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Abstract  

In order to better design greening systems for effective particulate matter (PM) removal, it is 

important to understand the impact leaf traits have on PM deposition. There are however, 

inconsistences amongst the leaf traits that have previously been correlated with PM 

accumulation. The aim of this paper was to identify vegetation characteristics of green wall 

plants that were associated with the accumulation of particulate matter. To determine patterns 

associated with different leaf morphologies, eleven plant species were sampled across 15 sites, 

over a 6 month duration. PM deposition was determined gravimetrically and its associated size 

fractions determined microscopically. Linear mixed models were used to identify statistical 

patterns relating to differences in PM deposition across plant species. PM deposition and the 

relative frequencies of particle size fractions were found to be statistically different amongst 

species, sites and months. Green wall plants were shown to be effective at PM accumulation 

as all of the plant species assessed had equivalent PM removal efficiency, with minimal 

evidence of influential leaf characteristics that could enhance PM removal.  
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Introduction  

Air pollution is a major risk factor to human health (Dockery et al., 2007) and is a widespread 

environmental concern ( Rai 2016). Airborne particulate matter (PM), is one of the common 

‘criteria pollutants’ (USEPA 2004). It is a heterogeneous solid–liquid mixture, containing toxic 

substances that is transported in the atmosphere, sometimes over long distances (WHO 2005; 

Yu et al. 2006; Oishi 2016). Health problems caused by exposure to particulate pollution are 

related to the sizes of atmospheric particles (Dockery et al., 1993; Nemmar et al., 2002; EEA, 

2007).  Compared to large particles, small particles are both more damaging to health (WHO 

2006), and more stable in the air and are slower to achieve natural sedimentation on land 

surfaces (Lin et al. 2018). 

There is a strong relationship between increased levels of ambient PM exposure and adverse 

health conditions (WHO 2013). Coarse particles (PM10), fine particles (PM2.5) and ultra-fine 

particles (PM0.1 and smaller) are known for their toxicity and ease of inhalation (Solomon et 

al. 2012). PM exposure can cause cardiac and respiratory diseases (Polichetti et al. 2009), 

including asthma (Anderson et al. 2013), atherosclerosis (Araujo 2011), lung cancer and 

cardiopulmonary diseases (Pope et al. 2011; Solomon et al. 2012). Technologies Actions that 

reduce our exposure to particulate matter are therefore paramount to ensure healthy and safe 

ambient environmental conditions.  

Vegetation has significant potential in urban regions as a sink for PM (Popek et al. 2013; 

Räsänen et al. 2014). PM is removed from the ambient air by adhesion to leaf surfaces (Ottelé 

et al. 2010; Sternberg et al. 2010), with additional sequestration evident from penetration of 



the wax layer of leaves if the PM contains organic pollutants of a lipophilic nature 

(Dzierzanowski et al. 2011). Vegetating urban landscapes with trees is a process constrained 

by many factors, including space limitations, sunlight availability, sub-surface infrastructure, 

the size ratio between the tree and adjacent buildings and the suitability of the prevailing soil 

(Johnston and Newton 2004). Green walls in comparison, do not consume additional space at 

the street level, instead utilizing pre-existing building surfaces, thus increasing the particulate 

collection area of the building due to the large surface area presented by plants (Ottelé et al. 

2010).  

Vegetation characteristics such as leaf orientation, shape, size and surface morphology have 

been identified as significant factors associated with different increased PM deposition 

(Litschke and Kuttler 2008; Petroff et al. 2008; Chen et al. 2016; Leonard et al. 2016). 

Macrostructural leaf traits that have been shown to increase PM accumulation include whorled 

leaf arrangements and larger leaf area; whilst advantageous microstructural traits include 

pubescence, low stomatal densities, rough surfaces and thick waxy epicuticles (Chaturvedi et 

al. 2013; Popek et al. 2013; Mo et al. 2015). Additionally, the chemical composition and 

structure of the epicuticular wax has also been found to be influential on PM accumulation 

(Dzierzanowski et al., 2011; Leonard et al., 2016). Similarly, the structure of leaf hairs can also 

alter PM deposition, with some leaf hairs exhibiting hydrophobicity, attracting charged 

particles such as heavy metals found in PM (Fernàndez et al., 2014). Nonetheless, the plant 

traits that have been correlated with increased PM accumulation are inconsistent amongst 

previous research. For example, different ideal leaf shapes for PM removal have been 

concluded from different studies, with Beckett et al. (2000), Dzierzanowski et al. (2011) and 

Wang et al. (2011) noting the positive effects of needle like leaves in comparison to broad 

leaved species for PM accumulation. Leonard et al. (2016), in contrast, found that lanceolate 

leaves demonstrated more effective PM accumulation than both needle-like and linear leaves. 



Advantageous microstructural traits are also inconsistent throughout the literature, with some 

previous studies noting the importance of epicuticular wax on PM deposition (i.e. 

Dzierzanowski et al., 2011; Sæbo et al., 2012), whilst others have found a negative relationship 

between PM deposition and epicuticular wax (i.e. Liu et al., 2012). Similarly, leaf hair presence 

has been associated with high PM accumulation in many studies (i.e. Beckett et al. 2000; 

Kardel et al. 2012; Ram et al. 2014), however, Perini et al. (2017) detected a negative 

association between PM capture and leaf hairs. In view of these discrepancies, it remains 

important to determine the relationships between green wall plants, leaf traits and ambient PM 

accumulation; so as to maximize practical PM reduction with appropriate plant use.  

 

 

 

Aim 

The PM deposition capacity of plants has received insufficient research attention (Pugh et al. 

2012). Whilst the influence of individual leaf traits on PM accumulation is noted in the 

literature, the interactions between different leaf combinations is not yet understood (Leonard 

et al. 2016). Additionally, uncertainty remains surrounding the impact of individual leaf traits 

on PM retention due to variable conclusions from previous studies (Weerakkody et al. 2018). 

In order to better design greening systems for maximum PM removal, the impact leaf traits 

have on PM deposition must be better known. Previous research on the ability of plants to 

reduce ambient PM has been heavily focused on single species testing, usually using climbing 

plant species such as Hedera helix (Ottelé et al. 2010; Sternberg et al. 2010; Cheetham et al. 

2012). Research on green walls and their capacity to reduce PM is limited to a few studies 



(Perini et al. 2017), and is thus not yet well understood. Given the high leaf density presented 

by most green wall systems, it is probable that their PM accumulation potential is substantial. 

The aim of this paper was to assess the effectiveness of plant species within green walls in 

Sydney Australia for accumulating ambient particulate matter, and to identify vegetation 

characteristics that result in maximum pollutant attenuation. The authors hypothesise that 

differences will emerge between the species PM accumulation capacity and that the higher 

accumulating species will exhibit similar traits which will be favourable in PM attenuation.  

Method  

Sample Sites 

Fifteen sites within the urban Sydney, Australia region were selected based on the presence of 

similar outdoor green walls. Green walls were of a modular design, produced by Junglefy P/L, 

Sydney Australia. The sites varied in location, use, primary ambient pollutant sources and 

overall air quality (see Table 1 below).  All sampled leaves were taken from pre existing in situ 

green walls. All 15 sites had their green walls installed a minimum of 24 months prior to 

sampling. It was not possible to standardise the year of green wall implementation in the current 

study, as these walls had been installed to various enterprises years prior to the study. Whilst 

the exposure time was not known, the sample size used was sufficient to randomize these 

effects within, but not amongst species. Thus leaf life expectancy is another characteristic that 

will differentiate between the various species in their capacity to collect PM. Furthermore, only 

young mature leaves were selected. Additionally the rainfall volume was consistent across the 

sampling area and rainfall events temporally standardised the leaves through time.   

[Table 1 near here] 

Ambient PM Concentrations  



The ambient PM concentrations at each site was assessed using a DustTrack II 8532 laser 

densitometer (TSI, Shoreview, Minnesota). At each site, each PM size fraction (Particulates 

˂10µm in diameter - PM10 and Particulates ˂2.5µm in diameter - PM2.5) were sampled  

obtaining a time weighted average. Air quality samples were restricted to collection between 

10 a.m. and 3 p.m. to avoid spikes created by peak hour commuters (Irga et al., 2015). Samples 

were taken once a month at each site for the projects 6 month duration (June 2017 – November 

2017). The in situ PM conditions were monitored to determine any correlations between 

ambient PM conditions and species PM accumulation. 

PM Deposition  

To determine the effect of different plant species on PM accumulation, 11 species present 

amongst the test sites with different shapes, sizes and morphologies were chosen (Table 2, see 

below, before above Statistical Analysis). Not all plant species were present at each site. 

Leaf arrangement (whorled, opposite or alternate) and leaf shape (elliptic, lanceolate, needle 

like, linear or obovate) were determined for the sampled species as per Leonard et al. (2016). 

At each site, 5 replicate leaves of each species were hand-picked and individually sealed into 

pre-labelled sample bags to minimize PM loss., and was consistent amongst treatmnets. This 

form of sample collection has been used in other studies (i.e. in Leonard et al. 2016). The 

position of leaf samples was randomized across the green walls at each sampling occasion and 

month to randomize variations in green wall characteristics at each site. Samples were taken 

monthly for a 6 month period from June to November, 2017.  

From the 5 replicate leaves, 3 were used to determine the deposited PM mass using the Chen 

et al. (2016) dry gravimetric technique. This was carried out by weighing the intact leaves, then 

removing PM using a camel hair brush and reweighing. The brush used was soft bristled and 

leaves were handled carefully, to avoid removing any leaf component in this process i.e. wax 



layers and leaf hairs. The leaf was then sized with a leaf area meter (Licor LI-3000-A, 

Nebraska, USA) to obtain an accurate area measurement. The amount of PM collected for each 

species was expressed per unit area of leaf, as PM was dusted from both adaxial and abaxial 

surfaces. Previous studies (Dzierzanowski et al. 2011; Leonard et al. 2016) similarly expressed 

their results. The deposited PM content was then calculated using Formula 1. 

Formula 1:  

𝑃𝑀 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (
𝑚𝑔

𝑐𝑚2
) =

(𝑀𝑎𝑠𝑠 𝑜𝑓 𝑖𝑛𝑡𝑎𝑐𝑡 𝑙𝑒𝑎𝑓 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑙𝑒𝑎𝑓)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑙𝑒𝑎𝑓
 

PM Size Fractions  

To quantify the proportional contribution of different particle size fractions to the PM deposited 

on the green wall plant species, on the remaining 2 leaves from each species, for each site and 

month, a 2 cm length of adhesive tape was placed onto the middle upper surface of each leaf, 

pressed down, gently removed and placed onto a microscope slide. Weerakkody et al. (2017) 

observed that the leaf blade had less variable PM distribution compared to leaf tip, base, mid 

rib and edges, and as such the leaf blade only was sampled for the current study. Images of the 

microscope slides were then taken using a Nikon Automated Upright Fluorescence Microscope 

at x20 magnification for 15 random surface points on each slide. Each image was then analysed 

using NIS-Elements Viewer 4.20, which generated data for the diameter for each particle 

present on the image. From this, two PM size fraction ranges bins: PM<5 and PM>5 were 

categorized using MS Excel. Leaves can accumulate a range of different PM size fractions, and 

as such microscopic analysis was used to determine the probability of small and large sized 

PM deposition (PM < 5 mg cm-2 and PM > 5 mg cm-2). Thus, each species will have a 

probability density result for PM < 5 mg cm-2 and PM > 5 mg cm-2 with these PM ranges being 

expressed for each species. 



[Table 2 near here] 

Statistical Analysis 

Mean values for particle counts per image for the two PM fractions (PM<5 and PM>5) were 

determined for the eleven species for each month (June–October), at each site in which they 

occurred, from six replicate samples per species per site. Principal components analysis was 

performed using square root transformed ambient airborne PM data recorded near the green 

walls (two fractions, PM2.5 and PM10), with the first principal component (capturing 91% of 

the variance in the ambient PM data set) used as an independent variable in subsequent 

analyses.  

To test for differences among species and whether leaf PM accumulation was related to 

ambient PM concentration, linear mixed models (LMMs) were fitted, using species as a fixed 

categorical factor (11 levels), ambient PM PC as a fixed continuous factor, and a species x 

ambient PM PC interaction term. To control for variation across months and variation within 

species across sites, two random factors were used; the month in which observations were 

recorded, and a nested species x site term. Where significant differences were found among 

species or for the species x ambient PM interaction, pairwise comparisons between species, or 

between slopes were made using a Tukey correction for multiple comparisons. Following this, 

the relationships between the two PM fractions were explored for each species, first using 

paired sample t-tests (repeated for all species), followed by LMM modelling of PM>5 as a 

function of PM<5, including a species x PM<5 interaction term to test if the relationship between 

deposition of the PM fractions was consistent across species. 

To test the effect of leaf traits on leaf PM deposition and their relationship with ambient PM, 

models were built with terms for the leaf traits (a fixed categorical factor with four levels), 

ambient PM (as a fixed continuous factor), a leaf trait term nested within species (fixed factor, 



included to test for differences among species with the same leaf traits), a leaf trait x ambient 

PM interaction term (fixed factor) and a leaf traits/species x ambient PM (fixed factor, included 

to test for differences in the relationships between ambient PM among species within leaf trait 

groups). The same random terms used in the first two models were also used in these models. 

In all models accumulated leaf PM data was log transformed prior to analysis. 

Results & Discussion   

Differences among species and relationship with ambient PM 

Significant differences were found among species for the accumulation of both PM<5 (χ
2
10 = 

75.1, P < 0.0001; Fig. 1a) and PM>510 (χ
2

10 = 71.0, P < 0.0001; Fig. 1b); similar to the results 

of previous studies (Leonard et al. (2016),; Weerakkody et al. 2017, and 2018). No significant 

relationship was found between PM<5 deposition and ambient PM concentration (χ2
1 = 0.1, P = 

0.7; Fig. 2a), and no significant interaction among species accumulated PM and ambient PM 

was detected (χ2
10 = 4.3, P = 0.9). For PM>5, a significant interaction among species and 

ambient PM emerged (χ2
10 = 23.3, P < 0.01; Figs. 2b and 2c). The interaction was found to be 

generated by three species showing a significant association between higher accumulated PM 

and greater ambient PM (C. comosum variegatum: Variegated Spider Plant, N. exaltata 

bostoniensis: Boston Fern, and N. glabra: Goldfish Plant), and a further three species having a 

significant association between lower accumulated PM and greater ambient PM (N. gracilis: 

Walking Iris, P. obtusifolia: Baby Rubber Plant, and P. xanadu: Xanadu; Fig. 2c). With this 

difference likely driven by leaf trait differences, specifically between the small linear and large 

rosette species. More specifically, of the listed species, two small linear species (N. exaltata 

bostoniensis: Boston Fern, and N. glabra: Goldfish Plant) were found to have higher 

accumulated PM at greater ambient PM; whilst two of the large rosette species (N. gracilis: 

Walking Iris and P. xanadu: Xanadu) were found to have lower accumulated PM at greater 



ambient PM. Whilst the green wall species accumulated ambient PM, this was found to not be 

influential on reducing ambient PM conditions. This finding is not surprising as other studies 

have indicated that x amount of green walls would need to be implemented to make x amount 

effect on ambient conditions.  

[Figure 1 near here] 

[Figure 2 near here] 

The density of the accumulated PM<5 fraction was found to be significantly greater than the 

PM>5 fraction density across all species (Fig. 3). This trend has also been observed in previous 

studies (i.e. observed in: Freer-Smith et al. 2005; Ottelé et al. 2010; Perini et al. 2017; 

Weerakkody et al. 2017, 2018). This finding suggests that green walls may be more effective 

at reducing smaller PM size fractions (e.g. Weerakkody et al. 2017), or that leaves are more 

capable or retaining smaller PM (e.g. Przybysz et al. 2014). The variation in PM deposition 

across size fractions is thought to be due to different deposition velocities resulting from the 

different aerodynamic behaviour displayed by different sized particles (Slin 1982; Weerakkody 

et al. 2017). For example, the increased turbulence in the boundary layer around a deposition 

surface has a greater effect on the turbulent transfer of smaller PM size fractions (Slinn 1982; 

Petroff et al. 2008). Additionally, the effects of deposition velocities vary amongst the various 

processes in which dry deposition can occur i.e. interception, impaction and sedimentation 

under gravity (Weerakkody et al. 2017), resulting in the PM deposition differences across size 

fractions.  

[Figure 3 near here] 

Regression of the PM>5 fraction against the PM<5 fraction resulted in a significant species x 

PM<5 interaction (χ2
10 = 33.6, P = 0.0002; Fig. 4a), driven by N. exaltata bostoniensis (Boston 

Fern) accumulating less PM>5 for a given amount of PM<5 when compared to C. comosum 



variegatum: Variegated Spider Plant, N. gracilis: Walking Iris, P. obtusifolia: Baby Rubber 

Plant, P. Xanadu: Xanadu, and S. wallisii: Peace Lily (Fig. 4b).  

[Figure 4 near here] 

 

 

The effect of leaf traits on PM deposition 

Significant differences were found among species within leaf trait groups for PM<5 

accumulation (χ2
7 = 41.3, P < 0.0001; Fig. 5a), and also for PM>5 (χ

2
7 = 42.1, P < 0.0001; Fig. 

5b), with the small linear-leaved species showing relatively large interspecific variation for 

both PM fractions. Significant differences among the leaf trait groups were found for PM<5 (χ
2
3 

= 33.9, P < 0.0001; Fig. 6a), with the small linear-leaved species demonstrating lower 

accumulation of these particles compared to the medium and large rosette plant groups, mostly 

due to the low PM<5 accumulation values recorded for P. madagascariensis (Variegated 

mintleaf), and N. exaltata bostoniensis (Boston Fern) (Fig. 3a). The medium linear, and 

medium and large rosette groups did not differ significantly for accumulation of the PM<5 

fraction (Fig. 6a). Leaf trait groups differed significantly for the deposition of PM>5 (χ
2
3 = 31.4, 

P < 0.0001; Fig. 6b). Whilst the small linear and medium rosette groups did not significantly 

differ for leaf deposition of PM>5, the medium linear and large rosette groups showed 

comparatively higher values for PM>5 (Fig. 6b). The majority of previous studies On the 

contrary, most of the results of other researches have observed higher PM deposition rates for 

smaller sized leaves (e.g. Freer-Smith et al. 2005; Weerakkody et al. 2017, 2018). The 

reasoning behind this is thought to be due to a reduced tendency of smaller leaves to move with 

the wind, and thus resuspend accumulated PM (Leonard et al. 2016), combined with larger 

edge effects for smaller leaves leading to a higher rate of PM impaction (Weerakkody et al. 



2018). However, in the current study, the smallest leaves demonstrated the least effective PM 

accumulation. Weerakkody et al. (2017) did note that two of their small-leaved species showed 

comparatively low PM deposition, suggesting that this was a result of their lower rigidity and 

attendant lower capacity to withstand PM contaminated air flow, thus lowering the turbulence 

surrounding the leaf boundary. They concluded that small-leaved species with a complex 

morphology were the most efficient species for reducing ambient PM. It is thus possible that 

the current results were due to the soft structure and simple morphology of the tested species, 

in line with the findings of Weerakkody et al. (2017). Specifically, N. exaltata bostoniensis 

(Boston Fern) has small, very soft leaves that may not have been able to withstand and capture 

the PM within turbulent air as effectively as the small, yet hard-leaved Australian native species 

used in the study of Leonard et al. (2016).   

[Figure 5 near here] 

Similar to the effect on PM<5, P. madagascariensis (Variegated Mintleaf) and N. exaltata 

bostoniensis (Boston Fern) with the addition of N. domestica (Pink Blush) exhibited low values 

for PM>5 accumulation, driving the differences observed between the small linear and other 

leaf groups (Fig. 5b). For both fractions, there was no significant leaf PM x ambient PM 

interaction when comparing species within each group (PM<5: χ
2

7 = 2.2, P = 0.9; Fig. 4c, PM>5 

χ2
7 = 8.3, P = 0.3; Fig. 6d). There was no significant leaf trait x ambient PM interaction found 

for PM<5 (χ
2

3 = 2.1, P = 0.6; Fig. 6c), in contrast to PM>5 (χ
2

3 = 15.0, P = 0.002; Fig. 6d). This 

finding was driven by the small linear, and medium rosette groups showing a positive 

relationship between ambient PM and accumulated PM>5, while the medium linear and large 

rosette groups showed no relationships. Similar to the results obtained, linear leaved or ‘grass 

like’ species have displayed an overall low PM accumulation ability in literature (e.g. 

Weerakkody et al. 2017, 2018; Currie and Bass 2008; Dochinger 1980; Leonard et al. 2016). 

This is likely due to the tendency for linear leaves to bend easily with wind flow due to their 



narrow bases or petioles (Weerakkody et al. 2018). Furthermore, Weerakkody et al. (2017) 

suggested that species that have simple leaf arrangements with larger gaps between their leaves 

may produce lower turbulence surrounding the foliage, resulting in lower impaction levels.  

[Figure 6 near here] 

The presence of leaf hairs has been shown to increase PM accumulation in multiple previous 

studies (Beckett et al. 2000; Ram et al. 2014; Sæbo et al. 2012; Räsänen et al. 2013; Leonard 

et al. 2016; Chen et al. 2017). Leaf hairs are thought to increase PM retention by preventing 

the resuspension of deposited PM, and by increasing the leaf surface area for the collision of 

particles (Prusty et al. 2005; Qiu et al. 2009). In the current study, only one of the tested species 

had leaf hairs, P. madagascariensis (Variegated Mintleaf), which showed one of the lowest 

PM accumulation values. Whilst this finding was not in line with the majority of previous 

studies, it aligned with the findings of Perini et al. (2017), who found that hairy leaves were 

negatively related to PM deposition. Similarly, epicuticular wax presence has been shown to 

result in a higher PM deposition (i.e. Sæbo et al. 2012; Popek et al. 2013; Räsänen et al. 2013; 

Barima et al. 2014; Perini et al. 2017; Weerakkody et al. 2017), due to its hydrophobic nature 

(Sawidis et al. 2011). However, in the current study the species containing high wax content 

did not necessarily have the highest PM accumulation. For example, only one of the three high 

wax content species, N. glabra (Goldfish Plant), was found to be within the highest 

accumulating species for both > 5 mg cm-2 and < 5 mg cm-2 (Table 2, see above Statistical 

Analysis). The other two high wax content species (P. glabella: Small Leaf Peperomia) and P. 

obtusifolia (Baby Rubber Plant) varied in their capacity to accumulate PM; with low wax 

content species P. Xanadu (Xanadu), S. wallisii (Peace Lily), and C. comosum variegatum 

(Variegated Spider Plant) consistently having the highest PM accumulation across both PM > 

5 mg cm-2 and < 5 mg cm-2.  



The results from the current study demonstrate that many plants used in green walls are capable 

of accumulating airborne PM, but that this property varies amongst plant species. In particular, 

P. madagascariensis (Variegated Mintleaf) and N. exaltata bostoniensis (Boston Fern) were 

not effective PM accumulators, indicating that plants of this structural form may be ineffective 

for passive PM accumulation.   

The methods used to determine the PM filtering capacity of different plant species has varied 

across techniques and investigations (i.e. Beckett et al., 2000; Dover, 2015; Freer-Smith et al., 

2005; Lenoard et al., 2016; Maher et al., 2013; McDonald et al., 2007; Ottelé et al., 2010; 

Sternberg et al., 2010; Terzaghi et al., 2013; Zhang et al., 2017), likely resulting in the 

inconsistencies observed in the literature. Common methods used include Scanning Electron 

Microscope (SEM) and imaging, filtration and gravimetric assessment, however, with no 

standard, universal method of PM determination, it makes authors comparisons difficult to 

interpret. Furthermore, Weerakkody et al. 2017 noted limitations across these methods 

including: the limiting capacity of water to remove PM from leaf and wax structures; 

chloroforms capacity to dissolve non-polar constitutes of PM and the SEM scanning area being 

much smaller than the leaf surface area, requiring a large sample size of micrographs to be 

representative of the overall PM deposition. SEM and other microscopic analysis, additionally 

is unable to provide the total mass of deposited PM, instead providing a count for each PM size 

fraction. Thus, the current study aimed to provide both a total deposited PM mass and PM size 

fraction counts via the two methodologies used. The authors suggest that a comparative 

assessment of previously conducted methodologies used to determine leaf deposited PM be 

conducted in order to determine which method is the most accurate for standardised use in 

future studies. 

Conclusion   



This study assessed a representative sample of common living wall plant species, representing 

a range of different morphologies and their impact on PM deposition. All species were shown 

to accumulate ambient PM, however, their capacities to do so varied. In the current study, no 

specific leaf traits were found to be strongly influential for PM deposition, in contrast with 

some previous studies. Whilst it is important to determine the plant characteristics that are 

influential on PM deposition so as to maximise the PM removal performance of green walls, it 

remains difficult to do so. Plant species possess many different characteristics, making it 

difficult to attribute their PM accumulation capacity to a specific trait. Nonetheless, all species 

tested in the current study showed a capacity to entrap PM; with the species C. comosum 

variegatum: Variegated Spider Plant, N. glabra: Goldfish Plant, P. xanadu: Xanadu , and S. 

wallisii: Peace Lily demonstrating more effective PM accumulation; and thus being appropriate 

for use in high PM pollution environments.  
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