Hindawi

Security and Communication Networks
Volume 2017, Article ID 3284080, 14 pages
https://doi.org/10.1155/2017/3284080

Research Article

WILEY

Hindawi

Computing Adaptive Feature Weights with PSO to
Improve Android Malware Detection

Yanping Xu,' Chunhua Wu,' Kangfeng Zheng,' Xu Wang,' Xinxin Niu,' and Tianliang Lu®

!School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China
2School of Information Technology and Network Security, People’s Public Security University of China, Beijing 100038, China

Correspondence should be addressed to Yanping Xu; xyp_xyp@126.com

Academic Editor: Pedro Peris-Lopez

Copyright © 2017 Yanping Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Android malware detection is a complex and crucial issue. In this paper, we propose a malware detection model using a support
vector machine (SVM) method based on feature weights that are computed by information gain (IG) and particle swarm
optimization (PSO) algorithms. The IG weights are evaluated based on the relevance between features and class labels, and the
PSO weights are adaptively calculated to result in the best fitness (the performance of the SVM classification model). Moreover,
to overcome the defects of basic PSO, we propose a new adaptive inertia weight method called fitness-based and chaotic adaptive
inertia weight-PSO (FCAIW-PSO) that improves on basic PSO and is based on the fitness and a chaotic term. The goal is to assign
suitable weights to the features to ensure the best Android malware detection performance. The results of experiments indicate that
the IG weights and PSO weights both improve the performance of SVM and that the performance of the PSO weights is better than

that of the IG weights.

1. Introduction

Malicious Android applications are pervasive in smart mobile
devices. The most notorious type of malicious application
involves privacy theft. These applications steal sensitive pri-
vate information such as contact lists, text messages, photos,
geolocations, and users’ accounts through various means,
including accessing information without permission and
hijacking message transmissions through networks. There-
fore, improving the ability to detect malware on mobile
devices is of paramount importance.

Android malware detection is a crucial and challeng-
ing issue and has attracted the attention of thousands of
researchers. The works can be divided into three categories:
static analysis, dynamic analysis, and hybrid analysis [1].
The analyzed features focus on permissions [2, 3], APIs [4],
and combined features [5-8]. When the number of features
is large, feature selection methods are used to reduce the
quantity and improve the performance and efficiency [8-
10]. Most previous studies have treated all features as equally
important and represented the samples with Boolean values
that simply indicate whether a feature appears; however, this

approach does not consider the relative influence of various
features in malware detection [2, 3, 5]. However, not all
features are equal when evaluating their similarity to Android
features. For example, SMS-related permissions and APIs are
often used in malicious applications but are used less often in
benign ones, while Internet-related permissions and APIs are
often employed by both benign and malicious applications.
Therefore, SMS-related information has a strong influence on
Android malware detection and classification, but Internet-
related features have only a weak influence. To overcome this
problem, a suitable feature weight should be computed for
each feature.

Feature weight methods were originally proposed in
document categorization to represent the relative importance
of features. For example, term frequency-inverse document
frequency (TF-IDF) term weights are considered the attribute
values of documents in many information retrieval models
[11]. Overall, feature weighting methods can generally be
divided into three types: term frequency methods [12],
feature rank methods [13], and self-adjustment methods [14,
15]. Term frequency represents the capacity of features for
expressing document content, and it is computed by the

https://doi.org/10.1155/2017/3284080

number of times a feature is mentioned in a set of documents.
Feature rank methods, such as information gain (IG) and
Chi-square (CHI), calculate the mutual information between
features and labels and assign high values to relevant features
and small values to less relevant features. Self-adjustment
methods utilize machine learning models and assign feature
weights based on the best performance of the classifiers. For
a given dataset, feature weights can change the distribution of
the samples, which makes similar samples more compact and
widens the distribution of dissimilar samples [16].

However, Android source code is different from words
in documents. Some important features, such as SMS-related
permissions, may appear several times in one application’s
source code but may have a low frequency overall in the
source code files. In contrast, high frequency features such as
toString() often appear thousands of times in both malicious
and benign applications; therefore, they do not work well
as a distinguishing feature. Consequently, in Android source
code, term frequency methods are not as good as feature
rank methods for determining feature weights. In addition,
because there are more than ten thousand features, some
of which appear over a thousand times, calculating the
frequency statistics for all features is computationally expen-
sive. Moreover, the results of experiments conducted in [8]
revealed that term frequency representation performs worse
than binary representation for Android malware detection.
Therefore, in this work, we do not compare the performance
of term frequency weights with the performances of other
weight methods.

Particle swarm optimization (PSO) is an optimization
method motivated by the intelligent collective behavior of a
swarm. It uses a set of particles moving through the search
space to achieve the best fitness of an optimization objective
[17]. Based on this, PSO can be used to adaptively compute
the feature weights, where PSO is wrapped into the machine
learning classifiers. The positions of the particles in the
solutions are taken as the weights, and the fitness is calculated
based on the accuracy of the machine learning classifiers. The
particles search in the weight space to generate the weight
for each feature. Then, the weights are multiplied with the
features to form a new mapped feature space. Next, the new
feature space is input to the model of the machine learning
classifiers to determine their fitness (accuracy). However,
basic PSO has some defects; for example, the swarm can easily
converge prematurely and its local search capability is poor.
Therefore, we propose a new adaptive inertia weight method
for PSO to improve its particle searching ability [17, 18].

In this work, we propose an Android malware detection
model and describe the details of malware detection using
feature weights computed separately by IG and PSO. To solve
the problems of PSO, we propose an adaptive inertia weight
method for PSO that is based on their fitness and a chaotic
sequence, which is used to assign suitable weights for the
features. The values of the weights are restricted to the range
[0, 1]. The larger the weight is, the more important the feature
is for malware detection [19]. Our research makes several
significant contributions to the field of Android malware
static detection:

Security and Communication Networks

(1) We propose a model for Android malware detection
based on a support vector machine (SVM) classifi-
cation model using IG and PSO feature weights. The
feature weights are multiplied by the features to make
similar samples more compact and dissimilar samples
more distant; therefore, they simplify the classifica-
tion between malware and benign applications.

(2) Based on the relevance between features and class
labels, IG is used not only to select a specified number
of features but also to evaluate feature weights. The
results indicate that IG weights have little effect on
performance.

(3) We propose a new adaptive inertia weight method
called fitness-based and chaotic adaptive inertia
weight-PSO (FCAIW-PSO) for basic PSO that is
based on both the fitness and a chaotic term to
improve the particle searching ability. The new
method can assign suitable weights for Android fea-
tures and ensure the highest detection accuracy.

The remainder of this paper is organized as follows.
Section 2 reviews related works on Android static malware
detection and feature weight analysis. Section 3 presents
details of the research methodology. Section 4 introduces and
discusses the experiments, and Section 5 provides conclu-
sions.

2. Related Work

Numerous studies have been conducted in the field of
Android malware detection. Static analysis is a popular
method for Android malware detection because of its sim-
plicity and efficiency [1]. In addition, assigning appropriate
feature weights is an important theme in our study. This
section reviews related works on static feature detection and
feature weight selection.

2.1. Static Detection. To detect malicious applications outside
mobile devices, multiple methods have been proposed to
extract and analyze features from decompiled source code
[20]. Studies on static feature detection include several
aspects such as which features are extracted, what types
of methods are used to detect features, and how to detect
malware with machine learning and other methods. In this
section, we include several of the most recent and significant
results.

Permission-induced risk in Android applications is
explored in [21], which uses feature ranking methods to
rank permissions with respect to their risks. Then, machine
learning models such as SVM, logistic regression (LR),
decision tree (DT), and random forest (RF) are employed as
classification algorithms to detect malware that requests risky
permissions. The empirical results show that these methods
provide satisfactory performance and achieve a detection
rate as high as 94.62%. The authors of [8] propose using
a probabilistic discriminative model for Android malware
detection using API calls and permissions extracted from
decompiled source code as combined features. Probabilistic
discriminative models such as regularized logistic regression

Security and Communication Networks

(RLR), naive Bayes with informative priors (PNB), hierar-
chical mixture of naive Bayes (HMNB), and 2-class naive
Bayes with prior (2-PNB) are then used to classify Android
applications as malware or benign. Feature selection methods
are applied to improve the performance.

A novel semantic-based approach proposed in [4],
called DroidSIFT, detects malware using weighted contextual
dependency graphs and introduces graph similarity metrics
to reveal homogeneous application behaviors. Experiments
show that DroidSIFT’s method can achieve high accuracy
on both known and zero-day malicious applications. In [22],
the authors extracted data-flow features for users’ trigger
sensitive APIs and built a program called TriggerMetric
that captures the data dependence relations between a user’s
actions and sensitive operations. The values of TriggerMetric
reflect the degree of sensitive operations that are triggered
or intended by the users. Their method also discovers new
malicious applications in the Google Play store that cannot
be detected by virus scanning tools.

In previous works, features have typically been regarded
as equally important for malware detection, although some
permissions and APIs are very relevant to the application
domains [21]. In this work, we also utilize static analysis
to discriminate between malware and benign applications.
However, we do not believe that all features provide an
equal amount of information for classification. For exam-
ple, SMS-related permissions and functions are frequently
used in malware, while Internet-related permissions and
functions appear frequently in both types of applications.
Consequently, we use feature weights to indicate the relative
importance of features for classification.

2.2. Feature Weights. Feature weights have been studied
for both text and anomaly detection; they can change the
distribution of the sample dataset by making similar class
samples more compact. Several feature weight methods such
as term frequency methods [12], feature rank methods [13],
and self-adjustment methods [14, 15] have been proposed and
utilized in practice. Choosing appropriate feature weights can
improve classification.

TF-IDF is a feature weight method that estimates the
frequency of terms in the feature space. Four feature weight
methods were studied in [12], that is, TF-IDF, TF-CREF, TF-
OddsRatio, and TF-CHI, to calculate feature values for text
categorization. The results of experiments indicated that TF-
CHI is the most effective for use with SVM and results in
high accuracy. The authors of [11] applied TF-IDF weights
in a probabilistic retrieval model to make relevance decisions
for documents, while [23] used TF-IDF as a term weighting
method for text representation. The results indicate that TF-
IDF performs well for Chinese information retrieval and
English information retrieval.

Feature ranking methods, which are based on statistics
and information theory, can be considered a category of
feature selection methods. These methods rank features in
descending order according to the relevance between features
and labels [24]. The feature weighting method proposed in
[25], which is based on a XZ statistical test, was used with the

k-nearest neighbors (kNN) classifier. Forty-four out of forty-
five experiments demonstrated that the proposed weighting
process achieved a good performance on a dataset that
included many irrelevant features. In [13], a new fast feature
weighting algorithm was proposed based on feature ranking
methods. The ranking methods involved correlations, infor-
mation theory, and distance between probability distribu-
tions. Then, the weighting schemes were combined with SVM
and kNN network classification techniques. The experiment
results indicated that the proposed feature weighting meth-
ods were fast and accurate with these classifiers. Feature rank
methods are useful for determining the relative importance
of individual features; however, they neglect the possible
interactions between features.

Very different from the two types of methods discussed
above, self-adjusting weighting mechanisms are integrated
into machine learning classifiers to improve their perfor-
mance. The self-adjusted feature weights adopt the best value
based on the best performances of the subsequent classifiers.
A fast iterative feature weight adjustment algorithm based
on a linear-complexity centroid classifier for document cat-
egorization was presented in [14]. This study measured the
discriminating power of each term to gradually adjust the
weight of all features concurrently. Through experiments,
the authors showed that their feature weight adjustment
method improved the performance of the centroid-based
classifier by 2-5%. In [15], a feature weight self-adjustment
(FWSA) mechanism that worked with k-means was proposed
to improve the clustering performance. The process of finding
feature weights involved optimizing the k-means classifica-
tion. The proposed mechanism illustrated several advantages
both theoretically and through the experimental results.

For classification purposes, there is a considerable dif-
ference between the applicability of features for Android
malware detection and text categorization. For example,
TF-IDF is useless as a feature weight in Android malware
detection. However, we can learn from the theories of feature
rank methods and self-adjustment weight mechanisms used
in text categorization to design feature weighting methods for
Android malware detection. Therefore, both IG and PSO are
used in our work because IG can rank features and evaluate
weight using an IG value, while PSO can be integrated with a
classifier to adaptively adjust the weights.

3. The Proposed Detection Model

The structure and process of Android malware detection with
feature weights are depicted in Figure 1. First, permissions
and functions are extracted as features from the Android
dataset. Second, the dataset is represented as a matrix with the
features. The feature weights are calculated with IG and PSO;
then, the mapped matrix is obtained by the feature weights
and the dataset matrix. As shown in Figure 1, the process is
mainly divided into two branches. The top image in Figure 1
shows that the IG feature weights are computed by the IG
method with the training dataset. In the training stage, the IG
weights are multiplied by the training sample matrix to obtain
a mapped matrix, which is then input into SVM to train

\

Security and Communication Networks

IG algorithm
IG
feature
weights
Mapped matrix by IG -4 -2 0 2 4
Representing weights
R SVM
a an .
L L] —
Android dataset Dataset matrix
PSO
feature - L
weights Mapped me}trlx by PSO 4 -2 0 2 4
weights
SVM
N »
\ -7 Accuracy
Pra == «? y'vd. —————— - <
Xgo ==~ X1/ Nt
=Ty -
PSO algorithm

FIGURE I: The structure of Android malware detection based on SVM with IG and PSO feature weights.

the classification model. In the testing stage, the IG weights
are multiplied by the test sample matrix to obtain a mapped
matrix, which is then input into the trained SVM model to
identify the labels of the testing samples. The bottom image
in Figure 1 shows how the PSO feature weights are calculated
and work with the SVM classifier to detect malware. In the
training stage, the PSO weights are initialized by a random
matrix and are then adaptively updated to the best values
fitted to the best SVM detection performance. In the testing
stage, the PSO weights work similarly to the IG weights.

3.1. Information Gain. Information gain (IG), as a feature
selection method, measures how much information a feature
adds to the classification system. It computes an IG value for
every feature. The larger the IG value is, the more information
the feature contains. Therefore, the IG values can be viewed
as IG feature weights that represent the importance of each
feature.

Let x be the feature, y; € y be one of the k sample class
labels, and IG(x) be the IG feature weight for feature x.

IG(x)=H(y)-H(y|x)

=Y p(3)log(p ()

i=1

+p ()Y p(yi | x)log(p (3| x))

i=1

+p(X) ZP (y; 1 X)log (p (y; %)),

i=1
1)

where H(y) is the information entropy of a sample and H(y |
x) is the conditional entropy of feature x in the sample, which
represents the information quantity (i.e., x exists or does not
exist in the classification system) [26, 27].

The value of each IG weight is restricted to the range [0, 1].
Then, the representation value of a feature multiplied by its IG
feature weight generates a new mapping value that changes
the distribution of the original feature space and is used here
to detect malware.

3.2. Particle Swarm Optimization

3.2.1. Basic Particle Swarm Optimization. PSO is an evolu-
tionary optimization method based on a population (called a
swarm). Each particle in the population has several parame-
ters, including its current position, velocity, and best position.
The particles in the swarm move around with velocity in the
search space guided by their own previous best positions and
best known positions of the entire swarm. When improved
positions are discovered, those positions are used to guide

Security and Communication Networks

future movements of the swarm. The process is repeated until
the optimal swarm positions are eventually discovered [28].

For an n-dimensional search space, the particle parame-
ters are represented with n-dimensional vectors. The position
and velocity of the ith particle are represented by X; =
(X1, X205 -+ > x,) and V= (v, Vis. .., Vi), Tespectively.
During the search process, at iteration ¢ + 1, the position and
velocity of the particles are updated according to

Vit+1)=wxV;(t) +¢ xrand () x (Ppbest -V (t))
+¢, x rand () X (Pgbest -V (t)) , 2)
X, (t+1) = X; () + Vi (£ + 1),

where w is an inertia weight that ensures the convergence of
the PSO algorithm, ¢, and ¢, are two learning factors that
control the social and cognitive components of the swarm,
rand() consists of distinct random values within the range
[0, 1], Pypeq is the best local position of the particle itself,
and P, is the best previous position of all particles. The
balance between global and local research can determine the
results of the optimization algorithm. The inertia weight w
is an important parameter that is set to a suitable value to
strike a balance between global and local exploitation. Large
w values promote global exploration, whereas small values
promote local exploitation.

3.2.2. Inertia Weight Adaptation Strategies. Although PSO
has a strong ability to solve optimization problems, it has
several defects: the swarm can easily fall into premature
convergence and its local search capability is poor [18]. To
overcome these defects, various strategies have proposed to
improve the inertia weight. In our work, we will introduce
several significant types, as follows:

(1) A constant value is used for the inertia weight within
the range [0.8, 1.2] to optimize the algorithm [29].

(2) A random value is proposed for the inertia weight to
improve PSO’s optimization ability [30]:

rand ()

w=05+ (3)

Using this method, the value of w is restricted to the
range [0.5, 1].

(3) At the beginning of the PSO process, a higher
global search ability promotes the exploration of new
areas and maintains swarm diversity, whereas, later,
a stronger local search can converge more quickly.
Consequently, the inertia weight w is treated as a
time-varying value that decreases linearly from a large

value (w,,,,) to a small value (w,,;,) [17, 30]:
iter . — ¢
wt) = —%— (Wox — Winin) + Winins (4)
ltermax max min min

where iter,,, is the maximum number of iterations
and t is the current iteration of the algorithm.

(4) A chaotic sequence can show the ergodicity, ran-
domness, and regularity of chaotic motion, and a
chaotic sequence can traverse all the states within a
certain range based on its own definition. Therefore,
a chaotic sequence is used to enhance the diversity
of the swarm search. A chaotic term is added to the
linearly decreasing inertia weight. This chaotic term
causes the inertia weight to change in sequential steps
[31, 32]:

iter ., —t

w (t) = (wmax - wmin) + Wi X Z, (5)

iter ..
where Z is the chaotic term, which can be represented
by different chaotic models such as Logistic, Lozi,

Dissipative, and Arnold’s Cat.

(5) The time-varying inertia weight does not determine
the situation of the particles in the search space, so
they do not adapt to the movement of the swarm.
Therefore, some adaptive inertia weight strategies are
proposed. One adaptively changing inertia weight
strategy uses the Gompertz function, which incor-
porates a double exponential function to select the
adaptive inertia weight [33]:

w; (t+1) = exp (—exp (-R; (1)),
Ty — ¢ ©

Ri (t) = 'Pgbest -P best| x iter

p

max

where R;(t) is computed as a performance index that
depends on the particle’s personal best position and
the global best position of the swarm during the
operation that moves the particles in each iteration.
Using this method, the inertia weight is initialized to
0.4 and then gradually increases to approximately 1.

3.2.3. The Proposed Inertia Weight Strategy. In our work, the
PSO algorithm is used to find the most appropriate feature
weights. The positions of each particle are viewed as the
feature weights, and the dimension of the positions is equal to
the dimension of the features. The feature matrix is multiplied
by the weight matrix to generate a mapped matrix. Then, the
mapped matrix is input to the machine learning classifier to
achieve an accuracy score, which is, in turn, treated as the
fitness of the PSO algorithm. To achieve the highest fitness, it
is necessary to search the suitable positions. In addition, the
value of the position of each particle is restricted to the range
[0, 1].

The previous studies provide us with two ideas. (1) It
is important to relate the inertia weight to the searching
ability of the swarm so that an adaptive strategy can be
used to improve inertia weight and maintain diversity. (2)
Achieving the highest fitness, which depends on the best
global optimal positions, is the goal of the PSO algorithm. To
achieve this goal, a new method is proposed that improves
the inertia weight based on the best fitness and is inspired
by the idea presented in the previous section. Furthermore,
incorporating a chaotic term can increase swarm diversity;

consequently, we consider adding a chaotic sequence to the
adaptive strategy of the inertia weight. Based on the above
discussion, the proposed fitness-based chaotic inertia weight
strategy is introduced as follows:

(1) When the local optimal value of one particle in the
swarm is updated, this means that the particle has
achieved its own optimum position and approached
its global optimum position. Therefore, during the
swarm iteration process, when the fitness of the
particle i is updated to a larger value, we believe that
the change is an indication that particle i is strong.
Consequently, the strong particle i at iteration ¢ is
defined as follows:

L i f(P@®) > f(P(t-1)

Strong (i, t) =
0, if f(P®)=f(P(t-1)),

where P(¢) is the local position of particle i at iteration
t, f(-) is the fitness function of PSO, and f(P(t)) is the
fitness of particle i at iteration ¢ with the current local
position.

(2) The ratio of all the strong particles in the swarm
during one iteration step is computed as follows:

Zfil Strong (i, t)
N

N(@t) = (8)

>

where N is the number of the particles in the swarm.
Therefore, the range of N(t) is restricted to [0, 1].
According to the results of previous studies [17, 18,
30, 31], the higher the value of N(t) is, the farther the
swarm is from the global optimum value; therefore,
a high value means that the global searching ability
should be enhanced. In contrast, the smaller the value
of N(t) is, the closer the swarm is to the global
optimum value; therefore, a small value means that
the local searching ability should be enhanced.

(3) Based on the analysis in the previous step, we create a
relationship between the inertia weight value and the
global/local search ability of the swarm and include
the chaotic term [17, 31]. Our adaptive dynamic
inertia weight strategy is defined as follows:

it -t
w(t) = Emax 7 F e.rmax X N (£) + wy,;, X Z, (9)
iter

max

where iter,,,, is the maximum number of iterations,
t is the current iteration of the algorithm, w,;, is
the minimum inertia weight w, and Z is the chaotic
term, as in formula (7). In the next section, we
will use test environments to study the performance
of the proposed fitness-based chaotic inertia weight
strategy at given iterations during the course of a run.
Furthermore, we compare other recent inertia weight
strategies with our method.

Security and Communication Networks

3.3. Support Vector Machine. SVM aims to construct the best
hyperplane in a sample space to act as a binary classifier [34].
The hyperplane function is defined as follows:

w-x+b=0, (10)

where w is a normal vector and b is an intercept. The hyper-
plane separates the sample space into two parts: a positive
part and a negative part. In general, there are an infinite num-
ber of hyperplanes, but the optimal hyperplane is achieved by
finding the maximum margin distance to the nearest training
data point of any class. The functional margin of the hyper-
plane to sample (x;, ;) is defined as

Vi=yi(w-x;+b). (11)

In general, the larger the margin is, the lower the general-
ization error of the classifier is. Therefore, the goal of SVM
is to find an optimal hyperplane that has the biggest margin
distance and achieves a high classification accuracy on the test
samples.

Most of the time, the sample space is not linearly sepa-
rable; consequently, linear SVM cannot solve the problem.
Therefore, kernel functions are defined that can map the
original low-dimensional space to a high-dimensional space.
Then, the hyperplane is constructed in this high-dimensional
space, which can easily separate the sample space. Common
kernel functions include linear, polynomial, Gaussian, and
sigmoid [35]. In this work, we use a Gaussian kernel function
based on the feature distribution characteristic.

However, there are some noise features in the sample set
that usually have a great impact on the correct classification.
To solve this problem, a slack variable {; and a penalty factor
C are presented. Finally, the original optimal problem of the
nonlinear SVM becomes as follows:

1. 5 1
min = |w||"+C) (;
min > | Zlé

(12)
st y(w-x;4b)>1-¢, i=12,...,N,
{20, i=12,..,N.
Its dual is
NN N
min 2> > aayyK (x2;) = You
i1 j=1 i=1
N (13)
s.t. Zociyi =0,
i1
0<a<C i=12...,N,

where K(x;, x j) is the kernel function. The optimum solution
ofaisa™ = (ocf,oc;,...,oc;,)T.
Then, optimum solutions for w* and b* are

N
w = Z“i Vis
i=1
(14)

N
b* =y, - Za:y,»K (x,», xj).
in1

Security and Communication Networks

TaBLE 1: Confusion matrix.

Positive Negative
True True positive (TP) False negative (FN)
False False positive (FP) True negative (TN)
Finally, the hyperplane is
w' -x+b"=0 (15)

and the decision function is

N
f (x) = sign <Zoci*yiK (xi,xj) +b") , (16)

i=1

where a* and b" are the optimum solution of the problem.

The problem presented above is equivalent to solving a
quadratic programming (QP) problem, which has a global
optimum solution. Sequential Minimal Optimization (SMO)
is considered a fast algorithm to train SVMs [36]. SMO
breaks the QP problem into a series of smallest possible
subproblems, which are then solved analytically. When all the
Lagrange multipliers satisfy the Karush-Kuhn-Tucker (KKT)
conditions within user-defined tolerance, the problem has
been solved.

3.4. Classifier Evaluations. To evaluate the performance of
the proposed malware detection model and the fitness-based
adaptive weight strategy for PSO, a confusion matrix is cal-
culated based on the output of the machine learning models,
as tabulated in Table 1 (for a 2-class problem) [8]. True
positive (TP) means the number of positive examples clas-
sified correctly, and the other measures are defined similarly.

There are many other evaluation metrics that measure the
performance of learning models, such as accuracy, recall,
precision, F1, ROC, and area under the ROC curve (AUC).
Some of these are defined as follows:

TP + TN
accuracy = ,
TP+ FN + FP + TN
TP
recall = ——,
TP + FN
ecisi TP
recision = ———,
P TP + FP
(17)
(1 + /32) X precision x recall
Fl=

[3? x precision + recall

3 2x TP
" 2x TP +FN + FP

(B=1).

Among these measures, accuracy represents the classi-
fier’s overall accuracy on the entire dataset; precision is the
percentage of predicted benign applications that are truly
benign; and recall is the percentage of correctly classified pos-
itive examples. In addition, F1 integrates recall and precision
into a measure of the overall effectiveness of the classification

model. When both recall and precision are high, the value of
F1 is high. The parameter f3 reflects the relative importance
of recall and precision, and it is usually set to 1.0 [20]. The
ROC curve describes the decision boundary for the relative
costs of TP (x-axis) and FP (y-axis). The ideal point on the
ROC curve is at the upper left corner, where all the positive
examples are classified correctly. Meanwhile, the smoother
the ROC curve is, the smaller the probability of overfitting
is. The AUC is a complementary measure to the ROC curve.
When the ROC curves intersect, a larger AUC indicates a
better performance. Comparing the AUC between classifiers
can indicate a dominance relationship [37].

4. Experiment and Discussion

In this section, we present the detailed methodology and
results of the experiments. A 10-fold cross-validation is
applied for the evaluations, which means that the classifiers
were each executed 10 times to ensure that every portion of a
split dataset was used as a training set [38]. We recorded the
average values of the 10-fold cross-validation experiments as
the final results for the subsequent comparisons. In addition,
to eliminate the randomness in sample synthesis algorithms,
we repeated the experiments 10 times and used the averaged
results as the final results.

The experiment environment was an Intel(R) Xeon(R)
CPU E5-2620 v3 @ 2.40 GHz with 32.0 GB of RAM running
under a 64-bit Windows 7 operating system.

4.1. Dataset. 'The dataset contains both benign applications
and malicious applications. As in most papers [5-8, 20],
the benign applications in our study were downloaded from
the Google Play store. We chose the most popular free
applications in many categories. Malicious applications were
collected from authoritative malicious application websites,
such as https://virusshare.com, and covered most malware
families, including Faker91, Fakelnst, SkullKey, Aiplay, and
DroidDream. Our collection aims to reflect the distribution
of Android malware.

During an initial examination of the samples, we found
that many malware files with the same size may be variants
of other samples, but they have the same features. Therefore,
we retained only one copy and removed others to reduce
interference. In addition, we removed some samples whose
sizes were too small because they may be scripted or light
HTML applications. A total of 2125 applications were utilized,
including 1109 benign applications and 1016 malware applica-
tions.

4.2. Experiments for Features. After decompiling, the per-
missions and functions of each application were extracted
from the source code files. In total, 104 permission features
were extracted. This number is less than the 136 possible
permissions listed in the Manifest.permission group at API
level 19 [39] because third-party applications are not allowed
to use some permissions. We also extracted 14,233 functions
by scanning .smali disassembler files. Finally, the total num-
ber of features, combining permissions and functions, was
14,337. Based on the features, the dataset with benign and

https://virusshare.com

TABLE 2: Performance of different features used in SVM.

Number Accuracy F1 Time (s)
Permissions 104 0.9264 0.9274 3.5253
Functions 14233 0.95620 0.9572 453.2207
Combined
permissions and 14337 0.95621 0.9573 455.5641
functions

malicious applications was represented as a binary matrix,
in which a “0” denotes a feature that does not appear in the
source code and a “1” denotes a feature that appears in the
source code. Table 2 shows the performance of three kinds of
features: permissions, functions, and combined permissions
and functions. We use SVM as the classifier to compare their
effects.

As shown in Table 2, the performance of the functions
is approximately equal to the performance of the combined
features that included both permissions and functions, which
indicates that permissions as features, either alone or com-
bined with functions, contribute little to malware detection.
This occurs because the permissions can mainly be mapped
to certain functions, while the functions contain all the
information provided by the permissions. Therefore, the
combined features contain redundant and noisy data. The
larger the number of features, the greater the time cost of
training and detection. Therefore, feature selection methods
(e.g., IG) can be used to remove the noise features and reduce
the quantity of features.

4.3. Experiments for Feature Selection. 1G weights represent
the importance of the features in the classification. By sorting
the IG weights in descending order, the top features can
be ranked and selected. The original dimensionality of the
combined features was 14,337, This section describes how
SVM was used to measure the accuracy of the top features
ranked by the IG weights.

Figure 2 shows the accuracy of the SVM classifier using
from 0.5% to 100% of the features weighted by IG. The curve
indicates that the accuracy increases faster when fewer than
5% of the features are selected, whereas the accuracy increases
more slowly when more than 5% of the features are selected.
The accuracy achieved using 5% of the features improves very
little in comparison with using all the features. Furthermore,
according to the ROC and AUC of the selected features at
different ratios, as shown in Figure 3, the AUC using 5% of
the features is the largest. Therefore, we can conclude that
the top 5% of the selected features are the best features; they
achieve high accuracy and save computation time. This result
is consistent with results from other studies [1, 7].

By ranking the IG weights in descending order, we obtain
the top 20 features. The percentages of the selected features
appearing in malicious versus benign applications are shown
in Figure 4. Because of the differences in percentages, it is
clear that these features can discriminate malicious appli-
cations from benign ones. Among these, the top 3 features
used in malicious applications are SMS-related permissions,
including SEND_SMS, RECEIVE_SMS, and READ_SMS.

Security and Communication Networks

e
o
®

4
o
X

I
o
e

4
o
]

g
o

Accuracy of SVM

o e
o %
>N &

o
%
=~

05 1 25 5 10 25 50 100
The ratio of the selected features (percentage)

—e— Without feature weight

FIGURE 2: Accuracy of the features selected at different ratios by IG.

ROC and AUC of SVM
1.0} -]

0.8 -

e
o
T

e
IS
T

True positive rate

e
o
T

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

—— ROC (AUC = 0.984) of 0.5% selected features
—— ROC (AUC = 0.983) of 1.0% selected features
—— ROC (AUC = 0.954) of 2.5% selected features
--- ROC (AUC = 0.985) of 5.0% selected features
ROC (AUC = 0.981) of 10.0% selected features
—— ROC (AUC = 0.984) of 25.0% selected features
ROC (AUC = 0.981) of 50.0% selected features
—— ROC (AUC = 0.944) of 100.0% selected features

F1GURE 3: ROC and AUC of the features selected at different ratios
by IG.

This is consistent with Android mobile-security-threat
reports from Kaspersky, which indicate that SMS phishing
and SMS Trojan viruses are the most widespread malicious
attacks [40].

Table 3 shows the top 20 IG features with their
feature weights. Among these, some features (such as
Ljava/util/Set;->contains) look normal but are assigned rel-
atively high weights. IG measures the amount of information
in entropy that a feature brings to the classifier, depending

Security and Communication Networks 9
TABLE 3: Top 20 feature weights from the IG values.
Features IG weights
android.permission.SEND_SMS 0.3426
android.permission. RECEIVE_SMS 0.3287
android.permission.READ_SMS 0.3158
Landroid/net/Uri;->getScheme 0.3112
Ljava/util/Set;->isEmpty 0.3082
Landroid/net/Uri;->getPath 0.3017
Landroid/view/ViewGroup;->removeAllViews 0.2974
Landroid/app/AlertDialog$Builder;->setOnCancelListener 0.2960
Ljava/nio/CharBuffer;->flip 0.2935
Landroid/content/res/Resources;->getValue 0.2894
Landroid/graphics/Bitmap;->getPixel 0.2871
Ljava/util/Set;->contains 0.2867
Ljava/nio/CharBuffer;->allocate 0.2861
Ljava/util/Collections;->unmodifiableSet 0.2831
Landroid/net/Uri;->getQueryParameter 0.2819
Ljava/lang/Float;->floatToIntBits 0.2814
Ljava/lang/Double;->toString 0.2738
Ljava/lang/Readable;->read 0.2736
Landroid/net/Uri;->buildUpon 0.2696
Ljava/util/Collections;->singleton 0.2670

L
NS

(Percentage)
(=) o (=]
o = o W

android.permission.SEND_SMS =

android.permission.RECEIVE_SMS &
Ljava/util/Set;->contains —_—

Ljava/nio/CharBuffer;->allocate F—

Ljava/util/Set;->isEmpty m—
Ljava/util/Collections;->unmodifiableSet ==

Landroid/net/Uri;->getPath ‘m—

Landroid/view/ViewGroup;->removeAllViews =

Landroid/app/AlertDialog$Builder;->setOnCancelListener e ——
Ljava/lang/Readable;->read =

Landroid/net/Uri;->buildUpon
Ljava/util/Collections;->singleton ———

Ljava/nio/CharBuffer;->flip =

Landroid/content/res/Resources;->getValue &=
Ljava/lang/Double;->toString =

Landroid/net/Uri;->getScheme S ——
Ljava/lang/Float;->float ToIntBits S —

android.permission.READ_SMS =

Landroid/graphics/Bitmap;->getPixel =
Landroid/net/Uri;->getQueryParameter S—

The top 20 features with the IG weights

B Malicious applications
B Benign applications

FIGURE 4: Percentages of malicious and benign applications using
the top 20 features selected by IG.

on whether the feature is in or absent in the dataset [41]. The
greater the percentage difference between the appearance and
the absence of a feature is, the more the information it brings
to the classification model and the greater the IG value is. On
the contrary, a greater IG value means that the features are
important for identifying the class of the examples. We con-
clude that the feature weights are assigned based on the actual
usage of the features in the dataset and are not tempered by
our experiences. However, the IG weights are small.

This situation may cause little change in the distribution
of the feature space compared with the original feature space.
Therefore, IG weights may result in only slight performance
improvements in malware detection.

4.4. Performance Comparison with IG and PSO Feature
Weights. PSO weights are initialized by a random matrix and
adaptively updated to fit the highest accuracy achieved by the
SVM detection model. In this part, both IG and PSO weights
are compared to determine how much they improve the
performance of malware detection. PSO with random inertia
weight (RIW-PSO) is used to compute the PSO weights.
Different ratios of features selected by IG are used in the SVM
model.

Figure 5 shows three accuracy curves of different ratios of
features selected both with and without the feature weights.
The top two curves, which depict higher accuracy, show the
results of using IG weights and PSO weights. They indicate
that feature weights can improve accuracy of SVM detection
model and that the accuracy is highest when using the PSO
weights. Meanwhile, we find that the trends of the three
curves are similar, regardless of whether feature weights are

10 Security and Communication Networks
TABLE 4: Top 20 feature weights by RIW-PSO with 5% selected features.
Features PSO weights
Landroid/app/ActivityOptions;->makeScaleUpAnimation 0.9998
Landroid/graphics/Canvas;->drawColor 0.9984
android.permission.READ_EXTERNAL STORAGE 0.9981
Landroid/util/Log;->v 0.9978
Landroid/net/NetworkInfo;->getType 0.9977
Landroid/content/DialogInterface;->cancel 0.9969
android.permission. CHANGE_WIFI_STATE 0.99611
android.permission.CALL_PHONE 0.99610
Landroid/graphics/Path;->close 0.9955
Landroid/view/WindowManager;->getDefaultDisplay 0.99399
Landroid/view/View;->isFocused 0.99397
android.permission.PROCESS_OUTGOING_CALLS 0.9936
Ljava/util/HashMap;->get 0.9932
Ljava/util/UUID;->getMostSignificantBits 0.9925
Ljava/util/LinkedList;->add 0.9923
Landroid/content/SharedPreferences$Editor;->putLong 0.9918
Ljava/lang/StringBuilder;->toString 0.9916
android.permission.SET_WALLPAPER 0.9912
Landroid/content/Intent;->setType 0.9907
android.permission. WRITE_CONTACTS 0.9905

0.98 -

0.96 -

54 54
o o
N =

Accuracy of SVM
54
o

o
%0
&

0.86 -

084
0.5 1 2.5 5 10 25 50 100
The ratio of the selected features (percentage)

—e— Without feature weight
With RIW-PSO feature weight
—o— With IG feature weight

FIGURE 5: Accuracy of SVM with and without the feature weights.

used. It is possible that this occurs because the feature weights
do not seriously affect the distribution of the feature space.
Table 4 shows the top 20 feature weights by PSO with
5% of the features selected at a certain time. Statistics from
multiple experiments indicate that the PSO weights are not
the same, mainly because PSO pursues the best overall fitness
of the swarm and does not consider the state of each particle
first. In our work, all the features are assigned the PSO

weights; they work together to ensure the best malware
detection performance but follow the original rule.

Although the performance accuracies obtained using
features with IG weights and PSO weights are only slightly
different, as shown in Figure 5, there are large differences
between the weights in IG and PSO in terms of which features
are ranked highest and have higher weights (compare Tables
3 and 4). Meanwhile, the differences between the various
percentages used in malicious applications and benign appli-
cations are clear, as shown in Figures 4 and 6. These top
features with high weights have strong classification abilities.
The IG weights are evaluated according to the importance
of the features to the labels and without considering the
correlations between the features, whereas the PSO weights
are computed when weighted features work together to
ensure the best malware detection performance. In addition,
based on the different feature weights and top features, we can
infer that the best feature weight values are not fixed; instead,
they are assigned different values depending on different
methods and the interactions between features.

4.5. Performance Comparison between Different Inertia
Weight Strategies Adjusting PSO. Of the strategies introduced
in Section 3.2, six inertia weight adjusting strategies for PSO
are compared in this section: constant inertia weight (CIW)
[29], random inertia weight (RIW) [30], linearly decreasing
inertia weight (LDIW) [17, 30], chaotic decreasing inertia
weight (CDIW) [31, 32], double exponential self-adaptive
inertia weight (DESIW) [33], and fitness-based and chaotic
adaptive inertia weight (FCAIW). First, these strategies are
used to adjust the PSO algorithm; then, the improved PSO
methods are wrapped into the SVM model on the Android

Security and Communication Networks

0.6 -
0.5 -
04
5
1]
<
k=
5 03
19
-
k5
&
0.2 - -
0.1| | : :
0- I lII ,Il ,Il,
cxEF LTEEDYETRE 2T PO QL
S2U N ERRZE8L o REREER BT
S0P GERRZSSsLENEESEZ
g S HANLT L AL EE LB o B
FEES N NS5 092007
<'Uw|§au»—4j£ugll\z_gt:—c.'.¢<uo
SAdSEEE<58c5322358259
N i 2
gt dLdUZ2R B0 ESE L ER
SEZEEL0EERE RSS2 2RSS
FEEEERZ S E8AS0525 8 B2
SOESEES 22530883 S285E%
S8R ZAFEZR9ESJEAS53F 88
2 35858 g8 AR RS2
/I\J: Qgg&uﬁvsm D"—\,‘_‘ODEFU(I)
‘”%D EQO'FUNHU ’-"_105;-"5-2
g8 Bez2TE=2TR D A8 EE
Sy 2 E 383 S% < 5 &3 &g E
B 80--*;_"—10:3‘31 = F8>"dﬁ°’
E2E SSET S-% 2 5EESH
0f£s §F8E £ g§ 35 E£E/Eg-F
2T g S8 & 3 2 = s 'g)
T 52 < 3 = 2 5 2 8 =
£ - g g3 E E S 5 g
O = < = (9 — = <
< (9] — o ~; 5 o
< S g < a, 9]
[< < < n S
& 3 3 2 3
d e = o B3
= < =] S =
S 2 g =
5 & R S
= i} < g
=2 =
g
<
._1

The top 20 features with the PSO weights

B Malicious applications
B Benign applications

FIGURE 6: Percentages of malicious and benign applications using
the top 20 features selected by RIW-PSO.

TaBLE 5: The performance of six inertia weight strategies to adjust
PSO for Android malware detection.

CIW RIW LDIW CDIW DESIW FCAIW
Accuracy 0.9520 0.9552 0.9517 0.9576 0.9511 0.9605
F1 0.9527 0.9563 0.9529 0.9588 0.9525 0.9616

dataset. 5% of the features selected by IG are used in this
section. The accuracy and F1 of SVM are listed in Table 5.
The results of Figure 6 and Table 5 show that the PSO
weights perform better than the IG weights; therefore, PSO
works well for calculating adaptive weights for SVM to detect
Android malware. The proposed FCAIW method performs
considerably better than the other methods because it has a
strong incentive to pursue the best fitness through the adap-
tive inertia weight adjustments and the addition of a chaotic
sequence to maintain diversity. Consequently, FCAIW can
find the optimal environmental changes. LDIW adjusts the
inertia weight linearly within [w,,;,, W], Which is set to
[0.4,1.4]. When the inertia weight decreases gradually, the
local search ability of the particles increases continuously.
However, when the inertia weight requires more diversity,

1

the strategy can do nothing. However, CDIW, which is based
on LDIW but involves an added chaotic term, can increase
the diversity. Therefore, CDIW performs better than LDIW
does. In CIW, the constant is set to 0.8 to maintain the overall
search ability. However, CIW-PSO cannot adjust the inertia
weight to balance the search well between global exploration
and local exploitation. RIW uses a random value in the range
[0.4,1.4] for the inertia weight to track the best fitness in a
dynamic environment. It is difficult for RIW-PSO to yield
suitable values when global exploration or local exploitation
is required. However, after the number of iterations is large
enough, the diversity can be increased. DESIW adjusts the
inertia weight well at first. However, after several iterations,
R;(t) becomes zero; therefore, all the particles’ inertia weights
become close to 1.0. At that point, DESIW is similar to RIW.

4.6. Comparison of Machine Learning Models with FCAIW-
PSO Feature Weights. KNN, NB, DT, LR, SVM, AdaBoost,
and k-means are popular machine learning methods for
Android malware detection [20, 42, 43]. In this section, 5%
of the features selected by IG are used. We first compute the
IG and FCAIW-PSO weights based on the training dataset.
Then, the IG weights and FCAIW-PSO weights are applied
to the training dataset to train the machine learning models.
Second, the IG and FCAIW-PSO weights are then applied to
the testing dataset to generate mapped data, which are applied
to the training models to determine the performance. Tables 6
and 7 show the accuracies of several machine learning models
with and without feature weights.

We can obtain several conclusions from the results in
Table 6: (1) SVM performs better than the other machine
learning models; (2) the feature weights can improve the
Android malware detection performance, except in the cases
of the FCAIW-PSO weights with DT and the FCAIW-
PSO/IG weights with AdaBoost; (3) the FCATW-PSO weights
perform better than the IG weights for the same feature space,
with the exception of the FCAIW-PSO weights with DT; (4)
the performance using only 5% of the selected features is close
to that from using all the features. This result is consistent
with the results in Section 4.3.

Feature weights can make similar samples compact and
broaden the distribution of dissimilar samples; therefore, it is
easy for KNN to classify dissimilar samples using Euclidean
distance. NB depends on a multiplication of the poste-
rior probability of each feature; therefore, the performance
of high-dimensional features is worse than that of low-
dimensional features. Moreover, NB adopts no measures to
deal with the outliers, so its performance is worse than that of
the other models. SVM not only uses the kernel function to
map a low-dimensional space into a high-dimensional space
to separate features easily, but also uses slack variables and
penalty factor to deal with noisy data. Consequently, SVM
has a high accuracy. Similarly, LR uses regularization to avoid
overfitting with the training dataset and improve the testing
ability. For DT, the results are shown in Table 7. During
the training stage, the FCAIW-PSO weights are computed
to ensure the best training performance. However, in the
testing stage, the FCAIW-PSO weights reduce the testing
performance compared to that of DT without weights in

12 Security and Communication Networks
TaBLE 6: Comparison of the accuracies of machine learning methods with and without feature weights.
kNN LR SVM DT AdaBoost k-means
. . 5% features 0.8844 0.7853 0.9398 0.9519 0.9300 0.9422 0.5047
Without feature weight
All features 0.9015 0.7707 0.9562 0.9562 0.9331 0.9586 0.5388
0,
With IG feature weight 5% features 0.9094 0.7920 0.9495 0.9538 0.9307 0.9422 0.5415
All features 0.9188 0.7865 0.9604 0.9570 0.9331 0.9586 0.5476
0,
With FCATW-PSO feature weight 5% features 0.9147 0.8432 0.9584 0.9605 0.9276 0.9422 0.6058
All features 0.9235 0.8257 0.9635 0.9613 0.9288 0.9586 0.6152

TABLE 7: Performance of the DT model with and without feature
weights.

Training Testing

accuracy accuracy
With FECAIW-PSO 5% features 0.9993 0.9276
feature weight All features 10 0.9288

Table 6. This result occurs mainly because the FCAIW-PSO
weights cause overfitting during the testing stage. Therefore,
it is necessary to take some measures to avoid overfitting.
AdaBoost is an ensemble method that adaptively learns a
series of weak classifiers to generate a boosted classifier by
enhancing the weights of the misclassified examples. Based
on the results in Table 6, we find that using any weights has
no effect on AdaBoost’s performance; therefore, there is no
need to compute the feature weights for AdaBoost to build
models. k-means, as an unsupervised learning method, pays
no attention to class labels, but the labels are valuable for clas-
sification purposes; therefore, k-means performs the worst.
Based on this comparison, we recommend using supervised
learning methods for malware detection.

5. Conclusion and Future Work

Android malware detection is a meaningful task that attracts
thousands of researchers. One of the important methods for
malware detection is to apply static analysis with machine
learning algorithms. In this work, we also utilize static anal-
ysis to identify malware from benign applications. We apply
feature weights based on IG and PSO methods to measure
the importance of features for machine learning classification.
More importantly, a fitness-based adaptive inertia weight
strategy is proposed to improve the PSO algorithm. The pur-
pose of the proposed strategy is to increase swarm diversity
to achieve the best fitness (obtain the highest accuracy from
the machine learning models). The results of experiments
indicate that, in most cases, feature weights enhance the
performance of Android malware detection and achieve
better results than the same classifiers without weights.
However, for models such as DT, feature weights cause
overfitting with the training set, and the testing performance
of these models decreases. Consequently, it is necessary
to take some measures to avoid overfitting.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This paper is supported by the National Natural Science
Foundation of China (nos. 61602052 and 61602489).

References

[1] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab,
“A review on feature selection in mobile malware detection,”
Digital Investigation, vol. 13, pp. 22-37, 2015.

[2] S.Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of bayesian
classification-based approaches for android malware detection,”
IET Information Security, vol. 8, no. 1, pp. 25-36, 2014.

[3] Y. Wang, J. Zheng, and C. Sun, “Quantitative security risk
assessment of Android permissions and applications,” in in
Data and Applications Security and Privacy XXVII, pp. 226-241,
Springer, New York, USA, 2013.

[4] M. Zhang, Y. Duan, and H. Yin, “Semantics-aware android
malware classification using weighted contextual api depen-
dency graphs,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, pp. 1105-1116, Arizona,
Ariz, USA, November, 2014.

[5] N. Peiravian and X. Zhu, “Machine learning for Android mal-
ware detection using permission and api calls,” in Proceedings
of IEEE 25th International Conference on Tools with Artificial
Intelligence (ICTAI '13), pp. 300-305, IEEE, Herndon, VA, USA,
November,2013.

[6] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting
android malicious apps and categorizing benign apps with
ensemble of classifiers,” Future Generation Computer Systems,
pp. 1-8, 2017,

[7] D.Su, W. Wang, X. Wang et al., “Anomadroid: profiling Android
application behaviors for identifying unknown malapps,” in
Proceedings of the 15th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (IEEE
TrustCom ’16), pp. 691-698, IEEE, Tianjin, China, August, 2016.

[8] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic discrimi-
native model for android malware detection with decompiled
source code;” IEEE Transactions on Dependable and Secure
Computing, vol. 12, no. 4, pp. 400-412, 2015.

[9] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code
analysis for classifying android applications using machine

Security and Communication Networks

learning,” in Proceedings of International Conference on Com-
putational Intelligence and Security (CIS ’10), pp. 329-333, IEEE,
December, 2010.

W. Wang, Y. He, J. Liu, and S. Gombault, “Constructing
important features from massive network traffic for lightweight
intrusion detection,” IET Information Security, vol. 9, no. 6, pp.
374-379, 2015.

H. C. Wu, R. W. P. Luk, K. E. Wong, and K. L. Kwok, “Interpret-
ing TF-IDF term weights as making relevance decisions,” ACM
Transactions on Information Systems, vol. 26, no. 3, article no.
13, 2008.

Z.H. Deng, S. W. Tang, D. Q. Yang et al., “A comparative study
on feature weight in text categorization,” in Proceedings of the
Asia-Pacific Web Conference, pp. 588-597, Hangzhou, China,
April, 2004.

N. Jankowski and K. Usowicz, “Analysis of feature weighting
methods based on feature ranking methods for classification,” in
Proceedings of the International Conference on Neural Informa-
tion Processing, pp. 238-247, Shanghai, China, November, 2011.

S. Shankar and G. Karypis, “A feature weight adjustment
algorithm for document categorization,” in Proceedings of KDD-
2000 Workshop on Text Mining, Boston, USA, August, 2000.

C. Y. Tsai and C. C. Chiu, “Developing a feature weight self-
adjustment mechanism for a K-means clustering algorithm,”
Computational Statistics ¢ Data Analysis, vol. 52, no. 10, pp.
4658-4672, 2008.

S. Lim, K. Lee, O. Byeon, and T. Kim, “Efficient iris recognition
through improvement of feature vector and classifier; ETRI
Journal, vol. 23, no. 2, pp. 61-70, 2001.

A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel
particle swarm optimization algorithm with adaptive inertia
weight,” Applied Soft Computing Journal, vol. 11, no. 4, pp. 3658—
3670, 2011.

M. Taherkhani and R. Safabakhsh, “A novel stability-based
adaptive inertia weight for particle swarm optimization,”
Applied Soft Computing Journal, vol. 38, pp. 281-295, 2016.

D. Wettschereck, D. W. Aha, and T. Mohri, “A review and
empirical evaluation of feature weighting methods for a class
of lazy learning algorithms,” Artificial Intelligence Review, vol.
11, no. 1, pp. 273-314, 1997.

Y. Aafer, W. Du, and H. Yin, “Droid APIMiner: Mining API-level
features for robust malware detection in android,” in Proceed-
ings of International Conference on Security and Privacy in Com-
munication Systems, pp. 86-103, IEEE, Sydney, Australia, Sep-
tember, 2013.

13

[25] D.P. Vivencio, E. R. Hruschka Jr., M. Do Carmo Nicoletti, E. B.

Dos Santos, and S. D. C. O. Galvao, “Feature-weighted k-nearest
neighbor classifier;” in Proceedings of 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI °07), pp. 481-
485, April 2007.

Y. Yang and J. O. Pedersen, “A comparative study on feature
selection in text categorization,” ICML, vol. 97, pp. 412-420,
1997.

W. Wang, J. Liu, G. Pitsilis et al., “Abstracting massive data for
lightweight intrusion detection in computer networks,” Infor-
mation Sciences, pp. 1-14, 2016.

»

J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
machine learning, pp. 760-766, Springer, New York, USA, 2011.

Y. Li, Z.-H. Zhan, S. Lin, J. Zhang, and X. Luo, “Competitive
and cooperative particle swarm optimization with information
sharing mechanism for global optimization problems,” Informa-
tion Sciences, vol. 293, pp. 370-382, 2015.

R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic
systems with particle swarms,” in Proceedings of the Congress on
Evolutionary Computation, vol. 1, pp. 94-100, Seoul, Republic of
Korea, May 2001.

Y. Feng, G. F. Teng, A. X. Wang, and Y. M. Yao, “Chaotic inertia
weight in particle swarm optimization,” in Proceedings of the 2nd
International Conference on Innovative Computing, Information
and Control (ICICIC °07), 475 pages, IEEE, Kumamoto, Japan,
September 2007.

M. Pluhacek, R. Senkerik, D. Davendra, Z. Kominkova
Oplatkova, and 1. Zelinka, “On the behavior and performance
of chaos driven PSO algorithm with inertia weight,” Computers
and Mathematics with Applications, vol. 66, no. 2, pp. 122-134,
2013.

P. Chauhan, K. Deep, and M. Pant, “Novel inertia weight strate-
gies for particle swarm optimization,” Memetic Computing, vol.
5, no. 3, pp. 229-251, 2013.

S. Tong and D. Koller, “Support vector machine active learning
with applications to text classification,” The Journal of Machine
Learning Research, vol. 2, pp. 45-66, 2002.

S. R. Gunn, “Support vector machines for classification and
regression,” ISIS Technical Report, University of Southampton,
England, May, 1998.

J. C. Platt, “Using analytic QP and sparseness to speed training
of support vector machines,” Advances in Neural Information
Processing Systems, pp. 557-563, 1999.

A. P. Bradley, “The use of the area under the ROC curve
in the evaluation of machine learning algorithms,” Pattern

[21] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, Recognition, vol. 30, no. 7, pp. 1145-1159, 1997.
“Exploring permission-induced risk in android applications for ~ [38] “Cross-validation: evaluating estimator performance,” 2017,
malicious application detection,” IEEE Transactions on Informa- http://scikit-learn.org/stable/modules/cross_validation.html#
tion Forensics and Security, vol. 9, no. 11, pp. 1869-1882, 2014. cross-validation.
[22] K. O. Elish, X. Shu, D. Yao, B. G. Ryder, and X. Jiang, “Profiling [39] android.Manifest.permission, 2017, https://developer.android
user-trigger dependence for android malware detection,” Corm- .com/reference/android/Manifest.permission.html.
puters & Security, vol. 49, pp. 255-273, 2015. [40] Kaspersky, “Android Mobile Security Threats,” 2016, https://usa
[23] W. Zhang, T. Yoshida, and X. Tang, “A comparative study of Jkaspersky.com/internet-security-center/threats/mobile#
TF*IDE LSI and multi-words for text classification,” Expert V2jse9Kqgko.
Systems with Applications, vol. 38, no. 3, pp. 2758-2765, 2011. [41] G. Forman, “An extensive empirical study of feature selection
[24] W.Duch, T. Wieczorek, J. Biesiada et al., “Comparison of feature metrics for text classification,” Journal of Machine Learning
ranking methods based on information entropy;” in Proceedings Research, vol. 3, pp. 1289-1305, 2003.
of IEEE International Joint Conference on Neural Networks, pp. ~ [42] B.Sanz,I. Santos, C. Laorden et al., “Puma: permission usage to
1415-1419, IEEE, July, 2004. detect malware in android,” in Proceedings of the International

http://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
http://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://usa.kaspersky.com/internet-security-center/threats/mobile#.V2jse9Kqqko
https://usa.kaspersky.com/internet-security-center/threats/mobile#.V2jse9Kqqko
https://usa.kaspersky.com/internet-security-center/threats/mobile#.V2jse9Kqqko

14

Joint Conference CISISI2-ICEUTE’12-SOCO’I2 Special Sessions,
pp. 289-298, Springer, Berlin, Germany, 2013.

[43] H. Peng, C. Gates, B. Sarma et al., “Using probabilistic genera-
tive models for ranking risks of Android apps,” in Proceedings of
the ACM Conference on Computer and Communications Security
(CCS’12), pp. 241-252, ACM, Raleigh, NC, USA, October 2012.

Security and Communication Networks

nnnnnnnn fonal Journal of

Rotating
Machinery

International Journal of

The SCientiﬁc Journal of DiStribUted
WQrId Journal Sensors S sor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robotics

VAN
VLSI D signA

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

rla\ Journal of Simulation o .
Navigation and in Engineering Engineering

Observation

ekt ity St ‘
ey L~

Ar2sB Tl ¥
International Jo

Ant ; Active and Passive
Propagation Electronic Components Shock and Vibration \ cs and Vibration

nal Journal of

Engineering

https://www.researchgate.net/publication/317031499

