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The analytical tractability of Nagaoka ferromagnetism makes it a convenient model to explore the
capabilities of quantum simulators of collective electron interactions. However, the small ground-
to-excited state energy compared to electron interactions, as well as the difficulty of measuring
magnetization in few particle devices, have made the Nagaoka model experimentally unattainable.
Here we present experimental signatures of the ferromagnetic ground state, predicted for 3 elec-
trons in a 4 site square plaquette, engineered using electrostatically defined quantum dots. We
test the robustness of the Nagaoka condition under different scenarios of lattice topology, device
homogeneity and magnetic flux through the plaquette. This long-sought demonstration of Nagaoka
ferromagnetism establishes quantum dot systems as prime candidates for quantum simulators of
magnetic phenomena driven by electron-electron interactions.

INTRODUCTION

The emergence of magnetism in itinerant electron sys-
tems presents a fascinating and challenging problem at
the heart of quantum many-body physics [1, 2]. This may
sound surprising since the most common ferromagnetic
material–iron–is a metal. However, in iron, as well as
many other materials including cobalt, nickel, mangan-
ite materials, magnetism is dominated by spins of nearly
localized electrons, with conduction band electrons pro-
viding indirect exchange interactions. Going back to
Stoner [3], simple models have been introduced to provide
simple theoretical models for itinerant ferromagnetism.
Here, magnetism must emerge from a delicate quantum
mechanical interplay between the potential energy that
can be saved through building appropriate symmetries
and correlations into electronic wave functions, and the
corresponding costs in kinetic energy. Despite their sim-
plicity, the existence of ferromagnetic phases in these
models remains a subject of considerable controversy [4].
The most recent experimental effort towards observing
a ferromagnetic instability in itinerant Fermi systems
has been undertaken with ultracold atoms [5], although
the interpretation of those experiments has evolved in
time [6]. On the theory side, there are only few rigorous
theoretical results for itinerant magnetism, for instance
in systems with special flat bands and Nagaoka’s ferro-
magnetism (see Ref. [7] and references therein).

The Nagaoka model of ferromagnetism [8] relies on
the simplicity of the Hubbard model [9], which captures
complex correlations between electrons in a lattice using
only two Hamiltonian parameters. Using this single-band
model, Nagaoka proved analytically that for some lattice
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configurations and in the limit of very strong interactions,
the presence of a single hole on top of a Mott insulating
state with one electron per site renders the ground state
ferromagnetic.

This elegant theoretical demonstration of ferromag-
netism in the Hubbard model poses the question whether
the ferromagnetic ground state will persist in an experi-
mental setting, in the presence of long-range interactions
and disorder, as well as additional available orbitals. The
feasibility of performing a quantum simulation of Na-
gaoka ferromagnetism has been explored for quantum
dots [10–12] as well as optical superlattices [13]. In spite
of the maturity of quantum simulations of the Hubbard
model, led by the cold atoms community [14], there has
been no experimental observation of a high-spin ground
state in an almost half-filled lattice or array of itinerant
electrons–the smoking gun of Nagaoka ferromagnetism.

Electrostatically defined semiconductor quantum
dots [15–17] have been gaining attention as excellent
candidates for quantum simulations of the Hubbard
model [18, 19]. Recent results have demonstrated
the feasibility to extend these systems into 2D lat-
tices [20–24]. The ability to reach interesting interaction
regimes along with low temperatures, as well as the
ability to perform spin correlation measurements, make
quantum dot arrays particularly appealing for overcom-
ing the challenges of observing evidence of Nagaoka
ferromagnetism.

In this article, we present experimental signatures of
Nagaoka ferromagnetism, using a quantum dot device de-
signed to host a 2× 2 lattice of electrons [23]. Using the
high degree of parameter tunability, we study how exter-
nal magnetic fields and disorder in local potentials affect
the ferromagnetic ground state. Furthermore, by effec-
tively tuning the geometry of the system from periodic
to open boundary conditions, we experimentally demon-
strate the suppression of magnetism expected from the
Lieb-Mattis theorem [25].
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FIG. 1. (a) False colored SEM image of a device from the
same batch as the one used in the experiments. The gate
structure used to define the quantum dots is colored in dark
gold. A slab of silicon nitride (colored in green) is laid over
gates C3 and P3, to electrically isolate those gates from the D0

gate (colored in bright gold) which runs over them and con-
tacts the substrate at the center of the structure. A sketch
of the expected 2DEG density in blue shows the 4 dots form-
ing a plaquette in the center of the device, along with nearby
charge sensors and electron reservoirs. (b) Energy spectrum
as a function of tunnel coupling using the solution expressed
in Eq. 2, with U = 2.9 meV. Shaded area shows the experi-
mentally accessible range of t in this system.

NAGAOKA MODEL IN THE QUANTUM DOT
PLAQUETTE

The single-band Hubbard model provides a simple de-
scription of interacting electrons in a lattice, through a
Hamiltonian that contains competing kinetic energy and

electron-electron interaction terms:

HH = −
∑

〈i,j〉σ
ti,jc

†
iσcjσ +

∑

i

Uini↑ni↓ −
∑

i

µini, (1)

where ti,j is the matrix element accounting for electron
tunneling between sites i and j, Ui is the on-site Coulomb
repulsion energy on site i and µi is a local energy offset
at dot i, which can be electrostatically controlled. The

operators ciσ, c†iσ and niσ represent the second quantiza-
tion annihilation, creation and number operators for an
electron on site i with spin projection σ = {↑, ↓}.

To study the conditions under which Nagaoka ferro-
magnetism can manifest itself on a square plaquette, we
restrict the system to 3 electrons (i.e. one less than half
filling), with nearest-neighbor only coupling and periodic
boundary conditions (see schematic in inset of Fig. 1a).
This case is analytically solvable [10] for homogeneous
interactions (Ui = U , ti,j = t, µi = 0) and in the limit
U � t, where the eigenstates have energies:

E3/2 = −2t and E1/2 = −
√

3t− 5t2

U
, (2)

where E3/2 is the energy of the ferromagnetic quadru-
plets (with total spin s = 3/2 and spin projections
m = {±1/2,±3/2}) and E1/2 is the energy of the 2 sets
of low-spin s = 1/2 doublets, which are degenerate in
this model [26].

The simple Hamiltonian in Eq. 1 does not account for
some of the essential features of the experimental device.
For comparison with experimental results, we employ a
more general model Hamiltonian, in which we account
for interdot Coulomb repulsion (in Fig. 2a), spin-orbit
and hyperfine interactions (in Fig. 3b), as well as the
effects of external magnetic fields (in Fig. 5a-b). The
implementation of these terms is described in detail in
the supplementary text. In addition to this model, we
have also performed an ab initio calculation [26] based
on multiple orbitals solved from a potential landscape
with 2× 2 minima, showing very similar results to those
obtained with Eq. 1.

EXPERIMENTAL ACCESS TO THE NAGAOKA
REGIME

The quantum dot plaquette (Fig. 1a) is formed by bias-
ing metallic gates patterned on top of an AlGaAs/GaAs
heterostructure, to control the local density of a 2-
dimensional electron gas (2DEG) located 90 nm below
the surface of the substrate. We use two additional
nearby dots as charge sensors, to measure charge sta-
bility diagrams where we can observe charge tunneling
events either between an electron reservoir and a dot, or
between two dots in the plaquette. These diagrams (such
as the one in Fig. 2a) allow us to map out the charge oc-
cupation of the system, as a function of voltage in the
gates. The device is tuned to a regime where the system
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FIG. 2. (a) Simulated charge stability diagram showing the approximate gate space used in the experiment. In the experiment
we pulse in a straight line in gate space from point M to point N and back. Top-right inset shows a schematic of the local
energies at points N and M , highlighting in the latter how the measurement of 2 spins in the singlet-triplet basis is performed
through spin-to-charge conversion. Lower-left inset shows a measured charge stability diagram of the dotted region, with the
same gate voltage ratios as the simulation, which we use in the experiment to calibrate the gate voltages at point N . (b)
Calculated energy spectrum as a function of detuning proportion, using the theoretical model (Eq. 1 and supplementary text)
without spin-coupling effects. Parameter values were set to Ui = [2.9, 2.6, 2.9, 3.0] meV and ti,j = 16 µeV, as extracted from
the experiment. Inset shows a zoomed-in spectrum of the region where the 3 spins are delocalized on all 4 dots, where there
are a total of 8 states: the s = 3/2 quadruplets (red) and the 2 sets of s = 1/2 doublets (blue), of which one set connects
with the |T 〉 branch and the other with the |S〉 branch at point M . Line colors represent the spin state of the system in each
region, denoted by the labels in the figure. The energies extracted from the numerical solutions are offset by the energy of
|s,m〉 = |3/2,+3/2〉. (c) Pulse sequence used in the experiment (see main text for detailed description).

is loaded with 3 electrons, and the charge configuration
energies of the electrons are resonant. We set the local
energy reference at this regime as µi(N) = 0 eV for all
dots, and refer to this condition as point N (see inset
of Fig. 2a). Different features of the charge stability dia-
grams are also used to estimate the effective Hamiltonian
parameters in our experimental system. The effective
on-site interaction Ui is measured by extracting the local
energy offset in dot i required to change the occupation
from 1 electron to 2 electrons. The effective tunnel cou-
pling term ti,j is measured by analyzing the width of the
step in the charge sensing signal as the detuning between
dots i and j is swept to transfer a single electron between
them. Virtual gates provide knobs to effectively control
the µi and ti,j parameters in the experimental system,
by canceling the effects of cross-talk between gates. A
more detailed description of the fabrication, operation,
measurement protocols and implementation of the vir-
tual gates can be found in the supplementary material
and in Ref. [23].

The simple model described by Eqs. 1 and 2 already
provides some useful insight into the parameter regimes
that are relevant to the experiment. The ferromagnetic
state is the ground state at large U/t, with a transi-

tion to a low-spin ground state occurring at U/t = 18.7.
The quantum dot array used in this work has an average
U ≈ 2.9 meV across the four sites, with tunable nearest-
neighbor tunnel couplings in the range of 0 < t <∼ 20 µeV.
Unless otherwise stated, the couplings in these measure-
ments are tuned to ti,i+1 ≈ 16 µeV. This means that we
are probing the regime where the ground state is expected
to be ferromagnetic and the transition to the low-spin
state is out of experimental reach (see Fig. 1b). More-
over, the expected energy gap between the ferromagnetic
and low-spin states in the system is E1/2−E3/2 ≈ 4 µeV,
which is comparable to the measured electron tempera-
ture kBTe ≈ 6 µeV (70 mK) [23]. This complicates the
measurement, because we cannot distinguish the ground
state of the system at equilibrium. Instead, we need to
drive the system out of equilibrium in order to try to
amplify the probability in the ground state. To this end,
we have developed techniques to probe the different en-
ergy levels and probe the spin state of the system on
timescales faster than the thermal relaxation.
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Measurement protocol

Since the sensing dots are only sensitive to charge
tunneling events, a spin-to-charge conversion protocol is
needed in order to perform measurements of the spin
state of the system. We do this at point M , where µMi ≈
[−2.5, 0.0, 1.0,−0.5] meV (see inset of Fig. 2a). There,
the ground charge state is [2, 0, 0, 1] (where [n1, n2, n3, n4]
corresponds to the number of electrons with dot number
in the subscript), while the first excited charge state is
[1, 1, 0, 1]. These states have an uncoupled spin in dot 4,
with the remaining 2 spins in a singlet |S〉 (triplet |T 〉)
configuration for the ground (first excited) state. The
charge stability diagram in Fig. 2a is simulated and mea-
sured (inset) using a gate combination that allows to see
both points N and M in the same diagram.

Fig. 2b shows the lowest three multiplets of the energy
spectrum of the 3-electron system, along the line that
connects point M to point N . Close to point M we see a
typical double quantum dot spectrum corresponding to
the [2, 0, 0, 1] ↔ [1, 1, 0, 1] charge transition with the |S〉
and |T 〉 branches, while in the region around point N
the spins delocalize and we see branches corresponding
to the quadruplets and doublets of the 3-electron system.

With this device, we can probe the spin state of the
3-electron system using the following protocol: 1 - re-
peatedly (10000 times) pulse rapidly from point N to
point M , 2 - for each repetition, perform single-shot
|S〉/|T 〉 measurements using dots 1 and 2 and taking 2
out of the 3 electrons, and 3 - extract the triplet prob-
ability PT . Under ideal conditions, this constitutes a
2-spin projective measurement of the 3-electron system,

resulting in P
(3/2)
T = 1 when the 3-electron system is in

a ferromagnetic state (any of the s = 3/2 quadruplets).
In the low-spin sector (s = 1/2), there are two sets of
doublet states available, one of which projects 2 spins to
|S〉, while the other projects to |T 〉 [26]. In this system
the doublets are effectively degenerate (see Fig. 2b), and

their hybridization will result in P
(1/2)
T = 0.5.

Due to the low ratio of energy level splitting to tem-
perature at point N , we cannot probe the ground state of
the system by way of relaxation. Instead, we apply a gate
pulse sequence that follows the detuning range shown in
the energy spectrum plotted in Fig. 2b. Using the pulse
sequence drawn in Fig. 2c, a 2-spin singlet state with a
third, free spin sitting on dot 4, is initialized by waiting at
point M for 500 µs. Next we apply simultaneous pulses
to the Pi gates of different amplitudes, such that we ef-
fectively pulse along the ‘detuning proportion’ pε axis in
Fig. 2b (see also the line along the charge stability dia-
gram in Fig. 2a), defined such that µi(pε) = (1− pε)µMi .
We then wait a time τwait at µi(pε), before finally puls-
ing back to point M to perform the measurement. Im-
portantly, the level crossings seen in Fig. 2b are in fact
avoided level crossings with spin-orbit and nuclear hyper-
fine mediated coupling between the spin states [26]. This
avoided level crossing allows to probe the different states
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FIG. 3. (a) Measured PT vs pε using the protocol described
in the main text. Different curves correspond to different val-
ues of τramp. The main figure focuses on the region close to
point N , while the inset is zoomed out to the entire detuning
range, for the 2 extreme values of τramp. τwait is fixed to 50 ns
(500 ns) for the main figure (inset). (b) Average PT in the de-
tuning region 1.00 < pε < 1.01 for a set of 40 measurements
within the same τramp range shown in (a). Black line is a
fit made via time evolution simulations in which we initialize
a statistical mixture of the two lowest energy eigenstates at
pε = 0.8 and sweep the potentials to pε = 1 at different rates.
The fit has the hyperfine coupling parameter δN as a free fit-
ting parameter, and the extracted PT curve from the model
is scaled and offset to match the data at the minimum and
maximum value of τramp, to account for measurement imper-
fections [26]. (c) Thermal relaxation measurements. PT is
measured for increasing wait times at point N , for diabatic
(dark) and adiabatic (light) passages. Solid lines are expo-
nential fits as guide to the eye.

in the region around pε = 1, by varying the ramp rate
in the pulse sequence: a slow (fast) ramp rate results
in an adiabatic (diabatic) passage through the avoided
level crossings, so the ground (excited) state is reached.
In practice, in order to avoid leakage to excited states
along the way, 80% of the pulse is performed adiabat-
ically, with the variable ramp time τramp only for the
remaining 20%. Varying τwait allows to study the relax-
ation dynamics in the system. As long as τwait is shorter
than the thermal relaxation time-scale, the measurement
of PT will be able to distinguish between ferromagnetic
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and low-spin states at point N .

MEASUREMENT RESULTS

Fig. 3a shows plots of PT (pε) when we apply the ex-
perimental protocol described above. The inset of the
figure shows the entire range of pε, highlighting that PT
remains at a low value for most of the range, with a sharp
increase as pε approaches 1 (point N). This is consistent
with expectation based on the energy spectrum plotted
in Fig. 2b, where the initialized singlet state is not sub-
ject to any energy-level crossing until the region close
to point N , where the levels cross and the electrons be-
come delocalized in the array, leading to a sharp increase
in the observed PT . The non-zero triplet fraction at low
values of pε is attributed partly to infrequent thermal ex-
citations during the initialization stage–as a consequence
of the finite electron temperature–and partly to a small
probability of leakage to excited states during the pulse.

The main figure shows the measurement around
point N , for a range of τramp. In the region where
0.99 < pε < 1.03, a clear increase of PT is observed
as τramp is increased, consistent with a gradual transi-
tion from diabatically pulsing into the low-spin state, to
adiabatically pulsing into the ferromagnetic state, where
PT is maximum. For the faster pulses, we see ‘peaks’
of PT at pε = 0.99 and 1.03, where the pulse reaches
the energy-level crossings, as all the spin states can be
expected to quickly (i.e., much faster than the experi-
mental timescales) mix by the nuclear hyperfine fields
and spin-orbit coupling [27–29].

From the τramp timescale for the diabatic to adiabatic
transition (see Fig. 3b) we can extract information about
the spin-coupling mechanisms at the avoided crossings.
To this end we have expanded the model in Eq. 1, to
include the effects of spin-orbit interaction and the hy-
perfine induced magnetic field gradients [26]. The model
suggests that the random hyperfine field gradients domi-
nate the spin coupling present at the avoided level cross-
ing (i.e., around pε ≈ 0.97). We can use the model to
fit the data in Fig. 3b, through time-evolution simula-
tions [26], from which we estimate a hyperfine coupling
parameter δN = 73 ± 3 neV, defined as the standard
deviation of the Gaussian probability distribution of the
hyperfine field in each dot [26]. The extracted δN is in
agreement with previous observations and calculations,
which have estimated 70 neV to 120 neV in similar GaAs
quantum dot systems [29–31]. We note that the observed
behavior can be qualitatively captured by a simple two-
level Landau-Zener model [26].

If we keep pε = 1 fixed and vary the wait time τwait
spent at point N, we observe relaxation of the s = 1/2
and s = 3/2 states, reflected in the decay of PT to an
intermediate level between the PT observed for slow and
rapid sweeps, at the shortest τwait (see Fig. 3c). This
is consistent with thermal equilibration in the system,
in which the electron temperature is comparable to the
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FIG. 4. (a) Comparison of 3 measurements with the fol-
lowing values of tunnel couplings [t12, t23, t34, t41] (in µeV):
[18.6, 15.3, 17.4, 18.6](orange); [15.7, 7.9, 20.3, 19.0](green);
[18.2, 0.0, 21.1, 20.7](purple). The offsets between the curves
are not attributed to the topology, but are due to small
measurement-to-measurement variations in the thermal
excitation rate during the initialization stage of the protocol.
(b) Calculated energy spectrum as a function of detuning
proportion, using the tunnel coupling values corresponding
to the green (left) and purple (right) plots from (a).

energy gap between the s = 1/2 and s = 3/2 states at
point N . The thermal equilibration occurs on a timescale
τrelax ∼ 2 µs. We note that we cannot directly assign the
values of PT to s = 1/2 and s = 3/2 populations, because
the observed PT is subject to measurement imperfections
caused by mechanisms that are difficult to disentangle,
such as the finite measurement bandwidth, the signal to
noise ratio and |T 〉 to |S〉 relaxation, as well as unwanted
leakage to other states during the pulsed passages.

Boundary conditions and the Lieb-Mattis theorem

Considering that the square plaquette can be thought
of as a 1D ring, the observation of a ferromagnetic ground
state may appear to be in contradiction with the Lieb-
Mattis theorem [25] which states that the ground state of
a 1D array of electrons has the lowest possible spin. How-
ever, as later pointed out by Mattis himself [10] the Lieb-
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Mattis theorem was only proven for 1D chains with open
boundary conditions, explicitly excluding arrays with pe-
riodic boundary conditions such as the case of the pla-
quette. We can intuitively understand the difference be-
tween these two configurations when we consider how
the hole tunnels to its next-nearest neighbor [32]. In a
2D plaquette, the hole has 2 possible paths to the next-
nearest neighbor. If the system is initialized in any of the
s = 1/2 configurations, the 2 paths will leave the system
in 2 different configurations. On the other hand, for an
s = 3/2 system the 2 paths are identical, and interfere
constructively to lower the kinetic energy of the system.
In contrast, in an open boundary 1D array, the kinetic
energy of the hole is independent of the spin configura-
tions of the neighboring electrons (i.e., there is only one
path for the hole to follow through the array), therefore
the total energy of the system will obey the Lieb-Mattis
theorem.

One powerful feature of the quantum dot system is
that the tunnel barriers can be tuned independently, al-
lowing us to test different array topologies. In Fig. 4 we
compare diabatic and adiabatic sweeps, as we raise the
tunnel barrier that controls t23, effectively transforming
the plaquette into a system that behaves more like the
1D system described by Mattis. In the latter regime, we
see that PT becomes insensitive to sweep rate. Addition-
ally, we no longer observe the peaks of PT for the fast
sweep rate, which we had associated with mixing at the
avoided level crossings. From these observations we infer
that for the open chain, the instantaneous ground state
does not exhibit an avoided crossing between an s = 1/2
state and an s = 3/2 state as the system is taken to
point N. This interpretation is also consistent with the
numerical simulations of the energy spectrum shown in
Fig. 4b.

Destroying ferromagnetism with magnetic fields

Given that Nagaoka ferromagnetism can be explained
through interference effects due to the trajectories
of the hole around the ring, it then follows that
a magnetic flux through the plaquette will add an
Aharonov-Bohm phase [33] that disturbs the interfer-
ence effects. We capture this effect in the theoretical
model by modifying the second term in Eq. 1 as [26]:

−∑
〈j,k〉σ tj,k exp (−iϕjk) c†jσckσ. We use the gauge in

which ϕ41 = 2πΦ
Φ0

, where Φ = B`2 is the flux generated by
a magnetic field B through the plaquette with estimated
distance between nearest-neighbor dots `, and Φ0 = h/e
is the flux quantum. Using this gauge, the phases for
the other links vanish. In addition, the application of an
external field subjects the system to the Zeeman effect,
causing a spin-dependent energy offset EZ = gµBBm to
each eigenstate, where g = −0.4 is the electron g-factor
in GaAs and µB is the Bohr magneton.

Fig. 5a shows the effect of the magnetic flux on the
spectrum, ignoring the Zeeman effect. The lowest s =
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FIG. 5. Applying an external magnetic field. (a) Lowest
eigenenergies of the s = 1/2 (blue) and s = 3/2 (red) states at
point N as a function of magnetic field, obtained from the nu-
merical model after including the effect of an Aharonov-Bohm
phase (details in main text). (b) Same as (a) but with the
addition of the Zeeman effect, and the lowest 4 eigenenergies
of each s states are shown. (c) Experimental measurement
using diabatic passage, for different fields in the range of 0
to 16 mT. Inset shows a numerically calculated spectrum at
12 mT, with the Aharonov-Bohm phase and Zeeman effect
included in the model.

1/2 and s = 3/2 levels at point N are shown as a func-
tion of the applied field, where periodic crossings can be
observed. In the range 30 < B < 160 mT, the system
ground state transitions to the low-spin state, with the–
perhaps counterintuitive–implication that we can destroy
the ferromagnetic state by applying a magnetic field. Ad-
ditionally, this effect highlights that the ferromagnetic
state in this system is dominated by the Nagaoka effect
and not by long-range interactions. Indeed, the ab initio
calculations suggest that long-range interactions only ac-
count for ∼ 20% of the ferromagnetic polarization. When
we include the Zeeman effect (see Fig. 5b) the picture be-
comes more complicated, because both Zeeman and or-
bital effects cause perturbations of similar energy scales.

From this initial numerical analysis it is clear that
the experimental characterization of the applied external
field will be challenging, due to the increased complexity
of the spectral structure of the spin states as a function
of field. The small energy splittings that appear both
at point N , as well as at lower pε values (see inset of
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FIG. 6. Experimental measurements with point N purposefully redefined to have a ±50 µeV offset on each of the 4 dots.
Panels correspond to offsets in dots 1 to 4, clockwise from the top-left. Insets show numerically calculated spectra for the same
experimental condition.

Fig. 5c) are expected to cause mixing of the spin states
during the adiabatic pulses. To minimize this mixing, we
adjusted the pulsing protocol such that we pulse adia-
batically (1 µs ramp) to pε = 0.2, then pulse diabatically
(5 ns ramp) the rest of the way. The results in Fig. 5c
show that from 4 to 8 mT PT increases at point N, and
we stop observing the characteristic dip. Note that the
range of field that we were able to probe is still below
the estimated ground state transition point (∼ 30 mT).
Therefore, we infer that the observed increase in PT is
the effect of hybridization of the s = 1/2 and s = 3/2
states as their energy gap reduces. We cannot claim that
the observed hybridization of states is occurring solely
at point N , as it is evident from the increase in PT at
pε < 0.97 (i.e. prior to the energy-level crossings) that
some of the mixing is occurring during the pulse. How-
ever, we do see that PT in all plots converge at the energy-
level crossings (pε ≈ 0.97 and pε ≈ 1.03) suggesting that
the Aharonov-Bohm orbital effects are partly responsible
for the additional mixing in the region around point N .

Sensitivity to local energy offsets

We also use the tunability available in quantum dot
systems to study the effects of disorder of the local poten-
tial present in each dot. For the plots in Fig. 6, we mod-
ified the experimental protocol used to probe the states
at point N , pulsing instead to a point N ′, where the local
energy of one of the dots is offset by ±50 µeV. We can
do this by employing the virtual gates technique [19, 23],
which gives access to control knobs that map a linear
combination of Pi gates onto local dot energy offsets. The
insets of the panels in Fig. 6 show the expected energy
spectra when we simulate the experimental conditions
using the model in Eq. 1. The spectra show that for all
cases there remains a region in the detuning trajectory
where the ferromagnetic state is the ground state, but
both the width and the position of this region around
point N ′ varies with the different local offsets applied.
The experimental results in the main panels show excel-
lent qualitative agreement with the variations observed
in the calculated spectra, further confirming the valid-
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ity of the experimental protocol. Remarkably, we have
also pushed the offset of dot 1 to the range −100 to
+800 µeV and the system still shows signs of the fer-
romagnetic ground state (see Fig. S5).

DISCUSSION

In this work we have presented the first measurements
showing experimental evidence of Nagaoka’s 50-year old
theory in a small scale system. The large degree of tun-
ability, high ratio of interaction strength to temperature,
and fast measurement techniques available to quantum
dot systems, allowed observing both the ferromagnetic
ground state and the low-spin excited state of an almost-
half-filled lattice of electrons. Even though the problem
of 3 electrons in a 4-site plaquette can be solved analyt-
ically using the Hubbard picture, a complete description
of this experimental system that includes all its available
orbitals is not easily tractable, analytically or numeri-
cally. Indeed, the computational cost of the ab initio cal-
culation, with all interaction terms being considered, is
on the order of 10000 CPU hours. In addition, this small
scale quantum simulation provides value beyond proof-
of-principle in two important ways. First, by performing
a quantum simulation involving charge and spin states, it
builds on previous demonstrations [19] that quantum dot
systems can be useful simulators of the Hubbard model,
despite their inhomogeneities in the potential shape and
local energies. Additionally, small scale simulations on
tractable models can be used to systematically bench-
mark the performance of devices as the scale-up technol-
ogy develops towards devices that can perform classically
intractable simulations. Finally, in this work we showed
a flavor of the capabilities for studying the sensitivity to
disorder, and these experiments already revealed some
surprising effects, when we found that the Nagaoka con-
dition can still be observed after offsetting a local energy
by amounts much larger than the tunnel coupling. This
can readily be studied in further detail, along with other
possibilities for exploring the effects of disorder, which
could bring insights into e.g., the stability of the ferro-
magnetic state.

This experiment is an important step forward in
answering the question of whether itinerant magnetism
can occur in real systems. Larger realizations of similar

quantum dot systems (or any other experimentally
controllable system), such as 2 × N or M × N arrays
can shed more light on the discussion. As the system
becomes larger the exchange interaction grows pro-
portionally to the system size, creating a competition
against the hopping energy that is characteristic of
Nagaoka ferromagnetism, and leaving the fate of the
Nagaoka mechanism in larger systems in the realm of
the unknown.
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Supplementary material for: Nagaoka ferromagnetism observed in a quantum dot
plaquette
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Christian Reichl, Werner Wegscheider, Mark S. Rudner, Eugene Demler, and Lieven M.K. Vandersypen

DEVICE FABRICATION AND METHODS

The experiment was performed using an array of four gate-defined quantum dots in a 2×2 geometry. We employed
a double-layer gate-structure to form this dot array. The first layer of gates–which includes all gates except D0–was
created using electron-beam lithography, evaporation and lift-off of Ti/Au with 5/20 nm thickness (see Fig. 1a of
the main text). We then fabricate a 1.5× 0.2 nm dielectric slab on top of the gates C3 and P3, using electron-beam
lithography, sputtering and lift-off of SiNx slab with 50 nm thickness. Finally, the D0 gate is created using the same
process as the other gates, with 10/100 nm thick Ti/Au. This gate runs over the gate C3 before contacting the
substrate at the center of the dot array. The gates created in the first layer are 30 nm wide, whereas the width of the
D0 gate is 100 nm.

Different parameters of the dot array can be controlled using voltages on different gates. The Pi gates are designed
to control the electron filling of dot i by adjusting the dot chemical potential µi. Gates D0 and Ci are designed to
control the tunnel coupling ti,j , while gates Bi and Ci+1 are designed to control the coupling between dot i and its
reservoir. In reality, the proximity between the gates causes non-negligible cross capacitances, preventing independent
control of the parameters that the gates were designed control. For some of the tuning stages, we make use of linear
combination of gate voltages–known as virtual gates [19,23]–to provide a direct experimental knob to the parameter
of interest. We use charge stability diagrams [16] to identify the charge state of the system as a function of different
Pi voltages. These diagrams are also used to measure and tune the effective ti,j parameters independently, using
the technique described in detail in Refs. [19,23], which requires analyzing the interdot transition of a single electron
across dots i and j.

In order to observe signatures of Nagaoka ferromagnetism, we need to tune the system such that it is loaded with
three electrons isolated from the reservoirs and these three electrons must be itinerant in the four dot system. In
Fig. S1, we show some sample charge stability diagrams and describe the tuning method used to tune the gate voltages
to identify point N . To tune ti,i+1 close to point N , we first localize 2 of the electrons in dots i + 2, i + 3 (i.e. by
slightly lowering µi+2, µi+3), and keep dots i, i + 1 resonant using the remaining electron to measure their tunnel
coupling. Here we use cyclic dot indices with i = {1, 2, 3, 4}.
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FIG. S1. Sample stability diagrams showing how we tune to the Nagaoka condition. We have highlighted the visible interdot
transitions (identified in the right panel), where the electrochemical potentials of two dots become resonant (i.e., an electron
is allowed tunnel between the two dots). In the center panel, dashed black lines delimit the regions with a fixed total electron
occupation in the system. From the left to right panels, we gradually tune the gate voltages in order to reach the Nagaoka
condition, where the three visible interdot transitions are aligned in the three-electron configuration (right panel). The intersite
interaction in the system provides an effective isolation from the reservoirs for a narrow range of gate voltages, such that the
system can remain stable with three electrons in the resonant configuration.
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Next, we identify the gate voltages suitable to perform the two spin projection measurement (point M in Fig. 2a
in the main text). Once we have identified point M and fine-tuned the gates to optimize the spin-readout fidelity, we
define a linear combination of Pi voltages that joins the points M and N by a straight line in gate voltage space. This
virtual gate enables us to probe the system along the ‘detuning proportion’ pε axis in Fig. 2b in the main text.

EXTENDED FERMI-HUBBARD MODELS USED TO SIMULATE DIFFERENT EXPERIMENTS IN
THE MAIN TEXT

In this section we will describe the different parameters that are included in the model Hamiltonians that we refer
to in the main text for analytical and numerical simulations. We begin with the simplest Fermi-Hubbard model of a
2 × 2 site plaquette with 3 electrons, and add from there different parameters as we increase the complexity of the
model. The simplest Hamiltonian we describe (H0) has been solved analytically with the aid of Mathematica. The
more complex Hamiltonians in the following subsections were solved numerically, using mainly the eigensolvers from
the Python-based Scipy package, with the exception of the time-evolution simulations, which were solved using an
in-house solver package [S1].

Representation of the quantum states

We represent the quantum states on the 2× 2 plaquette as

|ψ〉 =
∑

{niσ}
a({niσ})|{niσ}〉. (S1)

The basis consists of the states specified by the occupations of the electrons on the lattice and their spin projections:

|{niσ}〉 = |n1↑n2↑n3↑n4↑n1↓n2↓n3↓n4↓〉, (S2)

with niσ = 0 or 1. For N electrons on the plaquette we have
∑
iσ niσ = N and the basis states consist of all

combinations of the occupations at fixed N . Hence N = 3 corresponds to a space of the quantum states of dimension
8!/5!3! = 56.

The on-site energy and the Coulomb repulsion terms of the Hamiltonian
∑
i Uini↑ni↓−

∑
i µini are diagonal in this

basis. Tunneling involves the off-diagonal matrix elements [S2]:

〈. . . 1iσ . . . 0jσ′ . . . |c†iσcjσ′ | . . . 0iσ . . . 1jσ′ . . . 〉 = (−1)Σjσ
′−1

`=iσ+1n` , (S3)

where ` goes over the elements between iσ and jσ′ (exclusive) in the list (S2). The Hamiltonian commutes with the
spin operators S2 and Sz and its eigenstates are also spin eigenstates |s,m〉α:

S2|s,m〉α = s(s+ 1)|s,m〉α and Sz|s,m〉α = m|s,m〉α, m = −s,−s+ 1, . . . , s. (S4)

The spin operators are S2 = S2
z + 1

2 (S+S− + S−S+), Sz = 1
2

∑
i(ni↑ − ni↓), S+ =

∑
i c
†
i↑ci↓, and S− =

∑
i c
†
i↓ci↑. The

label α distinguishes between the states with the same quantum numbers s and m. For three electrons in the absence
of a magnetic field those states consist of energy degenerate s = 3/2 quadruplets and two sets of energy degenerate
s = 1/2 doublets. In the low-energy sector relevant to the study, α distinguishes between the two sets of s = 1/2
doublets.

Basic construction of the 3-electron filled plaquette Fermi-Hubbard Hamiltonian

In the simplest version of the model, the system is constrained to having 3 electrons and each dot can be occupied
with at most 2 electrons, subject to Pauli exclusion (i.e. double occupation of a dot must be of opposite spin). For
this section, the on-site interaction U and tunnel coupling t are taken to be equal for all sites. For now we do not
consider any spin coupling or spin-dependent splitting, therefore the Hamiltonian can be divided into two independent
blocks, one for the m = ±3/2 states (parallel spins) and another for the m = ±1/2 states (one flipped spin):

H0 = H3/2 + H1/2 (S5)
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and for each block it is sufficient to solve for one of the m projections and assume another degenerate set of states for
the opposite m projection. As will be shown, these assumptions reduce the dimensions of the Hamiltonians to 4 for
H3/2 and 24 for H1/2, making them simpler to solve analytically.

The quantum states for H3/2 will be

|ψ3/2〉 = a1|0 ↑↑↑〉+ a2|↑ 0 ↑↑〉+ a3|↑↑ 0 ↑〉+ a4|↑↑↑ 0〉 (S6)

with the Hamiltonian

H3/2 =




0 −t 0 −t
−t 0 −t 0
0 −t 0 −t
−t 0 −t 0


 (S7)

with eigenvalues {−2t, 0, 2t}.
For the block with m = ±1/2, double occupation is allowed, therefore we need to consider more available states.

We construct the Hamiltonian by first fixing the flipped spin in one dot and working out all the possible states in the
basis. For example, a down spin in dot 1 results in the basis sub-set

|ψ′1/2〉 = a1|2 ↑ 00〉+ a2|20 ↑ 0〉+ a3|200 ↑〉+ a4|↓ 0 ↑↑〉+ a5|↓↑ 0 ↑〉+ a6|↓↑↑ 0〉 (S8)

from which we then construct

H′
1/2 =




U −t 0 0 t 0
−t U −t −t 0 t
0 −t U 0 −t 0
0 −t 0 0 −t 0
t 0 −t −t 0 −t
0 t 0 0 −t 0




(S9)

The same matrix can be used for the subspace with the flipped spin on each of the other dots. To finish constructing
the 24-dimensional Hamiltonian, we need to then work out the hopping matrices for the spin down, which results in
the full Hamiltonian:

H1/2 =




H′
1/2 T 0 T ᵀ

T ᵀ H′
1/2 T 0

0 T ᵀ H′
1/2 T

T 0 T ᵀ H′
1/2


 where T =




0 0 t 0 0 0
0 0 0 0 t 0
0 0 0 0 0 t
−t 0 0 0 0 0
0 −t 0 0 0 0
0 0 0 −t 0 0




(S10)

The lowest two eigenvalues of this Hamiltonian are −2t (two states) and −
√

3t − 5t2

U (four states). The former
correspond to the m = ±1/2 states of the quadruplets with total spin s = 3/2. The remaining four states correspond
to the two s = 1/2 doublets (with m = ±1/2).

As expected for a 3-spin system, the 8 lowest eigenenergies of this Hamiltonian contain 4 degenerate ferromagnetic
quadruplets and the 2 sets of degenerate low-spin doublets.

Site specific parameters and local energy offsets

The first increase in the level of complexity for the model is to make the parameters site specific (Ui and ti,j), as
well as to add site specific local energy offsets µi. The resulting Hamiltonian

H1 = −
∑

〈i,j〉σ
ti,jc

†
iσcjσ +

∑

i

Uini↑ni↓ −
∑

i

µini (S11)

can be constructed in similar way as described above, with the addition of the corresponding diagonal µi elements.
We numerically solve this Hamiltonian to obtain the pε dependent energy spectra shown in the main manuscript.
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Spin coupling terms

In order to capture the τramp dependence of our experiments, we have added to the model the effects of spin-orbit
coupling and hyperfine interactions, the two most important mechanisms that lead to spin flipping in GaAs [S3].
Since we are now considering spin coupling, we need the full quantum state representation with the 56-dimensional
Hamiltonian.

For the quantum dot plaquette we have computed the matrix elements of the spin-orbit coupling Hamiltonian that
accounts for the Bychkov-Rashba and the Dresselhaus effects for GaAs grown in the the crystallographic direction
[001]:

Hso = α(pxσy − pyσx) + β(−pxσx + pyσy). (S12)

here α = eγb〈E〉/~ and β = γd〈k2
z〉/~ where e > 0 is the elementary charge, and E is the electric field at the interface

of the structure. For GaAs γb ≈ 5.2 × 10−2 nm2 and γd ≈ 27.6 meV.nm3 [S4]. The axes of the coordinate system
x and y correspond to the directions [100] and [010]. When spin-orbit coupling is weak we may take as a basis the
Wannier states |j〉 that are localized on the dots indexed by j. In this basis the matrix elements of Eq. S12 are

〈j|Hso|k〉 = α(pjkx σy − pjky σx) + β(−pjkx σx + pjky σy), (S13)

where pjka = 〈j|pa|k〉, a = x, y. Those matrix elements vanish if j = k. Then in the second quantized form Eq. S12
reads

Hso =
∑

jkσσ′

c†jσω
jk · σσσ′ckσ′ , (S14)

with ωjk · σσσ′ = (−αpjky − βpjkx )σσσ
′

x + (αpjkx + βpjky )σσσ
′

y . The unit vector in the direction of the dots j and k is
ˆ̀
jk = cos(θjk)x̂+ sin(θjk)ŷ. Eliminating the matrix elements of the momentum in the direction perpendicular to ˆ̀

jk,
Eq. S14 becomes

Hso =
∑

jkσσ′

c†jσp
jk
`

(
(−α sin(θjk)− β cos(θjk))σσσ

′
x + (α cos(θjk) + β sin(θjk))σσσ

′
y

)
ckσ′ . (S15)

Here pjk` = m〈j| ˙̀|k〉 = imtjk`jk/~, where m is the effective mass of the electron, `jk = `j − `k with `j the coordinate
of dot j on the (jk) axis, and tjk equals minus the matrix element of the one-electron Hamiltonian. Therefore

Hso =
∑

〈j,k〉
tjkc

†
j↑
(`jk
λb
e−iθjk − i `jk

λd
eiθjk

)
ck↓ + h.c., (S16)

where jk are restricted to neighboring dots and we define the length scales λb = ~/mα and λd = ~/mβ. Typically
〈k2
z〉 ∼ 0.02 nm−2 and 〈eE〉 ∼ 3 meV/nm. So λb ≈ 7µm and λd ≈ 2µm, for neighbor quantum dots (`jk ≈ 0.15µm),

giving `jk/λb ∼ 0.02 and `jk/λd ∼ 0.08.
The large abundance of nuclear spins in the GaAs crystal means that each site in the plaquette will be hyperfine

coupled to a number of randomly oriented nuclear spins, causing each site to experience a slightly different Overhauser
field. This interaction is described by the hyperfine coupling Hamiltonian [17,27,28]:

Hhf = S · hN . (S17)

Here S = (σx, σy, σz)/2 is the electron spin operator, hN =
∑
iAiIi, Ai = Av0|ψ(ri)|2 is the coupling parameter with

nucleus i having spin operator Ii, ψ(ri) is the electron envelope wave function at the nuclear site ri, and v0 is the
volume of the crystal cell. Hence BN = hN/gµB is the nuclear magnetic field acting on the electron with g-factor g,
and µB is the Bohr magneton.

The classical probability distribution of hNa (a = x, y or z) is normal [27,28]: P (hNa) = 1√
2πδ2N

exp(−h2
Na/2δ

2
N ).

The typical magnitude of the field component is δN ∼ A/
√
N � hNmax ∼ A, with N the number of nuclei covered by

the envelope function of the electron and hNmax the magnitude of the field when the nuclear spins are fully polarized.
For GaAs: N ∼ 106 and BNmax/

√
N is of the order of a few mT [17], hence hNmax/

√
N ∼ 0.1µeV.

Since our basis states are eigenstates of the Pauli matrix σz, we express Eq. S17 as:

Hhf =
1

2
(σzhNz + σ+ (hNx − ihNy) + σ− (hNx + ihNy)) , (S18)

where σ± = (σx ± iσy)/2. We numerically implement Eq. S18 and the nuclear fields of the four quantum dots are
taken to be independent. In Fig. S2a-c we show that the effect of the hyperfine coupling dominates over spin-orbit
coupling, in the detuning region of the energy level crossings.
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FIG. S2. (a)-(c) Calculated spectra of the experimental system as function of detuning proportion, comparing the effects
of different mechanisms for spin coupling: (a) spectrum without any spin coupling effects; (b) spectrum including spin-orbit
coupling effects calculated for this system as described in the supplementary text; (c) Sample spectrum with both spin-orbit
and hyperfine induced Overhauser field gradients, using a single combination of hNa fields selected from a normal distribution
with standard deviation δN = 73 neV. (d) Fits to the experimental data from Fig. 3b, using the time evolution simulations
described in the supplementary text, for different values of distance between neighboring dots.

Time evolution simulations

Using the full Hamiltonian with spin-coupling, we perform time evolution calculations to simulate the conditions
in the pε pulsing experiments. In the experiment, we initialize the ground state at point M and ramp adiabatically
to pε = 0.8, before pulsing to point N with a variable ramp time τramp.

We use an in-house solver package [S1] to simulate the evolution of the initialized state for the last 20% of pε with
varying ramp times. At pε = 0.8, we consider the initialized state as a statistical mixture of the two lowest energy
eigenstates, both of which are s = 1/2 states at pε = 0.8. We consider 20 values of τramp in the range from 50 ns
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to 1 µs, taking 10000 time-steps for each ramp. We then add the overlaps of the averaged density matrix with each
of the four lowest energy eigenstates at point N (i.e., the eigenstates with s = 3/2). This overlap can be mapped
to an ideal PT measurement with the method described two sections below. For each value of τramp, we repeat the
evolution 350 times, drawing different values of hNa, and compute the average PT for the final state. To account
for imperfections of the experimental measurement of PT –caused by the finite measurement bandwidth, the signal to
noise ratio and |T 〉 to |S〉 relaxation, as well as unwanted leakage to other states during the pulsed passages–we scale
the ideal calculated values of PT (τramp) to match the experimental PT at the minimum and maximum value of τramp.

We vary the parameter δN and use the method above to get the best fit to our experimental data. Additionally, the
spin-orbit term requires an estimate of the distance between neighboring dots, which was lithographically designed to
be ` = 150 nm. We consider a conservative range of ` from 100 to 200 nm (see Fig. S2d), from which we extract the
estimate for δN = 73± 3 neV quoted in the main text.

Extracting δN from the Landau-Zener model

The nuclear fields lead to the lifting of the spin degeneracies of the s = 3/2 quadruplet and the s = 1/2 doublets
and multiple avoided crossings of the order of δN . A simple estimate of the characteristic time-scale of crossover
between the diabatic and the adiabatic regimes of voltage tuning can be obtained by using the Landau-Zener formula
for a two-level system [S2]. Then the characteristic ramp time is

τ∗ramp =
~∆pε
2πδ2

N

d∆E

dpε
. (S19)

For ∆pε = 0.2 this gives τ∗ramp ∼ 100 ns, which is consistent with the time scale obtained by the time-dependent
numerical simulation of the model.

External magnetic field

To capture the orbitals effects resulting from a magnetic flux through the square plaquette, we modify the tunneling

term in Eq. S11 as −∑〈j,k〉σ tjke−iϕjkc
†
jσckσ, with the Peierls phase:

ϕjk =
e

~

∫ rj

rk

dr ·A(r) =
2π

Φ0

∫ rj

rk

dr ·A(r), (S20)

where e > 0 is the elementary charge, ~ is the reduced Planck constant, Φ0 = h/e is the flux quantum, and A(r) is
the magnetic vector potential. We use the gauge for which ϕ41 = 2πΦ/Φ0, with Φ = B`2 the magnetic flux through
the plaquette and ` the length of the side of the plaquette, and the phases for the other links vanish.

The Zeeman contribution is:

HZ = gµBB · S, (S21)

where B is the external magnetic field.

Charge stability simulations

In this work we use charge stability diagrams to identify different charge occupation regimes and charge transitions
as function of gate voltages. To accurately simulate the charge stability diagrams, we modify our model to expand the
number of basis states such that the system is no longer constrained to a total of 3 electrons, while each dot can still
be occupied by 0 to 2 electrons, and we include the effect of intersite Coulomb repulsion, by adding a

∑
i<j Vi,jninj

term to Eq. S11. Additionally, we use gate to local energy lever arms and a cross-capacitance matrix measured from
experiment to implement gate voltages Pi into the model and calculate their effect on local energies µi. We use this
model to calculate charge occupation as a function of gate voltages. We used the simulation toolbox in the Python
based package qtt [S5] to run these simulations.
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AB INITIO EXACT DIAGONALIZATION SIMULATIONS OF THE 2 × 2 PLAQUETTE

We have developed an ab initio model of the quantum dot plaquette used in the experiments, in order to provide, in
some aspects, more realistic benchmarks than the single-band Hubbard model used throughout. The model employs

the eigenstate wavefunctions of a single Gaussian quantum well V (r) = −V0e
−|r|2/2δ as the basis, and expands the

tight-binding parameters on their Wannier orbitals. Taking the second quantization of the Wannier orbitals, the
quadratic part of the Hamiltonian is

hiα,jβ = 〈iασ|H|jβσ〉, (S22)

where hiα,jβ define the site energy (diagonal terms) and hybridization (off-diagonal terms) of the Wannier orbitals,
for dot centers {i, j}, and orbital and spin indexes {α, β} and σ respectively. The on-site interactions are computed
after formulating an on-site multiplet model [S6]:

H(int)
i =

1

2

∑

ασ

Uαnασ̄nασ +
1

2

∑

α1 6=α2

∑

σ1,σ2

U ′α1α2
nα2σ2

nα1σ1
+

1

2

∑

α1 6=α2

∑

σ1,σ2

Jα1α2
c†α2σ1

c†α1σ2
cα2σ2

cα1σ1
, (S23)

where U is the Coulomb repulsion between electrons on the same orbital (i.e., the on-site Hubbard interaction), U ′

is the inter-orbital Coulomb repulsion and J is the exchange interaction between spins on different orbitals (i.e., the
Hund exchange). Similarly, through two-center integrals, we decompose the long-range interaction into:

H(int)
ij =

1

2

∑

ασ

∑

βσ′

Vαβniασnjβσ′ +
1

2

∑

αβ

∑

σσ′

Kαβc
†
jβσc

†
iασ′cjβσ′ciασ

+
1

2

∑

α 6=β

∑

σσ′

V ′αβc
†
iβσc

†
jασ′cjβσ′ciασ +

1

2

∑

α6=β

∑

σσ′

K ′αβc
†
jασc

†
iβσ′cjβσ′ciασ,

(S24)

where Vαβ represents the Coulomb interaction and Kαβ is the corresponding exchange interaction; similarly, V ′αβ is

the correlation between two on-site exchange interactions, while K ′αβ is the correlation between off-site exchange.

Modeling of the experimental device

We set the variance of the quantum well potential δ = 100 nm equal to the designed diameter of the quantum
dots in the device [23]. Setting the potential depth V0 = 11.4 meV, we obtain the first-excited-state level spacing
ε1 − ε0 ≈ 0.75 meV. The evaluation of the electron-electron interaction requires a specific value of the dielectric
constant, whose bulk value is ε = 12.9 in GaAs. However, since the gate electrodes contribute an additional capacitance
to the self-capacitance between the dot and the reservoir, we can account for this effect by selecting a larger effective
ε. Using ε = 20 in the quantum-dot system mentioned above, we obtain the ground-state Hubbard interaction
U0 ≈ 2.34 meV and the ground-excited-state interaction U ′01 ≈ 1.92 meV. This makes the model consistent with the
experimental measurements. This multi-orbital ab initio model correctly captures the energy level mixture caused by
having the on-site interaction being much larger than the orbital energy-level spacing, a feature that is characteristic
of quantum dots.

We calculate the long-range interactions for a distance d = 210 nm between neighboring dots in the plaquette. The
Coulomb interaction V obtained from calculation ranges from 0.22 meV to 0.4 meV depending on the orbitals, K
and V ′ are on the order of or below 1 µeV, and K ′ is even lower, on the order of 0.1 or 0.01 µeV. Even though these
higher-order correction terms are much smaller than the on-site interactions, they are still comparable to the ∼ 1 µeV
high-spin to low-spin energy gap–which we refer to as the Nagaoka gap–and should be taken into account.

For clarity, we distinguish between the hopping parameter in the ab initio model, and the experimentally measured
tunnel coupling. Different from the single-band model described in the previous section, the hopping strength has
contributions from all possible paths through different orbitals. The hopping parameters in the tight-binding model
vary among different orbitals and typically decrease exponentially as a function of the distance between quantum wells.
Since the ground-state wavefunction is most localized, hybridization between two ground states across neighboring
quantum wells is small (∼ 0.06 µeV for d = 210 nm). However, with the presence of multiple quantum dots, there
is strong hybridization between the ground state and local excited states (the maximum of which can be close to
the energy level spacing). These high-level excited states can contribute a ∼ 0.5 meV hopping strength. Therefore,
the tunnel couplings among low-energy states of neighboring quantum wells–obtained from the superposition of
all contributing paths–become much larger than the bare hopping parameter between ground states (the latter is
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FIG. S3. (a) Schematic of the methodology used in the ab initio simulations to reproduce the effect of the 4-dot system
transition from a 2D plaquette to a 1D chain. We gradually vary the angle θ, which effectively varies the distance between two
of the dots. (b) The ground-state energy and spin configuration, and (c) the high-spin to low-spin energy gap as a function of
θ. The ground state soon becomes a low-spin state for the rotating angle at 0.3◦.

∼ 0.06µeV). In our ab initio calculation, we estimate the tunnel coupling t by calculating the single-particle bandwidth
in the system. Assuming t is dominated by nearest-neighbor tunneling, the low-energy band structure of a 2 × 2
plaquette is −2t cos θ where θ goes from 0 to 2π. Therefore, the width of the lowest single-electron band (the lowest
four states) is approximately 4t. For our chosen d = 210 nm, the model predicts t ≈ 40 µeV, similar to the values
measured in the experiment.

We perform the ab initio, exact-diagonalization calculation, with three electrons in a four-well system, emulating
the experimental conditions. The bottom-level differential equation and integration are calculated on a grid with a
spacing of 1nm. To simplify the calculation, we keep 15 orbitals in each quantum well, which span a ∼ 5 meV energy
range, much larger than both U and t. The solution indeed predicts a high-spin ground state, with a Nagaoka gap of
∼ 3 µeV.

We have reproduced two of the experiments described in the main text. We first model the transition of the 4-dot
array from a ring to a chain, by gradually increasing the distance between two of the dots Fig. S3. This effectively
reduces the tunneling term between them, with a transition to a low-spin ground state as the system becomes more
1D-like, as described in the main text.

Finally, we reproduced the effect of varying the local energy offset, by gradually varying the amplitude of the
potential of the quantum well in one of the dots Fig. S4. The model predicts transitions to a low-spin ground state for
both positive and negative local offsets. As observed in the experiment, these transitions occur over a range of energy
orders of magnitude larger than the tunnel coupling, and with a similar asymmetry between positive and negative
offsets.
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FIG. S4. (a) Schematic of the methodology used in the ab initio simulations to reproduce the effect of a local energy offset. The
amplitude of the potential of one of the quantum wells is changed by an amount dV . The variation of the single-well potential
by positive or negative dV gives unbalanced site-energies. Besides, with the change of eigenstate basis, the hybridization and
interaction parameters are also affected in the ab initio calculation. (b) The ground-state energy and spin configuration, and (c)
the high-spin to low-spin energy gap as a function of dV . When the potential detuning is dV = 0.11 meV or dV = −0.07 meV,
the system undergoes a transition to a low-spin ground state. The transitions at these two directions have a different nature,
as drawn in the insets. For dV > 0, the particular quantum dot is deeper and tends to trap more electrons. On the other
hand, a negative dV raises the energy cost on the particular quantum well and leads to a lower probability of occupation in a
three-electron system. Without the “mobile” hole in the “half-filled” system, the ground state becomes a low-spin state instead
a Nagaoka ferromagnetic state.

MAPPING 3-SPIN STATES ONTO 2-SPIN MEASUREMENTS

In the main text, we state that we can distinguish between the 3-spin s = 1/2 and s = 3/2 states through a
projective singlet/triplet (|S〉/|T 〉) measurement on 2 random spins. Here we show this in the first-quantization
formulation of the spin states. We use the following 8 basis states of the system with 3 spin- 1

2 particles:

|3
2
,+

3

2
〉 = |↑↑↑〉

|3
2
,+

1

2
〉 =

1√
3

(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)

|3
2
,−1

2
〉 =

1√
3

(|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉)

|3
2
,−3

2
〉 = |↓↓↓〉

|1
2
,+

1

2
〉1 =

1√
3

(
−|↑↑↓〉+ eiπ/3|↑↓↑〉+ e−iπ/3|↓↑↑〉

)

|1
2
,−1

2
〉1 =

1√
3

(
−|↓↓↑〉+ eiπ/3|↓↑↓〉+ e−iπ/3|↑↓↓〉

)

|1
2
,+

1

2
〉2 =

1√
3

(
−|↑↑↓〉+ e−iπ/3|↑↓↑〉+ eiπ/3|↓↑↑〉

)

|1
2
,−1

2
〉2 =

1√
3

(
−|↓↓↑〉+ e−iπ/3|↓↑↓〉+ eiπ/3|↑↓↓〉

)

(S25)
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The 2-spin system has one singlet (|S〉) and three triplet states (|T+〉, |T0〉, |T−〉), given by:

|S〉 = |0, 0〉 =
1√
2

(|↑↓〉 − |↓↑〉)

|T+〉 = |1,+1〉 = |↑↑〉

|T0〉 = |1, 0〉 =
1√
2

(|↑↓〉+ |↓↑〉)

|T−〉 = |1,−1〉 = |↓↓〉

(S26)

To obtain the 2-spin projection on the 3-spin system, we take partial inner products of each of the eight basis states
with singlet and triplet states in the first two spins. First, we take the basis state | 32 ,+ 3

2 〉 :

〈S|3
2
,+

3

2
〉 =

1√
2

[〈↑↓| − 〈↓↑|] [|↑↑↑〉] = 0

〈T0|
3

2
,+

3

2
〉 =

1√
2

[〈↑↓|+ 〈↓↑|] [|↑↑↑〉] = 0

〈T+|
3

2
,+

3

2
〉 = 〈↑↑ | ↑↑↑〉 = |↑〉

〈T+|
3

2
,+

3

2
〉 = 〈↓↓ | ↑↑↑〉 = 0

(S27)

The probability of |S〉 and |T 〉 measurement outcomes in 2-spin projective measurements of the | 32 ,+ 3
2 〉 basis state

are

‖〈S|3
2
,+

3

2
〉‖2 = 0 and ‖〈T+|

3

2
,+

3

2
〉‖2 + ‖〈T0|

3

2
,+

3

2
〉‖2 + ‖〈T−|

3

2
,+

3

2
〉‖2 = 1 + 0 + 0 = 1.

Following similar derivations, we find that also for the other three basis states with s = 3/2, the probabilities of
obtaining |S〉 and |T 〉 upon measurement are 0 and 1 respectively.

Next, we take the basis state | 12 ,+ 1
2 〉1 :

〈S|1
2
,+

1

2
〉1 =

1√
2

[〈↑↓| − 〈↓↑|] 1√
3

[
−|↑↑↓〉+ eiπ/3|↑↓↑〉+ e−iπ/3|↓↑↑〉

]

=
1√
6

[
eiπ/3 − e−iπ/3

]
|↑〉 =

i√
2
|↑〉

〈T0|
1

2
,+

1

2
〉1 =

1√
2

[〈↑↓|+ 〈↓↑|] 1√
3

[
−|↑↑↓〉+ eiπ/3|↑↓↑〉+ e−iπ/3|↓↑↑〉

]

=
1√
6

[
eiπ/3 + e−iπ/3

]
|↑〉 =

1√
6
|↑〉

〈T+|
1

2
,+

1

2
|〉1 = 〈↑↑| 1√

3

[
−|↑↑↓〉+ eiπ/3|↑↓↑〉+ e−iπ/3|↓↑↑〉

]
= − 1√

3
|↓〉

〈T−|
1

2
,+

1

2
〉1 = 〈↓↓| 1√

3

[
−|↑↑↓〉+ eiπ/3|↑↓↑〉+ e−iπ/3|↓↑↑〉

]
= 0

(S28)

This results in 2-spin measurement probabilities of:

‖〈S|1
2
,+

1

2
〉1‖2 =

1

2
and ‖〈T+|

1

2
,+

1

2
〉1‖2 + ‖〈T0|

1

2
,+

1

2
〉1‖2 + ‖〈T−|

1

2
,+

1

2
〉1‖2 =

1

3
+

1

6
+ 0 =

1

2
.

Similar calculations for the other three basis states with s = 1/2 show |S〉 and |T 〉 measurement probabilities of 0.5
each. Although we have used the 2 spin singlet and triplet states for the first two spins for the calculations, same
results hold for any other two spin combinations.
Assuming statistical mixing of the 8 basis states with 3 spin-1/2 particles, the probability of a two-spin singlet
measurement outcome is given by:

PS =
∑

s,m

P (s,m)||〈S|s,m〉||2
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where P (s,m) is the probability of occupation of the three-electron spin state |s,m〉. Similarly the probability of a
two-spin triplet measurement outcome is given by:

PT =
∑

s,m

P (s,m)
[
||〈T+|s,m〉||2 + ||〈T0|s,m〉||2 + ||〈T−|s,m〉||2

]

As we have seen before, for any basis state with s = 3/2, the probability two-spin triplet measurement outcome is
1. So, for any statistical mixture of s = 3/2 basis states, the probability a two-spin triplet measurement outcome is
also 1. Similarly, for any statistical mixture of s = 1/2 basis states, the probability a two-spin triplet measurement

outcome is 0.5. So in our experiment the expected values of P
3/2
T and P

1/2
T are 1 and 0.5, where P

3/2
T (P

1/2
T ) is the

probability a two-electron triplet state measurement outcome from the quadruplet (doublet) configuration.

[S1] https://github.com/stephanlphilips/dm solver.
[S2] L. D. L. Landau and E. M. Lifshitz, Quantum Mechanics (Elsevier Science, 2013).
[S3] D. Stepanenko, M. Rudner, B. I. Halperin, and D. Loss, Phys. Rev. B 85, 075416 (2012).
[S4] R. Winkler, Spin–orbit coupling effects in two-dimensional electron and hole systems (Springer Berlin Heidelberg, 2003).
[S5] https://github.com/QuTech-Delft/qtt.
[S6] E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer Berlin Heidelberg, 2003).
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FIG. S5. Each panel experimental measurements comparing adiabatic and diabatic passages (as explained in the main text),
where point N has been redefined such that the chemical potential of dot 1 is offset by the amount shown on the top right of
each panel. Insets show simulated spectra using the same local offset conditions as the experiment of the corresponding panel.


