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Abstract—Online social networks (OSNs) suffer from forged
messages. Current studies have typically been focused on the
detection of forged messages and do not provide the analysis of
the behaviors of message publishers and network strategies to
suppress forged messages. This paper carries out the analysis
by taking a game theoretic approach, where infinitely repeated
games are constructed to capture the interactions between a pub-
lisher and a network administrator and suppress forged messages
in OSNs. Critical conditions, under which the publisher is dis-
incentivized to publish any forged messages, are identified in
the absence and presence of misclassification on genuine mes-
sages. Closed-form expressions are established for the maximum
number of forged messages that a malicious publisher could pub-
lish. Confirmed by the numerical results, the proposed infinitely
repeated games reveal that forged messages can be suppressed by
improving the payoffs for genuine messages, increasing the cost
of bots, and/or reducing the payoffs for forged messages. The
increasing detection probability of forged messages or decreas-
ing misclassification probability of genuine messages also has a
strong impact on the suppression of forged messages.
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I. INTRODUCTION

ONLINE social networks (OSNs), enabling users to inter-
act with one another through the Internet, dramatically

reshape the way people are connected and have a strong
impact on public decision-making [1]. OSNs, e.g., Facebook
and Twitter, have been playing important roles even in politics
and commerce [2]. Other OSNs, such as Yelp and TripAdvisor,
collect reviews from consumers and can have a direct influence
on product sales [3].

With no verification on user-generated content, OSNs are
vulnerable to forged messages that intentionally mislead or
deceive the recipients. There are a variety of forged messages,
such as e-mail spams [4], fake views, e.g., in Amazon [5], [6],
and diffusing rumors [7]–[9]. The publishers of forged mes-
sages can use social bots [10] or employ water army [11] to
propagate forged messages and avoid sanction. Users in OSNs
are susceptible to forged messages to different extents [12] and
can be sensitive to the content of the messages [13].

Behavioral and linguistic features have been used by indi-
vidual subscribers to judge the genuineness and forgery of
a message [14]–[16]. Many subscribers can feed back their
judgments to help correctly classify messages, penalize the
publication of forged messages, and inhibit forgery of mes-
sages. For instance, Yelp filters reviews and encourages users
to report inappropriate reviews [17]. Facebook enables users
to provide feedback on any posts which are potentially forged,
in addition to independent third-party verification [18]. Once
identified, forged posts and/or their publishers can be blocked,
which could be too harsh and inadequate in the case where
there is a misclassification of genuine messages or uninten-
tional mistakes of publishers [19], [20].

An increasingly popular approach to regulate the publisher’s
behaviors is to have service providers (or administrators),
who send risk alerts to all users on disputable contents with-
out blocking the contents and their publishers, as done in
Facebook [18]. However, the effect of risk alerts on the inhi-
bition of forged messages has yet to be properly analyzed and
understood. One challenge is that the publisher can interact
with the subscribers over an infinite-time horizon and change
its strategies over time to potentially mislead the subscribers.
The interactions can be sophisticated. Another challenge is that
different types of subscribers may coexist in OSNs, including
followers, fans, and bots, reacting distinctly to the publisher’s
behaviors.

The motivation of this paper is to provide a new quantita-
tive understanding on the effect of risk alerts on the inhibition
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of forged messages in the presence of multiple types of sub-
scribers and possible miss-detection and false alarm of forged
messages. We propose a new game theoretic approach for
modeling and analyzing the proliferation of forged messages
in OSNs, where there is a network administrator, a message
publisher, and message subscribers (including followers, fans,
and bots). Infinitely repeated games are constructed to charac-
terize the interactions between the publisher, administrator, and
subscribers and to quantify the payoffs of the publisher, first
in the absence of misclassification on genuine messages and
then in the presence of misclassification. This paper also iden-
tifies critical conditions, under which the broadcast of forged
messages can be disincentivized and forged messages can be
suppressed in OSNs. The contributions of this paper can be
summarized as follows.

1) We propose infinitely repeated games to capture the
interactions between a publisher and the administrator
to suppress forged messages in OSNs.

2) Critical conditions, under which the publisher can be
disincentivized to send any forged messages, are identi-
fied in the absence and presence of misclassification on
genuine messages.

3) Closed-form expressions are established for the maxi-
mum number of forged messages of a malicious pub-
lisher in the absence and presence of misclassification
on genuine messages.

Validated by numerical results, our analysis indicates that
forged messages can be suppressed by improving the pay-
offs for genuine messages, increasing the cost of bots, and/or
reducing the payoffs for forged messages. The increasing
detection probability of forged messages or decreasing mis-
classification probability of genuine messages can also benefit
the game theoretic suppression of forged messages.

The rest of this paper is organized as follows. In Section II,
the related works are surveyed, followed by the proposed
social network model and infinitely repeated games of forged
messages in Section III. Sufficient conditions, under which the
publisher is disincentivized from publishing forged messages,
are established, and closed-form expressions for the maximum
number of forged messages which can be published before
the publisher is disincentivized are derived in Section IV. The
proposed model, as well as the policies to suppress forged
messages, are numerically validated in Section V, followed
by the conclusions in Section VI.

II. RELATED WORK

Interactions among users have been exploited to improve
the accuracy of identifying forged messages and misbehav-
ing publishers and penalize the publishers to inhibit forged
messages. A subjective trustworthiness model and an objec-
tive model were proposed in [21], where trustworthiness was
evaluated based on the local knowledge and global informa-
tion, respectively. The trustworthiness of nodes can be judged
by network administrators. For example, a trusted user was
defined as the one which has never posted any spam tweet and
has posted at least five confident ham tweets [20]. Priority can
be given to trusted publishers [21]–[23]. Sirivianos et al. [19]

proposed a collaborative spam filtering system, where feed-
back from different reporters was jointly assessed based on
the trustworthiness of the reporters. Apart from manual com-
plaints, feedback can be the automated reports, e.g., from
honeypots [24].

A popular yet harsh technique of regulating misbehaving
publishers is to block any forged messages and their pub-
lishers [25]–[27]. The solution would be too harsh and less
effective in the case where genuine messages can be misclassi-
fied due to biased reviews [19] or unintentional mistakes made
by the publishers, such as granting permission to malicious
applications [20]. Another increasingly popular yet soft tech-
nique of regulating the publishers’ behaviors is to have service
providers (or administrators), who send risk alerts on forged
messages without blocking the contents and their publishers,
as done in Facebook [18]. Given the alerts, all subscribers can,
by their own decision, distrust and reject the messages, thereby
reducing the payoff to the publisher of the messages and dis-
incentivizing the publisher from misbehaving. However, the
technique has yet to be appropriately analyzed in the litera-
ture, due to sophisticated interactions between the publisher,
administrator, and subscribers, as well as potentially different
types of coexisting subscribers.

Game theory has been employed to model the interactions
in OSNs [28]–[30]. In a game between publishers and admin-
istrators [28], the publishers can send more spam messages to
gain higher payoff, which increases the successful detection by
the administrators of the spam messages. The detected mali-
cious publishers can be added to blacklists and quarantined.
In [29], a Stackelberg-type game was set up to capture viral
product design and customer satisfaction and optimize product
adoption in OSNs. Abbass et al. [30] applied game theory to
analyze the trustworthiness of N players in an OSN, revealing
that the society with no untrustworthy individuals would yield
the maximum wealth. However, game theory has not been used
to model and analyze a more sophisticated scenario, as the one
discussed in this paper, where there can be multiple types of
users with different views on (forged) messages, which can
even be misclassified by mistake.

To the best of our knowledge, none of the existing game
theoretic analyses are able to capture the increasingly popu-
lar risk alert technique in OSNs [18]. An understanding of the
long-term effect of this technique on the regulation of the pub-
lisher’s behaviors is important to the design and configuration
of the technique though. This paper bridges this gap in the
existing literature by developing new game theoretic models
to jointly capture the (mis)classification of messages and the
interactions between parties in the risk alert systems for OSNs.
The new infinitely repeated games are designed to model the
sophisticated interactions between the publisher, subscribers
(including followers, fans, and bots), and administrator in the
presence of intentional and biased misclassification of mes-
sages. This paper also provides a new analysis to quantify
the impact of different strategies that the administrator can
take, such as improving the payoffs for genuine messages and
increasing the cost of bots, on the suppression of forged mes-
sages. Conditions under which the publisher is disincentivized
from sending any forged messages are identified.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: GAME THEORETIC SUPPRESSION OF FORGED MESSAGES IN OSNs 3

In a different yet relevant context, techniques have been
proposed to detect forged messages, typically by defining
features. The techniques can be used by individual users or
network operators to classify messages. Egele et al. [14]
detected malicious accounts in OSNs based on the find-
ing that malicious accounts exhibit consistent behaviors over
time, e.g., time of day, source, text, topic, links in messages,
direct user interaction, and proximity. Ruan et al. [31] used
extroversive behavioral features (i.e., first activity, activity
preference, activity sequence, and action latency) and intro-
versive behavioral features (i.e., browsing preference, visit
duration, request latency, and browsing sequences) to profile
malicious accounts. Chen et al. [32] proposed an evolution-
ary classification algorithm to detect time-varying statistical
features of spams, e.g., the number of retweets, by learning
detected and manually labeled spams. Yang et al. [33] ana-
lyzed twitter spammers from the viewpoint of topology and
found that spammers have small local clustering coefficients,
high betweenness centrality, and small bidirectional link ratios.
Neighbor features, such as neighbors’ followers, average
neighbors’ tweets, and followings to median neighbors’ fol-
lowers, were employed to improve the detection of malicious
accounts [33]. Review-based features, such as early time
frame, rate deviation, the number of first-person pronouns,
and the ratio of exclamation sentences, were proposed by
Shehnepoor et al. [6] in addition to user-based features, to ana-
lyze reviews in OSNs (e.g., feedback on a topic or a product).
Other review-based features, such as the numbers of views
and comments received, ratings, and favorite times, were also
used to identify spammers [34]. Linguistic features, such as
the structure of sentences and modifiers, were also proposed
to analyze reviews [15]. Based on a finding that the majority
of collected spams are generated with underlying templates,
Tangram [35] divided spams into segments and extracted tem-
plates for accurate and fast spam detections. Some of these
techniques, such as [15] and [35], can be potentially adopted
by the followers in this paper to classify messages. Taking
the classification probabilities of the techniques as the input,
however, our proposed game theoretic models are general and
do not depend on specific classification techniques.

III. NETWORK MODEL

We consider subscription services of OSNs, as shown in
Fig. 1, where a publisher, denoted by P , publishes messages
to its subscribers. P can either publish genuine messages,
referred to as the benign strategy, or forged messages, referred
to as the malicious strategy. Genuine messages can benefit the
OSNs overall, while forged messages can potentially increase
P’s payoff. Typical forged messages include rumors, commer-
cial advertisements, and biased reviews. We consider the case
that P can publish an infinite number of messages. At every
round (one message per round), P takes either the benign or
malicious strategy.

The subscribers consist of Nr followers who feed back
objective judgments of P’s messages to an administrator A,
and Nn fans who provide subjective (persistently positive)
feedback in favor of P . Let p1 denote the miss-detection

Fig. 1. Illustration of the subscription services in OSNs, where there is a
network administrator A, a publisher P and subscribers (including followers,
fans, and bots). P can publish either genuine or forged messages. The sub-
scribers check the messages and give their feedback to A. The bots are hired
by P to always give positive feedback to A. Based on the feedback from the
subscribers, A can take either a trust or distrust strategy to deal with P .

probability, at which a follower incorrectly gives positive feed-
back on a forged message; and p2 denote the probability of
detection, at which a follower correctly gives positive feed-
back on a genuine message. (1 − p2) is the probability of the
false alarm. The followers and fans feed back independently
to A. Moreover, P can also hire Nt bots which always give
positive feedback to mislead A while costing P .

Based on the feedback received, the administrator A can
take either a trust or distrust strategy to encourage P to
publish genuine messages or disincentivize P from sending
forged messages, respectively. When taking the trust strategy,
A confirms the genuineness of a message and advises all the
subscribers to accept the message. When taking the distrust
strategy, A sends risk alerts to notify the subscribers of a
potentially forged message. The followers take A’s advice,
while the fans always trust P (at no cost of P , as opposed
to the bots). The distrust strategy reduces P’s payoff and can
penalize and suppress forged messages.

The payoff that P can receive per message is reasonably
assumed to be linear to the number of subscribers who trust
the message. The payoff is contributed by Nn fans and/or Nr

followers. Let C1 > 0 (or C2 > 0) denote the unit payoff (per
message per subscriber) for P to publish a genuine (or forged)
message. If C1 ≥ C2 (i.e., the payoff from a genuine message
is higher than that from a forged message), P has no incentive
to publish forged messages. We are particularly interested in
the case where C1 < C2 and P has an incentive to publish
forged messages, as will be analyzed in this paper. Let C3 > 0
denote the cost of a bot to P . The bots increase the cost of
P , but may help increase P’s payoff by misleading A and
reducing the probability of P’s misbehaviors being detected.

We take a Facebook group for an example [36]. The group
manager plays the role of the administrator A, which can ver-
ify every post made by a publisher P and alert the group
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members of disputable posts by using a Pin to Top announce-
ment. As the fans (or friends) of P , some group members
choose to ignore A’s advice and always trust and accept the
posts. As followers of P , other group members accept A’s
advice, i.e., distrust and reject disputable posts.

By default, A takes the trust strategy and updates the strat-
egy on each of P’s messages based on the detection results. We
set the probability that A classifies a message to be genuine is
equal to the ratio of positive feedback. Once a forged message
is detected, A takes the distrust strategy against P and alerts
the subscribers for a period of time (or in other words, P is
placed on a “good behavior bond” and can still publish mes-
sages during the period). The alerting period can vary under
different punishment policies. For example, P can be declared
to be untrusted for a single round, permanently, or with expo-
nentially increasing alert durations [37], [38]. Our analysis
focuses on the exponentially increasing durations which dou-
ble every time, a forged message is detected at A. Thus, the
alert duration in response to the kth detected forged message
of P is 2k−1 (rounds), during which P may still choose to pub-
lish another forged message at the potential consequence of a
further doubled alert duration following the current one [38].
A takes the trust strategy after the duration completes. P can
become aware of the strategy that A takes and adjust its own
behavior accordingly within and after the duration to maximize
its payoff. However, our analysis can be readily applied to the
other aforementioned punishment policies, i.e., distrust for a
single round or permanently.

IV. GAMES OF FORGED MESSAGES

In this section, we identify the critical conditions to suppress
forged messages, where the interaction between P and A is
modeled as an infinitely repeated game. We first consider a
misclassification-free repeated game where genuine messages
can be always correctly deduced. Sufficient conditions are
established under which P only publishes forged messages, or
is disincentivized from publishing any forged messages. Then,
we extend to more sophisticated infinitely repeated games with
possible misclassification on genuine messages. The condi-
tions, under which forged messages are disincentivized, are
dependent on the cost of messages as well as the classification
results.

A. Misclassification-Free Infinitely Repeated Game

We first consider a misclassification-free game, where gen-
uine messages are always correctly classified, i.e., p2 = 1.
P hires bots only when publishing forged messages. The pay-
off matrix of every message can be given by Table I, where
the payoffs for P are listed under the specific strategy com-
binations. Bots are hired with the cost of C3Nt, only when
forged messages are published.

In the case of a forged message, A can collect (Nr + Nn +
Nt) pieces of feedback in total, p1Nr + Nn + Nt of which are
positive. As a result, a forged message can be misjudged to
be genuine with probability q1 = [(p1Nr + Nn + Nt)/(Nr +
Nn +Nt)], and correctly detected to be forged with probability
(1 − q1).

TABLE I
PAYOFF MATRIX TO P PER ROUND IN THE CASE OF THE

MISCLASSIFICATION-FREE GAME

Theorem 1: In the misclassification-free infinitely repeated
game, under the condition of

C2Nn − C3Nt − C1(Nr + Nn) > 0. (1)

P always publishes forged messages for a higher payoff
than that when it publishes genuine messages. A cannot
suppress forged messages by taking the distrust punish-
ment. Equation (1) is a sufficient condition of P only
publishing forged messages.

Under the condition of

(Nr + Nn)C2 − ((2 − q1)Nr + Nn)C1 − C3Nt < 0. (2)

P has no incentive to publish forged messages; (2) is a
sufficient condition of P not publishing forged messages.

Proof: Condition (1) can be proved by letting the minimum
payoff from a forged message be greater than the maximum
payoff from a genuine message. If P always takes the mali-
cious strategy, it can at least get the payoff of (C2Nn − C3Nt)

per round. On the other hand, if P always takes the benign
strategy, it can get at most C1(Nr + Nn) payoff per round.
As a result, if C2Nn − C3Nt − C1(Nr + Nn) > 0, the better
strategy is malicious for P although it can be punished. In
this case, A cannot suppress forged messages by taking the
distrust punishment.

Condition (2) can be proved by comparing the cumulative
payoff of a malicious publisher and that of a benign pun-
isher over a sufficiently long period of time. Let τ1 denote the
cumulative rounds of punishment on the malicious publisher
that publishes f forged messages. τ1 is given by

τ1 =
f∑

k=0

(
2k − 1

)(
f

k

)
(1 − q1)

kqf −k
1 (3a)

=
f∑

k=0

(
f

k

)
(2 − 2q1)

k(q1)
f −k −

f∑

k=0

(
f

k

)
(1 − q1)

kqf −k
1

(3b)

= (2 − 2q1 + q1)
f − (1 − q1 + q1)

f (3c)

= (2 − q1)
f − 1 (3d)

where (3a) is because k forged messages are detected with
probability

(f
k

)
(1 − q1)

kqf −k
1 in the total f forged messages. P

is to be punished for
∑k

l=1 2l−1 = (2k − 1) rounds in total
when its forged messages are detected k times. Equation (3c)
is obtained based on the Binomial theorem [39].

Let t denote the instant when the publication of f forged
messages and the τ1 corresponding punishments have ended.
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Here, t ≥ (f + τ1). Note that P can publish either forged
or genuine messages during the distrust period, resulting in
different cumulative payoffs. If P publishes genuine messages
during the period and publishes forged messages only when
the punishments are over, the cumulative payoff in t rounds,
denoted by πa1, can be given by

πa1 = f (C2(Nr + Nn) − C3Nt) + τ1C1Nn

+ (t − τ1 − f )C1(Nr + Nn) (4)

where the payoff of each round is based on the payoff
matrix in Table I. The payoffs from f forged messages are
f (C2(Nr + Nn) − C3Nt). P with f forged messages is pun-
ished for τ1 rounds on average, as given in (3), and can gain
the payoff of τ1C1Nn during the punishment. The payoff of
the remaining (t − f − τ1) rounds is (t − f − τ1)C1(Nr + Nn),
where P publishes genuine messages and A uses the default
trust strategy.

If the malicious P publishes δ, δ > 0 forged messages
during the punishment and (f − δ) forged messages when it is
not punished, the cumulative payoff, denoted by π ′

a1, can be
given by

π ′
a1 = (f − δ)(C2(Nr + Nn) − C3Nt)

+ δ(C2Nn − C3Nt) + (τ1 − δ)C1Nn

+ (t − τ1 − f + δ)C1(Nr + Nn). (5)

We have πa1 − π ′
a1 = δ(C2 − C1)Nr > 0. As a result,

the best strategy for P is to publish genuine messages in
the punishments and publish forged messages only when the
punishments are over. The maximum payoff is given as πa1
in (4).

In the case that P always publishes genuine messages, A
takes trust in return. The cumulative payoff of a benign P in
t rounds, denoted by πb1, can be given by

πb1 = tC1(Nr + Nn) (6)

where C1(Nr + Nn) is the payoff per round in Table I.
Let g1(f ) denote the gap of payoff (referred to as “extra

payoff”) between a malicious behavior of P with f forged
messages and a benign behavior, i.e.,

g1(f ) = πa1 − πb1

= f (C2(Nr + Nn) − C3Nt) + τ1C1Nn

− (τ1 + f )C1(Nr + Nn)

= f ((C2 − C1)(Nr + Nn) − C3Nt)

− C1Nr

(
(2 − q1)

f − 1
)
. (7)

Here, t is suppressed. In other words, the payoff gap depends
on the number of forged messages and is unaffected by the
order of forged and genuine messages.

In the case that g1(1) < 0, P cannot get a higher payoff
even if it publishes a single forged message. This is because
g1(0) = 0 and g1(f ) first increases and then decreases, as will
be proved in Theorem 2 [see (10)]. The sufficient condition
of P not publishing forged messages can be obtained.

Theorem 2: P gains the maximum extra payoff by publish-
ing �xm1� or �xm1� forged messages. The malicious P has an

incentive to publish less than �xu1� forged messages. xm1 and
xu1 can be given by

xm1 = − log2−q1
(λ1 ln(2 − q1))

xu1 = −W−1
(−λ1(2 − q1)

−λ1 ln(2 − q1)
)

ln(2 − q1)
− λ1

λ1 = C1Nr

(C2 − C1)(Nr + Nn) − C3Nt
(8)

where �·� stands for flooring and �·� stands for ceiling.
Proof: This theorem can be proved by relaxing the discrete

function g1(f ) in (7) to be a continuous function, denoted by
g̃1(x), as given by

g̃1(x) = ((C2 − C1)(Nr + Nn) − C3Nt)x

− C1Nr
(
(2 − q1)

x − 1
)
, x ≥ 0. (9)

The derivative of g̃1(x) can be given by

dg̃1(x)

dx
= (C2 − C1)(Nr + Nn) − C3Nt

− (C1Nr ln(2 − q1))(2 − q1)
x. (10)

As a result, g̃1(x) is a monotonically increasing function
when x < xm1 , and a monotonically decreasing function when
x > xm1 . Here, xm1 can be given by

xm1 = − log2−q1
(λ1 ln(2 − q1))

λ1 = C1Nr

(C2 − C1)(Nr + Nn) − C3Nt
. (11)

This is achieved by letting (dg̃1(x)/dx) = 0. Only an integer
number of messages can be published. The malicious P gains
the maximum extra payoff, i.e., max (g1(�xm1�), g1(�xm1�)),
by publishing forged messages.

The publisher P has an incentive to publish less than �xu1�
forged messages, where

xu1 = −W−1
(−λ1(2 − q1)

−λ1 ln(2 − q1)
)

ln(2 − q1)
− λ1. (12)

This is achieved by applying the Lambert’s W Function [40],
i.e., W(·), to g̃1(x) = 0, where −(1/e) ≤ −λ1(2 −
q1)

−λ1 ln(2 − q1) ≤ 0 is within the domain of the Lambert
W function, as proved in the Appendix. The payoff of a
malicious P is no more than the payoff of a benign P in
the case that f ≥ �xu1� forged messages are published, i.e.,
g1(f ) = g̃1(f ) ≤ 0 and f ≥ �xu1�.

B. Infinitely Repeated Game With Message Misclassification

In a more general case that the OSNs subscribers may pro-
vide incorrect feedback or comments on a genuine message
due to personal opinions, the administrator can be misled and
misjudge a genuine message to be a forged one. Therefore,
the case of misclassification can be defined as such that A
takes a distrust strategy when P publishes genuine messages.
To avoid misclassification of genuine messages and reduce the
detection of forged messages, P hires bots for positive feed-
back and pays the cost of C3Nt when publishing genuine and
forged messages. As a result, the payoff matrix of a single
message can be given by Table II.
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TABLE II
PAYOFF MATRIX OF P PER ROUND IN THE GAME WITH

MISCLASSIFICATIONS

TABLE III
CONFUSION MATRIX FOR DETECTION RESULTS

In the infinitely repeated game, every genuine message
is classified as a genuine message with probability q2 =
[(p2Nr + Nn + Nt)/(Nr + Nn + Nt)]. The detection probability
of a forged message is (1 − q1) as given in Section IV-A. The
confusion matrix, showing the detection and misclassification
probabilities, is given by Table III.

We assume that P can become aware of incorrect punish-
ments after one round, and complain to A. A rectifies the mis-
classifications in response to the complaints by stopping the
punishment. Meanwhile, A keeps the current punishment/alert
duration for the next punishment instead of doubling it. In
this way, the incorrect punishments due to misclassifications
remain a single round and do not change the punishment dura-
tion of the coming forged messages. As a result, the duration
of punishments on detected forged messages only depends on
the number of detected forged messages and is independent of
the number of genuine messages no matter whether they are
misclassified or not. The malicious P does not complain about
the correct punishments for its publication of forged messages.

Theorem 3: Under the condition of

(1 − p2)N2
r Nt

(Nr + Nn + Nt)(Nr + Nn)
C1 − C3Nt > 0 (13)

a benign P hires bots for a higher payoff than it does
not. Equation (13) is a sufficient condition of a benign P hiring
bots.

Under the condition of

C2Nn − C1(q2Nr + Nn) > 0. (14)

P always publishes forged messages for a higher payoff
than that when it publishes genuine messages. A cannot
suppress forged messages by taking the distrust punish-
ment. Equation (14) is a sufficient condition of P only
publishing forged messages.

Under the condition of

C2(Nr + Nn) − C1((q1 + q2 − 1)Nr + Nn) < 0. (15)

P has no incentive to publish forged messages; (15) is the
sufficient condition of P not publishing forged messages.

Proof: Condition (13) can be proved by comparing the pay-
offs from genuine messages with and without bots. In the
case that a benign P does not hire bots and always pub-
lishes genuine messages, A can collect (Nr + Nn) pieces of
feedback, p2Nr + Nn of which are positive. Thus, a gen-
uine message is correctly classified with probability q3 =
[(p2Nr + Nn)/(Nr + Nn)] and misclassified with probability
(1 − q3). On the other hand, the punishment due to misclassi-
fication can be rectified in one round. As a result, the benign
P is punished with probability (1 − q3) per round. Its payoff
per round, denoted by βb1, can be given by

βb1 = q3C1(Nr + Nn) + (1 − q3)C1Nn

= C1(q3Nr + Nn). (16)

Likewise, P can be punished with probability (1 − q2)

per round, even if it hires Nt bots and persistently publishes
genuine messages, due to the misclassification of genuine
messages. Its payoff per round, denoted by βb2, can be
given by

βb2 = q2(C1(Nr + Nn) − C3Nt) + (1 − q2)(C1Nn − C3Nt)

= C1(q2Nr + Nn) − C3Nt. (17)

By letting βb2 > βb1, the condition under which the benign
P hires bots is proved.

Likewise, Condition (14) can be proved by letting C2Nn −
C3Nt > βb2, where C2Nn −C3Nt is the minimum payoff from
a forged message of P , as given in Table II.

Condition (15) can be proved by comparing the cumulative
payoff of a malicious publisher and that of a benign punisher
over the same period of time. If a malicious P publishes f
forged messages, it is first punished for τ1 = ((2 − q1)

f − 1)

rounds, as proved by (3). Note that during the punishment,
P can publish τ1 number of genuine messages and be pun-
ished (1 − q2)τ1 rounds again due to misclassifications. As a
result, P is able to publish τ2 number of genuine messages
during punishment in total, where τ2 = ∑∞

i=0 τ1(1 − q2)
i =

(τ1/q2). Thus, the payoff of the malicious P publishing f
forged messages in f + τ2 rounds, denoted by πa2, can be
given by

πa2 = (C2(Nr + Nn) − C3Nt)f

+ (C1Nn − C3Nt)
(2 − q1)

f − 1

q2
. (18)

In the case that P always publishes genuine messages, its
cumulative payoff of (f + τ2) rounds, denoted by πb2, can be
given by

πb2 = βb2(f + τ2). (19)

Let g2(f ) denote the gap between the payoffs (extra payoff)
of a malicious behavior of P with f forged messages and a
benign behavior, i.e.,

g2(f ) = πa2 − πb2

= (C2(Nr + Nn) − C3Nt)f
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Fig. 2. Cumulative payoff and the number of forged messages of P , where
p1 = 0.03, Nr = 90, Nn = 10, Nt = 10, C1 = 10, and C3 = 10. C2 = 10,
50, and 120. The payoff is the average of 5000 independent simulations.

+ (C1Nn − C3Nt)
(2 − q1)

f − 1

q2
− (C1(q2Nr + Nn) − C3Nt)(f + τ2)

= f (C2(Nr + Nn) − C1(q2Nr + Nn))

− C1Nr(2 − q1)
f + C1Nr. (20)

Condition (15) can be proved by letting g2(1) < 0.
Theorem 4: The publisher P gains the maximum extra

payoff by publishing �xm2� or �xm2� forged messages. The
malicious P has an incentive to publish less than �xu2� forged
messages. xm2 and xu2 can be given by

xm2 = − log2−q1
(λ2 ln(2 − q1))

xu2 = −W−1
(−λ2(2 − q1)

−λ2 ln(2 − q1)
)

ln(2 − q1)
− λ2

λ2 = C1Nr

C2(Nr + Nn) − C1(q2Nr + Nn)
. (21)

Proof: This theorem can be proved in the same way as
Theorem 2 by replacing g1(f ) with g2(f ). Therefore, the proof
is suppressed for brevity.

V. NUMERICAL RESULT

Fig. 2 demonstrates 50 rounds of the proposed infinitely
repeated games in the misclassification-free case, where p1 =
0.03, q1 = [(p1Nr + Nn + Nt)/(Nr + Nn + Nt)] = 0.2, C3 = 10
and C2 is set to be 10, 50, and 120. The upper part of the
figure plots the cumulative payoffs of P , where the solid line
provides the payoff of a benign P for reference purpose. In
the case of C2 = 120, the solid line with marker “+” shows
the payoff of P when A and P always take the distrust and
malicious strategies, respectively. We can see that the mali-
cious P can receive a higher payoff than that a benign one
receives, even after being declared publicly to be distrusted.
A cannot suppress forged messages, as stated in Theorem 1.
In the case of C2 = 10, P has no incentive to publish any
forged messages at all. In the case of C2 = 50, the payoffs
of P are compared between two cases: 1) case 1: P contin-
ues to publish forged messages once an alert duration ends

(a)

(b)

Fig. 3. Visualization of Theorems 1 and 3. (a) C2 with the growth of C1
and C3, where the upper and lower surfaces are obtained with (1) and (2) in
Theorem 1, respectively. Nr = 90, Nn = Nt = 10, and q1 = 0.2. (b) C2 with
the growth of Nn and Nr , where the upper and lower surfaces are obtained
with (14) and (15) in Theorem 3, respectively. Nt = 10, p1 = 0.1, p2 = 0.9,
C1 = 10, and C3 = 0.

and 2) case 2: P publishes forged messages only in the very
beginning. In both cases, six forged messages are published,
and the rest 44 messages are genuine. We can see that P can
gain a higher payoff if it sends forged messages when A takes
the default trust strategy, as stated in Theorem 1.

The lower part of Fig. 2 shows the corresponding num-
ber of published forged messages of P with the increase of
rounds, where the two aforementioned cases of P’s behaviors,
i.e., cases 1 and 2, are plotted. We can see that P can obtain
the maximum payoff gap when it publishes the fifth forged
message at the 13th round. The number of forged messages
is achieved by first identifying the largest payoff gap between
the malicious and benign strategies of P in the upper part of
Fig. 2, then mapping the corresponding round number onto
the lower part of the figure (as illustrated by the dashed line),
and finally checking the number of forged messages. We also
see that the exponentially increasing alert durations are effec-
tive to suppress forged messages, and that P is disincentivized
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Fig. 4. Auxiliary continuous functions g̃i(x), indicating the extra pay-
offs from forged messages with the growth of x, where Nr = 90, Nn =
10, Nt = 10, C1 = 10, C3 = 5, p1 = 0.1, and p2 = 0.5. Two values of
C2, i.e., 50 and 80, are considered. Every dot is the average extra payoff of
1000 independent simulations.

from further publishing any forged messages beyond the five
forged messages. The payoff from the misbehaviors of P in
case 1 with six forged messages and 38 genuine messages is
equal to the payoff of 44 genuine messages, as highlighted
by a circle. The payoff from the misbehaviors can be outrun
by that from genuine messages when the number of published
messages is more than 44.

Fig. 3(a) and (b) demonstrates Theorems 1 and 3, respec-
tively. In the case that C2 is between the two surfaces in each
of the figures, P has an incentive to publish forged messages
for an extra payoff but can be disincentivized by the distrust
strategy from A. Above the upper surface, P is expected to
always publish forged messages for high payoffs, as stated in
Theorems 1 and 3. Below the lower surface, P has no incentive
to publish any forged messages at all, as stated in Theorems 1
and 3. From both figures, we can see that C1 has a stronger
impact on P’s selection of its strategies than C3, in the case of
Nt � Nr+Nn. We also see there is a peak on the upper surface
where Nr = 100 and Nn = 0. In other words, P would not
infinitely publish forged messages when it does not have fans.

Fig. 4 validates Theorems 2 and 4 by plotting the auxil-
iary continuous functions, i.e., g̃1(x) and g̃2(x). We find that
the extra payoff of P , which is the payoff gap at the end
of an alert duration between malicious and benign strategies
that P takes (as defined in Section IV), first grows and then
decreases rapidly. The extra payoff is upper-bounded, e.g.,
max(g̃1(x)) = 8584 when xm1 = 3.8, as shown in the fig-
ure. As revealed in Theorem 2, P only has an incentive to
broadcast a limited number of forged messages, e.g., xu1 = 6,
for the extra payoff. Theorem 4 is validated when xu2 = 6.3
and xm2 = 3.9, which leads to max(g̃2(x)) = 10 194, in the
case of message misclassification. We can also see that the
maximum extra payoff and the maximum forged messages of
P increase with C2. Moreover, P can gain higher payoffs in
the case where the genuine messages can be misclassified, as
shown by the dashed curves.

We proceed to evaluate the impact of different parameters on
the suppression of forged messages. Particularly, we will show

(a)

(b)

Fig. 5. Maximum number of forged messages of a malicious P with the
growth of C1 and (1 − p2), where Nr = 90, Nn = 10, C3 = 5, p1 = 0.1,
and two values of Nt , i.e., 0 and 30, are considered. (a) Maximum number of
forged messages of a malicious P with the growth of C1, where p2 = 0.5.
(b) Maximum number of forged messages of a malicious P with the growth
of (1 − p2). Two values of C1, i.e., 30 and 50, are considered.

that both increasing the reward for genuine messages, i.e., C1,
and reducing the misclassification of genuine messages, i.e.,
decreasing (1 − p2), are helpful to suppress forged messages
and to incentivize the publication of genuine messages, as will
be shown in Fig. 5. Moreover, A can encourage P to publish
genuine messages by improving the detection rate of forged
messages, i.e., (1 − p1), as will be shown in Fig. 6.

Fig. 5(a) shows the maximum number of forged messages
with the growth of C1. Two values of Nt, i.e., 0 and 30, are con-
sidered. From the figure, we can see that the maximum number
of forged messages decreases with the increasing value of C1.
The maximum number of forged messages can be less than 1,
indicating that P has no incentive to publish forged messages.
In other words, the increasing value of C1 can effectively
suppress forged messages. We also see that the misclassifica-
tion of genuine messages gives malicious P chances to publish
more forged messages, since the dashed curves are above the
solid curves, especially for large C1. For a small reward of
genuine messages, e.g., C1 = 15 in Fig. 5(a), hiring bots helps
P publish more forged messages without being detected. This
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Fig. 6. Maximum number of forged messages of P , i.e., xu1 and
xu2 , by publishing forged messages, where Nr = 90, Nn = 10, C1 =
30, C2 = 50, C3 = 5, and p2 = 0.5. Nt = 0 and 100, are considered.

Fig. 7. Maximum extra payoff of P in the misclassification-free game with
the growth of Nt , where Nr = 90, Nn = 10, C2 = 50, and p1 = 0.5. Every
dot is an average result of 2000 independent runs.

is also confirmed in Fig. 5(b), where the maximum number
of forged messages grows with the increasing misclassifica-
tion probability of genuine messages, i.e., (1 − p2). Reducing
the misclassification of genuine messages can help suppress
forged messages.

Fig. 6 plots the maximum number of forged messages, i.e.,
xu1 and xu2 , with the growth of the detection rate of forged
messages, i.e., 1 − p1. Nt = 0 and 100 are considered. The y-
axis is in a logarithmic scale. We can see that the improvement
of the detection rate can effectively suppress forged messages
when the detection rate is low, e.g., 1−p1 = 0.1. We also see
that the maximum number of forged messages can be more
than one even in the case where 1 − p1 = 1, especially where
many bots are hired, i.e., Nt = 100. As a result, the improve-
ment of the detection rate cannot stop P from publishing
forged messages. Based on Figs. 5(a) and 6, A can sup-
press forged messages by improving the detection rate in the
beginning, and by increasing the reward for genuine messages.

Fig. 7 plots the maximum extra payoff of P with the grow-
ing number of bots in misclassification-free games. We can
see that bots can increase the maximum extra payoff from the
start, but decrease the maximum extra payoff later. Thus, there

Fig. 8. Maximum number of forged messages with the growth of the ratio
of fans, i.e., [Nn/(Nr + Nn)], where Nr + Nn = 100, Nt = 10, C1 = 30,
C3 = 5, C2 = 50, and p1 = 0.1.

exists the best number of bots for the highest extra payoff. This
is because the bots benefit the extra payoff by reducing the
detection rate of forged messages. The detection rate is non-
negative. As a result, the benefit of bots is upper bounded.
However, the cost of bots increases linearly with the number
of bots. In extreme cases, the benefit from the decreased detec-
tion rate cannot counteract the cost of bots, e.g., Nt = 500 in
the case of C1 = 10 and C3 = 7. It can be found that the
bots are more effective in the case where genuine messages
provide lower payoffs, as can be seen by comparing the curves
of C1 = 10 and C1 = 20 under the same unit payoff of forged
messages (i.e., C2 = 50). We also see that low-cost bots, e.g.,
C3 = 5 versus C3 = 7, can bring a higher extra payoff. As
a result, the malicious P has an incentive to hire bots if the
bots are low-cost and forged messages bring high payoffs.

Fig. 8 shows the maximum number of forged messages with
the growing ratio of fans, i.e., [Nn/(Nr +Nn)]. We can see that
P can publish more forged messages with more fans, because
fans persistently trust the messages from P . We note that the
increasing probability of misclassification, i.e., from p2 = 0.9
to p2 = 0.1, also offers chances for P to publish more forged
messages, especially in the case of a low ratio of fans. This is
because the misclassification enlarges the payoff gap between
forged and genuine messages by reducing rewards for genuine
messages.

VI. CONCLUSION

In this paper, infinitely repeated games were developed to
evaluate the effect of risk alerts on the inhibition of forged
messages in the presence of multiple types of subscribers and
possible miss-detection and false alarm of forged messages.
The proposed games captured the interactions between a mes-
sage publisher and the network administrator in OSNs. In the
absence and presence of misclassification on genuine mes-
sages, sufficient conditions under which the publisher is dis-
incentivized from publishing forged messages were identified.
Closed-form expressions were derived for the maximum num-
ber of forged messages of a malicious publisher. Confirmed
by simulations, our analysis indicates that forged messages
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can be suppressed by improving the payoffs for genuine mes-
sages, increasing the cost of bots, and/or reducing the payoffs
for forged messages. The increasing detection probability of
forged messages or decreasing misclassification probability
of genuine messages can also have a strong impact on the
suppression of forged messages.

APPENDIX

By letting h(λ1) = λ1(2 − q1)
−λ1 ln(2 − q1), λ1 > 0, we

have

0 ≤ h(λ1) ≤ h

(
1

ln(2 − q1)

)
= 1

e
. (22)

Here, h(λ1) ≥ 0 because every item is no less than 0. The
maximum value of h(λ1) is achieved when λ1 = (1/[ ln(2 −
q1)]). This can be obtained by letting ([d ln(h(λ1))]/dλ1) = 0.
ln(h(λ1)) is given by

ln(h(λ1)) = ln
(
λ1(2 − q1)

−λ1 ln(2 − q1)
)

= ln(λ1) − λ1 ln(2 − q1) + ln(ln(2 − q1)). (23)

Therefore, its derivative is given by
d ln(h(λ1))

dλ1
= 1

λ1
− ln(2 − q1). (24)
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