
σ_{est}	The standard error of the estimate	(-)
μ	Dynamic viscosity	$(m^2 s^{-1})$
λ	Scale ratio	(-)

Abbreviations Used in Thesis

BEM Boundary element method

CFD Computational Fluid Dynamics

Ch-1 The first chamber (face the incoming wave)

Ch–2 The second chamber

Ch-3 The third chamber

Ch-4 The fourth chamber

FVM Finite Volume Method

HRIC High-Resolution Interface Capturing

LWT Linear wave theory

MC-OWC Multi-chamber oscillating water column

MHL Manly Hydraulic Laboratories

NWT Numerical wave tank

NRMSE Normalized Root Mean Square Error

OWC Oscillating water column

PTO Power take-off

RANS Reynolds-Averaged Navier-Stokes

SST Shear stress transport

SWL Still water level

UTS University of Technology Sydeny

VOF Volume of Fluid

WEC Wave energy converter