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Abstract 24 

Chlamydia are Gram-negative, obligate intracellular bacterial pathogens responsible for a broad 25 

spectrum of human and animal diseases. In humans, Chlamydia trachomatis is the most prevalent 26 

bacterial sexually transmitted infection worldwide and is the causative agent of trachoma 27 

(infectious blindness) in disadvantaged populations. Over the course of its developmental cycle, 28 

Chlamydia extensively remodels its intracellular niche and parasitises the host cell for nutrients, 29 

with substantial resulting changes to the host cell transcriptome and proteome. However, little 30 

information is available on the impact of chlamydial infection on the host cell epigenome and 31 

global gene regulation. Regions of open eukaryotic chromatin correspond to nucleosome-32 

depleted regions, which in turn are associated with regulatory functions and transcription factor 33 

binding. We applied Formaldehyde-Assisted Isolation of Regulatory Elements enrichment 34 

followed by sequencing (FAIRE-Seq) to generate temporal chromatin maps of C. trachomatis-35 

infected human epithelial cells in vitro over the chlamydial developmental cycle. We detected 36 

both conserved and distinct temporal changes to genome-wide chromatin accessibility associated 37 

with C. trachomatis infection. The observed differentially accessible chromatin regions, 38 

including several Clusters of Open Regulatory Elements (COREs) and temporally-enriched sets 39 

of transcription factors, may help shape the host cell response to infection. These regions and 40 

motifs were linked to genomic features and genes associated with immune responses, re-41 

direction of host cell nutrients, intracellular signaling, cell-cell adhesion, extracellular matrix, 42 

metabolism and apoptosis. This work provides another perspective to the complex response to 43 

chlamydial infection, and will inform further studies of transcriptional regulation and the 44 

epigenome in Chlamydia-infected human cells and tissues 45 

46 
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Introduction 47 

Members of the genus Chlamydia are Gram-negative, obligate intracellular bacterial pathogens 48 

responsible for a broad spectrum of human and animal diseases (1). In humans, Chlamydia 49 

trachomatis is the most prevalent bacterial sexually transmitted infection (STI) (2), causing 50 

substantial reproductive tract disease globally (3), and is the causative agent of trachoma 51 

(infectious blindness) in disadvantaged populations (4). All members of the genus exhibit a 52 

unique biphasic developmental cycle where the non-replicating infectious elementary bodies 53 

(EBs) invade host cells and differentiate into replicating reticulate bodies (RBs) within a 54 

membrane-bound vacuole, escaping phagolysomal fusion (5). Chlamydia actively modulates 55 

host cell processes to establish this intracellular niche, using secreted effectors and other proteins 56 

to facilitate invasion, internalisation and replication, while countering host defence strategies (6, 57 

7). At the end of the developmental cycle, RBs condense into EBs, which are released from the 58 

host cell by lysis or extrusion to initiate new infections (8). 59 

Bacterial interactions with mammalian cells can induce dynamic transcriptional responses from 60 

the cell, either through bacterial modulation of host cell processes or from innate immune 61 

signalling cascades and other cellular responses (9-11). In addition, effector proteins specifically 62 

targeting the nucleus (nucleomodulins) can influence cell physiology and directly interfere with 63 

transcriptional machinery including chromatin remodelling, DNA replication and repair (12). 64 

Host cell epigenetic-mediated transcriptional regulatory changes, including histone 65 

modifications, DNA methylation, chromatin accessibility, RNA splicing, and non-coding RNA 66 

expression (13-15) may also be arbitrated by bacterial proteins and effectors. Consistent with 67 

host cell interactions with other bacterial pathogens, C. trachomatis infection alters host cell 68 

transcription over the course of its developmental cycle (16) and may also modulate the host cell 69 

epigenome. For example, NUE (NUclear Effector), a C. trachomatis type III secreted effector 70 

with methyltransferase activity, enters the host nucleus and methylates eukaryotic histones H2B, 71 
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H3 and H4 in vitro (17). However, the ultimate gene targets of NUE activity or the affected host 72 

transcriptional networks are uncharacterised, as is the influence of chlamydial infection on the 73 

host cell epigenome in general. 74 

To examine the impact of chlamydial infection on host cell chromatin dynamics, we applied 75 

FAIRE-Seq (Formaldehyde-Assisted Isolation of Regulatory Elements sequencing) (18) to C. 76 

trachomatis-infected HEp-2 epithelial cells and time-matched mock-infected cells, spanning the 77 

chlamydial developmental cycle (1, 12, 24 and 48 hours post infection). FAIRE protocols rely 78 

on the variable crosslinking efficiency of DNA to nucleosomes by formaldehyde, where 79 

nucleosome-bound DNA is more efficiently crosslinked. DNA fragments that are not crosslinked 80 

are subsequently enriched in the aqueous phase during phenol-chloroform extraction. These 81 

fragments represent regions of open chromatin, which in turn can be associated with regulatory 82 

factor binding sites. In FAIRE-Seq, libraries are generated from these enriched fragments, 83 

followed by sequencing and read mapping to a reference genome (18), allowing patterns of 84 

chromatin accessibility to be identified (19). We identify infection-responsive changes in 85 

chromatin accessibility over the chlamydial developmental cycle, and identify several candidate 86 

host transcription factors that may be relevant to the cellular response to chlamydial infection. 87 

 88 

Results 89 

Chromatin accessibility landscapes of Chlamydia-infected and mock-infected cells 90 

We applied FAIRE-Seq to C. trachomatis serovar E-infected and mock-infected human HEp-2 91 

epithelial cells in triplicate at 1, 12, 24, and 48 hours post-infection (hpi). Following initial 92 

quality control measures, a single C. trachomatis-infected replicate was identified as an outlier 93 

and was removed from further analysis. The remaining replicates were mapped to the human 94 

genome (GRCh38), resulting in 52,584,839 mapped reads for mock-infected replicates and 95 



5 / 40 

98,802,927 mapped reads for Chlamydia-infected replicates (151,387,766 in total) (Table 1). 96 

Significant peaks, representing regions of open chromatin, were subsequently identified from 97 

these mapped reads. Each peak file was examined in IGV to ensure peaks were dispersed 98 

genome-wide without discernible chromosomal biases (Additional File 1). The total number of 99 

significant peaks from each replicate varied across the examined times and conditions, ranging 100 

between 1,759 and 17,450 peaks (Figure 1A).  101 

Diffbind (28) was used to group and filter peaks at each time post infection by removing regions 102 

with low coverage or any regions that were not represented across a consensus of replicates 103 

(Figure 1B). After normalisation for library size, principal component analysis (PCA) of the 104 

consensus peak sets (Figure 1C) led to the removal of one further outlier at 24 hours (mock-105 

infected). The remaining peak sets exhibit tight clustering between mock-infected and infected 106 

conditions respectively at each time. Total consensus peak numbers increased across the 107 

chlamydial developmental cycle, independent of the total mapped reads over time. 108 

 109 

C. trachomatis infection is associated with temporal changes to chromatin accessibility in 110 

host cells 111 

We identified genomic regions with significant differences in chromatin accessibility between 112 

infected and mock-infected conditions throughout the development cycle (FDR<0.05). The 113 

resulting set of differential chromatin accessible regions identifies both open and closed 114 

chromatin (relative to mock-infection). The total number of significant differentially accessible 115 

regions rose over the development cycle, with the number of regions increasing (3.6x) from 1 116 

hpi (864) to 48 hpi (3,128) (Figure 2A). Open chromatin regions predominate at each time, (99% 117 

at 1hpi, 95% at 12 hpi, 97% at 24 hpi and 86% at 48 hpi) over closed chromatin regions, 118 

suggesting that host cell transcription and regulatory activity increases in response to infection.  119 
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At 12 hours, the number of significant differentially accessible regions was lower (8%), 120 

compared to the other times (64% at 1 hpi, 43% at 24 hpi and 72% at 48 hpi). The number of 121 

mapped reads was similar for all 12 hour replicates across conditions, and similar to other times, 122 

suggesting minimal bias from the variability of the underlying mapped reads (Table 1) and 123 

significant peaks (Figure 1A). In addition, each replicate had consistent peak coverage across 124 

the human genome (Additional File 1). Furthermore, 12 hour peak annotation is similar to other 125 

times (Figure 3B-C), and the distribution of peaks around the TSS (Figure 3D) are within 126 

promoter regions, as seen at 48 hours (Figure 3D). Thus, in the absence of any discernible bias, 127 

the lower number of significant differentially accessible regions at 12 hours may reflect a lower 128 

efficiency of formaldehyde crosslinking, or that this time in the course of chlamydial infection 129 

is relatively quiescent. 130 

120 differentially accessible chromatin regions are common at all examined times (Figure 2B), 131 

indicating a conserved response to chlamydial infection-associated events or general disruption 132 

of cellular homeostasis, irrespective of infection progression. Conversely, unique sets of 133 

differentially accessible regions are found at each time post-infection, highlighting the dynamism 134 

of the cellular response to infection over time, particularly at 48 hpi (Figure 2B). Most infection-135 

associated differential chromatin accessible regions map to intergenic and intronic regions 136 

(Figure 3B-C, Additional File 2), consistent with other chromatin accessibility studies (35, 36), 137 

and the overall distribution of protein-coding genes within the human genome (37). The 138 

distribution of differential chromatin-accessible regions around TSSs (+/- 5kb) at 12 and 48 hpi 139 

suggests that the majority of differential chromatin accessible regions are in proximity to TSSs. 140 

However, at 1 hpi there is no obvious distribution, while 24 hpi exhibits a bi-modal distribution 141 

(Figure 3D), suggesting that additional mechanisms, such as alternative splicing, may be 142 

contributing to the regulatory response to infection-associated events. 143 

 144 
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Differential chromatin accessibility at promoters and enhancers identify infection-145 

associated host regulatory activity 146 

The proportion of all differentially accessible regions mapping to promoter regions is 4 (0.5%) 147 

at 1 hpi, 14 (4.8%) at 12 hpi, 21 (1.5%) at 24 hpi and 265 (8.5%) at 48 hpi (Figure 4A). Notably, 148 

48 hpi exhibits a >10-fold increase in the number of significant regions compared to 24 hpi, with 149 

the majority of regions showing a reduction in chromatin accessibility, likely representing down-150 

regulation of promoter-associated genes (Figure 4A). The large number of differentially 151 

accessible chromatin regions within promoters at 48 hours is a likely reflection of the diversity 152 

of events occurring at this late stage of the developmental cycle, including apoptosis, necrosis, 153 

lysis and cellular stress. Associated 48 hpi genes are linked with heat-shock stress (DNAJB1, 154 

DNAJB5, DNAJC21 and HSPA1B), cell defence (ILF2, MAP2K3 and STAT2), and cell 155 

stress/apoptosis (ATF3, PPM1B, GAS5, BAG1 and TMBIM6). ATP7A, which has a promoter 156 

exhibiting an increase in chromatin accessibility, is a key regulator of copper transport into 157 

phagosomes as part of a host cell response to intracellular infection (38, 39). 158 

Fifteen promoter-specific differentially accessible regions are found at two or more times. Two 159 

promoter regions are associated with genes encoding sorting nexin 16 (SNX16) and 160 

oligosaccharyltransferase complex subunit (OSTC) respectively (Figure 4B). The promoter 161 

region of OSTC exhibits increased chromatin accessibility at 24 and 48 hours; OSTC is linked 162 

to cellular stress responses (40). Conversely, SNX16 shows a reduction in chromatin 163 

accessibility at both 1 and 48 hpi. Sorting nexins are a family of phosphatidylinositol binding 164 

proteins sharing a common PX domain that are involved in intracellular trafficking. Sorting 165 

nexins are a key component of retromer, a highly conserved protein complex that recycles host 166 

protein cargo from endosomes to plasma membranes or the Golgi (41). Retromer is targeted by 167 

several intracellular pathogens, including Chlamydia, as a key strategy for intracellular survival 168 

(42). The C. trachomatis effector protein, IncE, binds to sorting nexins 5 and 6, disrupting 169 
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retromer-mediated host trafficking pathways (42) and potentially perturbing the endolysomal-170 

mediated bacterial destruction capacity of the host cell (43). However, SNX16 is a unique 171 

member of this family, containing a coiled-coil domain in addition to a PX domain, and is not 172 

associated with retromer (44). SNX16 is instead associated with the recycling and trafficking of 173 

E-cadherin (44), which mediates cell-cell adhesion in epithelial cells, and is associated with a 174 

diversity of tissue specific processes, including fibrosis and epithelial-mesenchymal transition 175 

(EMT) (45). Separately, C. trachomatis infection has been shown to downregulate E-cadherin 176 

expression via increased promotor methylation, potentially contributing to EMT-like changes 177 

(46). Thus, downregulation of SNX16, as inferred by the observed reduction in promotor-178 

associated chromatin accessibility may contribute to chlamydial fibrotic scarring outcomes. In 179 

other bacterial pathogens, modulation of E-cadherin is a known virulence mechanism where it 180 

is degraded by proteases, such as HtrA, disrupting tight and adherens junctions to facilitate 181 

invasion through the epithelial barrier (47, 48). Although chlamydial HtrA has been detected 182 

outside the inclusion and in exported blebs (49), E-cadherin has not yet been identified as a 183 

chlamydial HtrA target. Nevertheless, HtrA has been shown to be critical for in vivo chlamydial 184 

infections, indicating that this functionality may be revealed in the future (50). 185 

Changes in chromatin accessibility of regions overlapping tissue-specific enhancers from 186 

experimentally validated databases were examined, identifying 211 enhancers and seven “super-187 

enhancers” (Figure 5A). All super-enhancers exhibited an increase in chromatin accessibility, 188 

and were associated with genes mediating cell growth (KLF5), cell structure and signalling 189 

(FLNB, PTP4A2 and MSN), and innate immunity (IER3) (Additional File 3). Infection-190 

responsive chromatin accessible regions occurring at three or more times over the chlamydial 191 

developmental cycle (all exhibiting an increase in chromatin accessibility) identified known 192 

enhancers that influence DNA/RNA-polymerase activity (AFF1, POLR2M, TCEB1, CHMP4C 193 

and POLL), including elongation factors, chromatin remodelling and DNA repair (Figure 5B). 194 
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The manipulation of these genes and underlying functions are suggestive of nucleomodulin 195 

activity, which are a class of bacterial effectors that directly target the host cell nucleus to 196 

manipulate host defences and machinery (12). One example of a C. trachomatis specific 197 

nucleomodulin is NUE, which is directed to the nucleus and performs methyltransferase activity 198 

(17). However, as noted above, our experimental design does not distinguish Chlamydia-199 

mediated effects from infection-specific or non-specific host cell responses. 200 

In addition, three enhancer-linked genes that recur three or more times over the developmental 201 

cycle and show an increase in chromatin accessibility, are involved in ubiquitination and protein 202 

quality control (KLHL8, FBXO3 and EDEM3). The eukaryotic ubiquitination modification 203 

marks proteins for degradation and regulates cell signalling of a variety of cellular processes, 204 

including innate immunity and vesicle trafficking (51). The deposition of ubiquitin onto 205 

intracellular pathogens is a conserved mechanism found in a diverse range of hosts (52). In 206 

Chlamydia, host cell ubiquitin systems can mark chlamydial inclusions for subsequent 207 

destruction (53), and there is emerging evidence that various Chlamydia species are able to 208 

subvert or avoid these host ubiquitination marks for intracellular survival, using secreted 209 

effectors and other proteins (53, 54). Our observation of increased chromatin accessibility of 210 

enhancer elements linked to ubiquitination genes, putatively augmenting expression of these 211 

genes, further highlights the complex role of ubiquitination in chlamydial infection. 212 

 213 

Conserved and time-specific host responses to infection over the chlamydial developmental 214 

cycle 215 

Differential chromatin accessible regions that are present at all four times during infection 216 

demonstrate a conserved host cell response to chlamydial infection (Figure 2B). Time-specific 217 

differential chromatin accessibility is also evident over the chlamydial developmental cycle 218 

(Figure 2B). To investigate the conserved host cell response, we focused upon 63 of the 120 219 
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differential chromatin accessible regions (intragenic, promoter or enhancer regions) identified 220 

above, excluding the likely ambiguous intergenic regions (Figure 6A). 56 were within intronic 221 

regions, one within a 3’UTR (FECH), a promoter (RPL27A), and five within enhancer regions 222 

(MTMR2, FLJ37035, UROS, FBXO3 and AGTRAP). Only 4 of these 63 significant 223 

differentially accessible regions show a decrease in overall chromatin accessibility. However, 224 

these same regions also exhibit increased chromatin accessibility at different intragenic locations 225 

at 48 hpi, further highlighting the potential for infection-related alternative splicing mechanisms 226 

(Figure 6A). The remaining conserved differentially accessible regions were associated with 227 

genes involved in infection-relevant cellular processes, including C8A as part of the complement 228 

cascade, and lipase activity from LIPI that is essential for chlamydial replication (55); while 229 

multiple genes (HDAC2, HNRNPUL1, NCOA7 and YAP1) are known transcriptional 230 

regulators. We also examined any differential chromatin accessible regions that appeared across 231 

three times. This identified further effects of infection on the complement cascade. Key 232 

components of the membrane attack complex (MAC) and complement activation pathways 233 

exhibit increased differential chromatin accessibility (C8B at 1, 12 and 24 hours and CFHR5 at 234 

24 and 48 hours). Conversely, C6 exhibits decreased chromatin accessibility at 48 hours. 235 

We identified unique differentially accessible regions across the chlamydial developmental cycle 236 

(Figure 6B). At 1, 12 and 24 hpi, there are a relatively small number of significant differential 237 

chromatin accessible regions. In contrast, 48 hpi exhibits over 1,400 regions, further reflecting 238 

the diverse processes associated with the end of the in vitro developmental cycle as indicated 239 

previously. As with the conserved differential regions above, we focused on differential 240 

chromatin accessibility within promoters, enhancers and intragenic regions (50 at 1 hpi, 17 at 12 241 

hpi, 27 at 24 hpi and 866 at 48 hpi) (Figure 6B, Additional File 4). 242 

At 1 hpi, increased chromatin accessibility was associated with a variety of genes involved in 243 

the regulation of host cell defences (CD44, IFNAR1, LGALS8, STAT1, SLA2 and DDAH1), 244 



11 / 40 

transcription and translation (ZNF461, ZNF800, PHF2, PABPC4L, RPS13 and SIN3A), the cell 245 

cycle (NIPBL, CEP57L1 and CMTM4) and BCL2L14 (Apoptosis facilitator Bcl-2-like protein 246 

14) a member of the Bcl-2 Family of proteins that are linked to apoptosis (56) (Figure 7A). At 247 

12 hours, four ncRNAs were identified (RPPH1, RN7SK, RN7SL2 and RMRP) that are involved 248 

in RNA processing, signalling and transcriptional regulation (57-60). The remaining genes at 12 249 

hours exhibited decreased chromatin accessibility, encompassing the cell cycle and DNA 250 

replication (SDCCAG8 and ORC2), and ubiquitination (PJA2 and FBXO46) (Figure 7B). At 24 251 

hours, all genes were associated with decreased chromatin accessibility and were grouped into 252 

four sub-categories: cell cycle (WAPL, SMARCB1 and CDC20), energy production (HK1, 253 

ACO1 and SLC25A13), metabolism (ARSA, EXTL3 and SLC27A2), and transcription (AP5Z1 254 

and ELP3) (Figure 7C). 255 

 256 

Increased changes to differential chromatin accessibility at the end of the developmental 257 

cycle  258 

The large number of genes associated with differential chromatin accessibility at 48 hours 259 

permitted Gene Ontology enrichment to be performed, with the underlying genes distinguished 260 

by increased chromatin and decreased chromatin accessibility (Figure 7D). Significantly 261 

enriched ontologies associated with regions of increased chromatin accessibility include the 262 

ErbB signalling pathway (GO:1901184), which is linked to a wide range of cellular functions 263 

including growth, proliferation and apoptosis. ErbB transmembrane receptors are also often 264 

exploited by bacterial pathogens for host cell invasion (61). Notably, epidermal growth factor 265 

receptor (EGFR), a member of the ErbB family, is the target receptor for C. pneumoniae Pmp21 266 

as an EGFR-dependent mechanism of host cell entry (62). The C. trachomatis Pmp21 ortholog, 267 

PmpD, also has adhesin-like functions (63), however the host ligands are unknown. 268 

Nevertheless, EGFR inhibition results in small, immature C. trachomatis inclusions, with 269 
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calcium mobilisation and F-actin assembly disrupted (64), indicating the functional importance 270 

of EGFR and the ErbB signaling pathway for C. trachomatis attachment and development. 271 

Three enriched biological processes share the term ‘cell-cell adhesion via plasma membrane 272 

adhesion molecules’ (GO:0098742, GO:0016339 and GO:0007157). Several genes common to 273 

these categories with infection-responsive differential chromatin accessibility are associated 274 

with cadherins (CDH4, CDH12, CDH17, CDH20, FAT4 and PTPRD). Disruption of cadherin 275 

function has been described in C. trachomatis infection, and is linked to the alteration of adherens 276 

junctions and the induction of epithelial-mesenchymal transition (EMT) events that may underlie 277 

chlamydial fibrotic outcomes (46, 65). Altered chromatin accessibility for other cadherin-278 

relevant loci over the chlamydial developmental cycle is apparent in this data, including SNX16 279 

(see above) and CDH18 (see below), suggesting that alteration or disruption of cadherin 280 

regulation is a key feature of chlamydial infection. Two enriched lipid-based biological 281 

processes, ‘Sphingolipid biosynthesis (GO:0030148), and ‘Membrane lipid biosynthetic process 282 

(GO:0030148) are also associated with regions of open chromatin. Chlamydia scavenges a range 283 

of host-cell-derived metabolites for intracellular growth and survival, particularly lipids (66, 67). 284 

Significantly enriched ontologies associated with regions of decreased chromatin accessibility 285 

include the ‘I-Smad (inhibition of Smad) binding, (GO:0070411)’. I-Smads (Inhibitory-Smads) 286 

are one of three sub-types of Smads that inhibit intracellular signalling of TGF-β by various 287 

mechanisms including receptor-mediated inhibition (68). In addition, Smad2 contains two closed 288 

chromatin accessibility regions at an enhancer and intragenically respectively. Smad2 is part of 289 

the R-Smad sub-family that regulates TGF-β signalling directly (69, 70). TGF-β has been 290 

hypothesised to be a central component of dysregulated fibrotic processes in Chlamydia-infected 291 

cells, provoking runaway positive feedback loops that generate excessive ECM deposition and 292 

proteolysis, potentially leading to inflammation and scarring (16). We also identify down-293 

regulation of the ontology ‘Kinesin binding (GO:0019894). Kinesins belong to a class of motor 294 
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proteins that move along microtubule filaments (from the centre of the cell outwards) supporting 295 

cell functions including transport and cell division (71). C. trachomatis expresses an effector 296 

protein (CEP170) that recruits host microtubules into the vicinity of the mature inclusion, 297 

enabling microtubule-dependent traffic to be re-directed to the inclusion (72). 298 

 299 

Clusters of Open Regulatory Elements 300 

Clusters of Open Regulatory Elements (COREs) are multiple areas of open chromatin in close 301 

proximity to each other, which may represent regions of coordinated chromatin accessibility 302 

linked to multiple regulatory elements (73). We focused on differential chromatin regions 303 

spanning less than 500k bp that contain a cluster of at least three regions (Figure 8A). This 304 

identified 18 COREs across three times post-infection consisting of regions with the same fold-305 

change direction and overlapping a single gene (Figure 8B). A CORE is apparent at 1 hpi in 306 

proximity to laminin (LAMA2). Laminins are a component of the extracellular matrix and 307 

basement membranes that influence cell differentiation, migration, and adhesion. As noted 308 

above, dysregulation of ECM moieties has been hypothesised to be a key mechanism of 309 

chlamydial scarring, in which immune-mediated positive feedback loops are induced on 310 

infection as part of an early, aberrant wound response to chlamydial infection, creating 311 

inflammatory accumulations of ECM constituents (16). Combined with the observed chromatin 312 

accessibility changes to several cadherin and cadherin-associated genes and TGF-β-mediated 313 

Smad signalling in this work, a CORE within the laminin gene provides further support for the 314 

key role of dysregulated ECM in chlamydial disease outcomes. 315 

At 48 hours, eleven COREs were identified, overlapping six protein-coding and five non-coding 316 

genes. Two of these genes (DNAH14 and MYo9A) belong to broad families of cytoskeletal 317 

motor proteins (dyneins and myosins), with relevance to chlamydial infection. Some members 318 

of the myosin family may be involved with chlamydial extrusion through a breakdown of the 319 
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actin cytoskeleton followed by the release of EB’s at the end of the lifecycle (74). However, 320 

MYo9A itself has not been previously linked to chlamydial infection. Similarly, dynein-based 321 

motor proteins have been shown to move the chlamydial inclusion via the internal microtubule 322 

network to the MTOC (Microtubule-Organizing Centre); the close proximity to the MTOC is 323 

thought to facilitate the transfer of host vesicular cargo to the chlamydial inclusion (75). 324 

However, DNAH14 is an axonemal dynein that causes sliding of microtubules in the axonemes 325 

of cilia and flagella, and is typically only expressed in cells with those structures (76); it is not 326 

clear what role it would have in chlamydial infection. A third CORE overlaps DGKB, a 327 

diacylglycerol kinase that metabolises 1,2,diacylglycerol (DAG) to produce phosphatidic acid 328 

(PA), a key precursor in the biosynthesis of triacylglycerols and phospholipids, and a major 329 

signalling molecule (77). Chlamydia obtains and redirects host-derived lipids through multiple 330 

pathways (78), and as further identified in this CORE and enriched gene ontologies (above). 331 

 332 

Identification of transcription factor motifs  333 

Putative transcription factor (TFs) motifs were identified from all significant differential 334 

chromatin accessible regions at each time post-infection (Additional File 5). Ten significant TF 335 

motifs were identified, spanning the developmental cycle (Table 2). IRF3 (Interferon Regulatory 336 

Factor) motifs are enriched at 1 hpi; IRF3 is a key transcriptional regulator of type I interferon 337 

(IFN)-dependent innate immune responses and is induced by chlamydial infection. The type I 338 

IFN response to chlamydial infection can induce cell death or enhance the susceptibility of cells 339 

to pro-death stimuli (79), but may also be actively dampened by Chlamydia (80, 81). Specificity 340 

Protein 1 (Sp1) is a zinc-finger TF that binds to a wide range of promoters with GC-rich motifs. 341 

Sp1 may activate or repress transcription in a variety of cellular processes that include responses 342 

to physiological and pathological stimuli, cell differentiation, growth, apoptosis, immune 343 

responses, response to DNA damage and chromatin remodelling (82, 83). 344 
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The majority of TF motifs enriched at 48 hours correspond to Krüppel-like-factors (KLFs). KLFs 345 

are zinc-finger TFs in the same family as Sp1, which is also enriched at 48 hours. The members 346 

of this large family orchestrate a range of paracrine and autocrine regulatory circuits and are 347 

ubiquitously expressed in reproductive tissues (84). Dysregulation of KLFs and their dynamic 348 

transcriptional networks is associated with a variety of uterine pathologies (85). We find motif 349 

enrichment for five distinct KLFs (KLF5, KLF6, KLF9, KLF10 and KLF14) at 48 hours, in 350 

addition to further KLFs at 12 and 48 hours (KLF 3 and KLF 4) without the initial filtering steps 351 

(Additional File 5). KLF5 is a transcriptional activator found in various epithelial tissues and is 352 

linked to regulation of inflammatory signalling, cell proliferation, survival and differentiation 353 

(86). KLF6 is also a transcriptional activator ubiquitously expressed across a range of tissues and 354 

plays a crucial role in regulating genes involved with tissue development, differentiation, cell 355 

cycle control, and proliferation (87). Target genes include collagen α1, keratin 4, TGFβ type I 356 

and II receptors, and others (88). KLF9, 10 and 14 act as transcriptional repressors and are 357 

ubiquitously expressed across a range of tissues (89). KLF9 is a tumour suppressor (90) and 358 

regulates inflammation, while KLF10 has a major role in TGF-β-linked inhibition of cell 359 

proliferation, inflammation and initiating apoptosis (91). KLF14 represses TGF-βRII activity in 360 

inflammation (92), regulates lipoprotein metabolism (93), and is induced upon activation of 361 

naïve CD4+ T cells (94). 362 

Histone deacetylases (HDACs) modify the core histones of the nucleosome, providing an 363 

important function in transcriptional regulation (95), and many bacterial pathogens subvert 364 

HDACs to suppress host defences (15). KLF9, 10 and 14 share the co-factor Sin3A (SIN3 365 

Transcription Regulator Family Member A) [60], which is also a core component of the 366 

chromatin-modifying complex mediating transcriptional repression [66]. The Sin3a/HDAC 367 

complex is made up of two histone deacetylases HDAC1 and HDAC2. HDAC2 has increased 368 

chromatin accessibility at all four time points, and HDAC9 has increased chromatin accessibility 369 
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at 1, 24 and 48 hours, further supporting the potential for histone modifications to be a 370 

component of the host cell response to chlamydial infection, or to be targets of chlamydial 371 

effectors (17). 372 

 373 

Discussion 374 

We describe comprehensive changes to chromatin accessibility upon chlamydial infection in 375 

epithelial cells in vitro. We identify both conserved and time-specific infection-responsive 376 

changes to a variety of features and regulatory elements over the course of the chlamydial 377 

developmental cycle that may shape the host cell response to infection, including promotors, 378 

enhancers, COREs, and transcription factor motifs. Some of these changes are associated with 379 

genomic features and genes known to be relevant to chlamydial infection, including innate 380 

immunity and complement, acquisition of host cell lipids and nutrients, intracellular signalling, 381 

cell-cell adhesion, metabolism and apoptosis. Host cell chromatin accessibility changes are 382 

evident over the entire chlamydial developmental cycle, with a large proportion of all chromatin 383 

accessibility changes at 48 hours post infection. This likely reflects the confluence of late stages 384 

of developmental cycle events, however significant changes to chromatin accessibility are 385 

readily apparent as early as 1 hour post infection. We find altered chromatin accessibility in 386 

several gene regions, ontologies and TF motifs associated with ECM moieties, particularly 387 

cadherins and their interconnected regulatory pathways, laminin, and Smad signalling. 388 

Disruption of the ECM is thought to be a central component of dysregulated fibrotic processes 389 

that may underpin the inflammatory scarring outcomes of chlamydial infection (16), and our data 390 

further highlights a central role of the ECM in epithelial cell responses to infection. We also 391 

identify factors that have not been previously described in the context of chlamydial infection, 392 

notably the enrichment of the KLF family of transcription factor motifs within differential 393 

chromatin accessible regions in the latter stages of infection. Dysregulation of the biologically 394 
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complex KLFs and their transcriptional networks is linked to several reproductive tract 395 

pathologies in both men and women (85), thus our discovery of enriched KLF binding motifs in 396 

response to chlamydial infection is compelling, given the scale and burden of chlamydial 397 

reproductive tract disease globally (3). 398 

In summary, this is the first genome-scale analysis of the impact of chlamydial infection on the 399 

human epithelial cell epigenome, encompassing the chlamydial developmental cycle at early, 400 

mid and late times. This has yielded a novel perspective of the complex host epithelial cell 401 

response to infection, and will inform further studies of transcriptional regulation and 402 

epigenomic regulatory elements in Chlamydia-infected human cells and tissues. Examination of 403 

the multifaceted human epigenome, and its potential subversion by Chlamydia, using in vivo 404 

mouse models of infection and ex vivo human reproductive tract tissues, will continue to shed 405 

light on how the host cell response contributes to infection outcomes and subsequent disease. 406 

 407 

Methods 408 

Cell culture, infection and experimental design 409 

HEp-2 cells (American Type Culture Collection, ATCC No. CCL-23) were grown as monolayers 410 

in 6 x 100mm TC dishes until 90% confluent. Monolayers were infected with C. trachomatis 411 

serovar E in SPG as previously described (20). Additional monolayers were mock-infected with 412 

SPG only. The infection was allowed to proceed 48 hours prior to EB harvest, as previously 413 

described (20). C. trachomatis EBs and mock-infected cell lysates were subsequently used to 414 

infect fresh HEp-2 monolayers. Fresh monolayers were infected with C. trachomatis serovar E 415 

in 3.5 mL SPG buffer for an MOI ~ 1 as previously described (20), using centrifugation to 416 

synchronize infections. Infections and subsequent culture were performed in the absence of 417 

cycloheximide or DEAE dextran. A matching number of HEp-2 monolayers were also mock-418 
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infected using uninfected cell lysates. Each treatment was incubated at 25°C for 2h and 419 

subsequently washed twice with SPG to remove dead or non-viable EBs. 10 mL fresh medium 420 

(DMEM + 10% FBS, 25μg/ml gentamycin, 1.25μg/ml Fungizone) was added and cell 421 

monolayers incubated at 37°C with 5% CO2. Three biological replicates of infected and mock-422 

infected dishes per time were harvested post-infection by scraping and resuspending cells in 423 

150μL sterile PBS.  Resuspended cells were stored at -80°C. 424 

We note that the experimental design used here cannot distinguish Chlamydia-mediated effects 425 

from infection-specific or non-specific host cell responses. Further experiments with inactivated 426 

Chlamydia or selected gene knock-outs or knock-downs will help to elucidate the extent of 427 

specific Chlamydia-mediated interference with the host cell epigenome. We also note that the 428 

use of in vitro immortalized HEp-2 epithelial cells means that, despite their utility and 429 

widespread use in chlamydial research, the full diversity of host cell responses that are likely to 430 

be found within in vivo infections will not be captured. 431 

 432 

FAIRE enrichment and sequencing 433 

Formaldehyde-crosslinking of cells, sonication, DNA extraction of FAIRE-enriched fractions 434 

and Illumina library preparation was performed as previously described (18). Libraries were 435 

sequenced on the Illumina 2500 platform at the Genome Resource Centre, Institute for Genome 436 

Sciences, University of Maryland School of Medicine. 437 

 438 

Bioinformatic analyses 439 

Raw sequencing reads were trimmed and quality checked using Trimmomatic (0.36) (21) and 440 

FastQC (0.11.5) (22). Trimmed reads were aligned to the human genome (GRCh 38.87) using 441 

Bowtie2 (2.3.2) (23) with additional parameters of ‘no mismatches’ and ‘–very-sensitive-local’. 442 
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Duplicate reads were removed using Picard tools (2.10.4) (24). Additional replicate quality 443 

control was performed using deepTools (2.5.3) (25) and in-house scripts. 444 

Peak calling of open chromatin regions was performed using MACS2 (2.1.1) (26) in paired-end 445 

mode, with additional parameters of ‘–no-model –broad –q 0.05’ and MACS2 predicted 446 

extension sizes. All replicates were called separately, with significant peaks determined against 447 

the software-predicted background signal. Any peaks that fell within ENCODE blacklisted 448 

regions (regions exhibiting ultra-high signal artefacts) (27), or were located on non-standard 449 

chromosomes such as (ChrMT and ChrUn) were removed. 450 

Consensus peak sets were created by combining significant peaks from the infected and mock-451 

infected replicates for each time using Diffbind (28). Peaks were removed if they appeared in 452 

less than two replicates. Reads were counted under each peak within each consensus peak set; 453 

the resulting read depths were normalised to their relative library sizes. Peaks with less than 3 454 

mapped reads after normalisation were also removed. The resulting count matrices from each 455 

consensus peak set were used to look at the differences in chromatin accessibility between 456 

infected and mock-infected replicates at each time using the built in DESeq2 method of Diffbind 457 

(FDR < 0.05). This created a list of differential chromatin accessible regions, where patterns of 458 

open chromatin in either the mock-infected or infected conditions allowed corresponding 459 

patterns of closed chromatin to be identified in the matching condition. However, we note that, 460 

as FAIRE protocols are designed to enrich regions of open chromatin, there may be an inherent 461 

bias in favour of open chromatin. 462 

Annotation of the set of differential chromatin accessible regions was performed with Homer 463 

(v4.9) (29) and separated into three main categories: Intragenic, Promoter and Intergenic. 464 

Intergenic: located >1kbp upstream of the transcriptional start site (TSS), or downstream from 465 

the transcription termination site (TTS); Promoter: located within 1kb upstream or 100bp 466 

downstream of the TSS (all promoter regions taken from RefSeq); and, Intragenic: annotated to 467 
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a 3’UTR, 5’UTR, intron, exon, TTS, miRNA, ncRNA or a pseudogene. To identify enhancers, 468 

all intergenic regions were compared against experimentally validated enhancer regions from 469 

HeLa cells (S3 and S4) using Enhancer-atlas (30) and dbSuper (31). 470 

Clusters of Open Regulatory Elements (COREs) were identified from the set of significant 471 

differential chromatin accessible regions using CREAM (32). A window size of 0.5 and a peak 472 

range of 2:5 was initially set to separate COREs encompassing multiple genes from COREs 473 

overlapping individual genes. Subsequent filtering removed COREs with < 3 peaks and limited 474 

peak width to < 500,000 bp. Each CORE was visually inspected in the Integrative Genomics 475 

Viewer (IGV) to identify COREs that overlapped a single gene and to ensure all peaks had a 476 

fold-change of at least > 2 or < -2. 477 

Motif analysis was performed with Homer (29). Target sequences were regions with significant 478 

differential chromatin accessibility as identified by DESeq2, while the number of background 479 

sequences were randomly sampled regions throughout the human genome. Additional 480 

parameters included using a hypergeometric distribution, allowing for two mismatches and 481 

searching for motifs between 8-14 bp long. Motif enrichment was also performed with Homer 482 

(29), followed by filtering and assessment of human tissue specificity of the enriched 483 

transcription factors (TF) (p-value < 0.05, >5% of target sequences). For significant de novo TFs, 484 

motif matrices were compared against the Jaspar (33) and TomTom (34) databases, where 485 

enriched TFs were discarded unless the Homer annotation matched top hits in either database, 486 

and were also human-tissue specific. 487 

  488 
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Figure Legends 512 

Figure 1. Identifying significant peaks and creating consensus peaksets 

A) Significant peaks per replicate (p-value < 0.05).  B) Consensus peaks were created for each 

time by combining significant peaks from Chlamydia-infected and mock-infected conditions, 

retaining peaks which appeared in > 2 replicates.  C) PCA plots demonstrating tight clustering 

within each consensus peak set grouping infected and mock-infected replicates. 

 513 

Figure 2. Changes in chromatin accessibility over the chlamydial developmental cycle 

A) Volcano plots highlighting changes in chromatin accessibility between infected and mock-

infected conditions. Regions of closed chromatin are represented as red dots, while open 

chromatin regions are blue dots. Peaks unique to a specific time have darker shading. Percentages 

above the plots show the proportion of consensus peaks with significant changes of chromatin 

accessibility between conditions (FDR < 0.05).  B) Unique and conserved regions of differential 

chromatin accessibility across the developmental cycle. 

 514 

Figure 3. Annotation of significant peaks 

A) Example illustration of annotating significant differential peaks to enhancer, promoter, 

intragenic or intergenic regions.  B) Number of peaks per annotated category, separated by time.  

C) The intragenic peaks separated into eight detailed sub-categories.  D) Distribution of all 

significant peaks and their proximity to the TSS of their associated genes (+/- 5KB). 

 515 

Figure 4. Differential chromatin accessibility within promoter regions 

Heatmaps of significant differential peaks that were annotated to a promoter region.  A) All 

promoter regions from each time post-infection.  B) Promoters overlapping two or more times 

post-infection. Red and blue shading indicates fold-changes, while grey indicates no significant 

peaks. 

 516 

Figure 5. Differential chromatin accessibility within enhancer regions 

Significant differential peaks annotated as intergenic were compared against experimentally 

validated tissue-specific enhancers. A) All enhancer regions across each time. Seven super 

enhancers were identified and are denoted with a star (*).  B) Enhancers overlapping three or 

more times. Red and blue shading indicate fold-changes, while grey indicates that no significant 
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peaks were associated with that enhancer. Some enhancers contain more than one peak, 

explaining why there are multiple fold-changes at some times. 

 517 

Figure 6. Conserved host cell response to infection 

A) 120 Differentially accessible regions found in all four times were extracted, representing a 

conserved host cell response to infection. Intergenic regions were removed due to the ambiguity 

of annotating to the closest feature. If a gene contained more than one peak within a specific 

time, the different fold changes are split out evenly within the column at that time.  B) Venn 

diagram highlighting the number of time-specific differential regions. Intergenic regions were 

also removed for the same reasons, with the remaining enhancers, promoters and intragenic 

regions separated by their chromatin accessibility. 

 518 

Figure 7. Enrichment of time-specific differential chromatin regions 

Annotated time-specific differential chromatin regions associated with 1 hour A), 12 hours B) 

and 24 hours C). Where genes have been grouped into annotated categories, multiple underlying 

sources were used for verification.  D) At 48 hours, a substancial increase in genes allowed Gene 

Ontology (GO) enrichment. All three GO categories were enriched, with the top ten p-values 

across the categories displayed. 

 

 519 

Figure 8. COREs (Clusters of Open Regulatory Elements) 

A) Number of COREs at each time post-infection using significant differential peaks, separated 

by width and the number of peaks within each CORE. COREs have a maximum width of 500,000 

bp and > 3 peaks.  B) 18 significant COREs were identified across three times post-infection. 

For each CORE, the genomic location, associated number of peaks, where they fall within 

proximity to a genomic feature, fold-changes, and genetic biotype are shown. 

520 
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Figures 521 

Figure 1 522 

 

 523 

  524 
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Figure 2 525 

 526 

 

 527 

  528 
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Figure 3 529 

 530 
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Figure 4 532 

 533 
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Figure 5 536 

 537 

 

 538 

 539 
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Figure 6 541 

 542 

 
 543 
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Figure 7 545 

 546 

 

 547 
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Figure 8 549 

 550 

 

 551 

  552 
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Table legends 553 

 554 

Table 1: Summary of mapped reads, separated by time and condition 

 555 

Table 2: Motifs and enriched transcription factors 

Target sequences are significant differential peaks and background sequences are randomly 

selected throughout the genome to determine significance. A star (*) denotes a de-novo motif 

where various sources were used to annotate the corresponding transcription factor. 

 556 

  557 
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Tables 558 

 559 

Table 1 560 

  Mock-infected  Infected 

Time  Mean S.D  Mean S.D 

 1 2,603,472 ± 417,306  2,686,613 ± 554,905 

 12 6,328,838 ± 2,952,657  6,437,002 ± 2,511,144 

 24 3,841,611 ± 3,818,015  9,903,858 ± 2,394,999 

 48 6,034,896 ± 1,553,435  14,802,374 ± 8,475,785 

Mapped reads per condition 52,584,839    98,802,927  

Total mapped reads    151,387,766  

 561 

  562 
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Table 2 563 

 564 

Time Motif P.value 

Target  

sequences  

with Motif (%) 

Background  

sequences with  

Motif (%) 

Transcription  

factor 

1 

 
1e-13 10.53 3.84 IRF3* 

      

24 

 
1e-12 17.45 9.78 Homeobox* 

      

48 

 
1e-28 7.67 1.82 

Sp1(Zf) 

(Promoter) 

 

 
1e-22 6.30 1.58 KLF9(Zf) 

 

 
1e-16 10.36 4.75 XCPE1* 

 

 
1e-13 9.81 4.90 KLF6(Zf) 

 

 
1e-10 6.30 2.87 KLF10(Zf) 

 

 
1e-9 13.40 8.40 KLF14(Zf) 

 

 
1e-7 11.06 7.18 KLF5(Zf) 

 

 
1e-7 10.45 6.71 

NFY(CCAAT) 

(Promoter) 

 566 

 567 

  568 
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Additional Files 569 

Additional File 1.docx Genome coverage plots 570 

Significant peaks from each replicate as determined by MACS2. Screenshots are from IGV 571 

(Integrative Genomics Viewer) showing that all replicates contain significant peaks genome-572 

wide (human genome) without any visual chromosomal bias. 573 

 574 

Additional File 2.xlsx Annotation of all significant peaks 575 

Annotation of all the significant peaks, with tabs separating genomic features and fold-change 576 

regulation. 577 

 578 

Additional File 3.docx Enrichment of Super-enhancer genes  579 

Super enhancer-linked genes separated by time and biological activity. 580 

 581 

 582 

Additional File 4.xlsx Time specific regions 583 

The list of time-specific differential chromatin accessible regions. It should be noted that some 584 

genes in these lists are repeated at each time due to multiple peaks occurring at an annotated 585 

interval, that enhancers can affect more than one gene, and single genes can be affected by more 586 

than one enhancer. 587 

 588 

 589 

Additional File 5.xlsx Complete list of motifs and transcription factors 590 

The complete list of significant motifs and enriched transcription factors. 591 

592 
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