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Correlated Differential Privacy: Feature Selection in
Machine Learning

Tao Zhang, Tianqing Zhu∗, Ping Xiong, Huan Huo, Zahir Tari, Wanlei Zhou

Abstract—Privacy preserving in machine learning is a crucial
issue in industry informatics since data used for training in indus-
tries usually contain sensitive information. Existing differentially
private machine learning algorithms have not considered the
impact of data correlation, which may lead to more privacy
leakage than expected in industrial applications. For example,
data collected for traffic monitoring may contain some correlated
records due to temporal correlation or user correlation. To fill this
gap, we propose a correlation reduction scheme with differentially
private feature selection considering the issue of privacy loss
when data have correlation in machine learning tasks. The
proposed scheme involves five steps with the goal of managing the
extent of data correlation, preserving the privacy, and supporting
accuracy in the prediction results. In this way, the impact of data
correlation is relieved with the proposed feature selection scheme,
and moreover the privacy issue of data correlation in learning is
guaranteed. The proposed method can be widely used in machine
learning algorithms which provide services in industrial areas.
Experiments show that the proposed scheme can produce better
prediction results with machine learning tasks and fewer mean
square errors for data queries compared to existing schemes.

Index Terms—Differential privacy, machine learning, data
correlation, feature selection

I. INTRODUCTION

CURRENTLY, machine learning becomes an indispensable
tool to provide services for human beings in industrial

applications, such as Internet of Things (IoT) [1] and smart
cities [2]. One main data source used for machine learning
in industry is from human’s activities. For example, human’s
data are often collected via smart phones and these data are
analyzed to provide some services in smart cities, such as
traffic monitoring [3] and smart health [4]. Data collected
from human usually contain some sensitive information, as the
location information and health data in above examples. When
these data are used for machine learning, individual privacy
can be leaked [5].

As a popular technique for privacy preserving, differential
privacy was first proposed by Dwork et al. [6]. Since then,
differential privacy has attracted considerable attention because
it provides a rigorous mathematical framework for preserving
privacy. Recently, differential privacy is widely used to protect
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the privacy in industrial informatics, such as location privacy
protection [3], [7], smart grids [8], [9] and multi-agent systems
[10].

Much work has addressed the privacy issue in machine
learning with differential privacy. Chaudhuri provided an
output perturbation where the model was trained and then the
noise was added to the output [11] and objective perturbation
mechanism where a carefully designed linear perturbation item
was added to the original loss function [12]. [13] derived
differentially private stochastic gradient descent mechanisms
and tested them empirically in logistic regression. [14] proposed
a differentially private deep learning algorithms which was
based on a differentially private version of stochastic gradient
descent. [15] studied the differentially private publishing
model. However, previous works have not considered the
data correlation when designing differentially private machine
learning algorithms.

In the definition of differential privacy, data in a dataset
are assumed to be independent. This is a somewhat faulty
assumption since data in industrial applications are always
correlated beginning from when the data is first generated,
such as temporal datasets in monitoring systems. Intuitively,
when some of the records in a dataset are correlated, deleting
one record may have a great impact on the other records,
which could reveal more information to an adversary than
expected. Kifer and Machanavajjhala’s study on data correlation
[16] confirms this observation, and the finding has launched
a new stream of research on how to preserve privacy in
correlated datasets. [17], [18] introduced correlation parameters
to describe data correlation. Correlation models were proposed
to model data correlation, such as the Gaussian correlation
model in [19], [20] and Markov chain models in [21]. Also,
[22] designed a second privacy framework, called Pufferfish,
which is flexible and can provide a privacy guarantee for various
data sharing needs.

Correlated data used for industrial applications can also dis-
close more privacy information in machine learning algorithms
when applying differential privacy. Previous methods do not
always guarantee good performance because data correlation
is not always easy to capture or describe accurately in the real
world. Unlike previous studies, the proposed scheme correlation
reduction based on feature selection (CR-FS) reduces data
correlation and can be applied to both data analysis and
data publishing, which provides a widely used applications
in industries. Feature selection is a key method in machine
learning for choosing the features that are crucial to predicting
a result [23]. It is used to reduce overfitting, but can also be
used to reduce data correlation across an entire dataset.
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Overall, the contributions of this paper can be summarized
as follows:

• 1) We proposed a differentially private feature selection
based on feature importance. The proposed method can
select features privately, while retaining a desirable data
utility.

• 2) We propose a correlation reduction scheme based on
feature selection to reduce data correlation in correlated
datasets. This helps to reduce the correlated sensitivity
when implementing differentially private machine learning
algorithms, and thus improves data utility.

• 3) Experiments validate the effectiveness of our proposed
feature selection scheme. The results show improved data
utility for both data analysis and data publishing.

II. PRELIMINARIES

A. Differential privacy

Differential privacy is a rigorous privacy model [24]. In brief,
given two datasets D and D

′
that contains a set of records,

these are referred as neighboring datasets when they differ
in one record. A query Q is a function that maps the record
r ∈ D into outputs Q(D) ∈ R, where R is the whole set of
outputs.

Definition 1: (ε-Differential privacy) A randomized algorithm
M satisfies ε-differential privacy if for any pair of datasets,
say D and D

′
, and for any possible outcome Q(D) ∈ R, we

have

Pr[M(D) ∈ R] ≤ exp(ε) · Pr[M(D
′
) ∈ R] (1)

where ε refers to the privacy budget that controls the privacy
level of the mechanism M. The lower ε represents the higher
privacy level.

Definition 2: (Sensitivity) For a query Q : D −→ R, and
neighboring datasets, the sensitivity of Q is defined as

∆f = max
D,D′

||Q(D)−Q(D
′
)||1 (2)

Sensitivity describes the maximal difference between neigh-
boring datasets, which is only related to the type of query
Q.

Definition 3: (Laplace mechanism) For any query Q: D −→ R
over the database D, the following mechanism provides ε-
differential privacy if

M(D) = Q(D) + Laplace(∆/ε) (3)

The Laplace noise is denoted as Laplace(·) and is drawn from
a Laplace distribution with the probability density function
p(x|λ) = 1

2λe
−|x|/λ, where λ relate to the sensitivity and the

privacy budget.
Theorem 1: Sequential composition: Suppose that a set of

privacy mechanisms M={M1, ...,Mm}, gives εi differential
privacy (i = 1, 2...,m), and these mechanisms are sequentially
performed on a dataset. M will provides (

∑
i εi)-differential

privacy for this dataset.

B. Feature selection

Feature selection is a method for selecting the attributes in a
dataset (such as columns in tabular data) that are most relevant
to the prediction [25]. In other words, feature selection largely
acts as a filter that sifts out features that are less useful to
solving a problem. With feature selection, both the efficiency
and the accuracy of the predicted results can be improved.

In this paper, we adopt feature importance to select features.
Feature importance is a method of ranking features based on
random forests. Feature importance is measured according to
the mean decrease in impurity, which is defined as the total
decrease in node impurity averaged over the forest. This score
can be computed automatically for each feature after training
and scaling the results so that the sum of importance for all
features is equal to 1. One strength of the random forest is
that it is easy to measure which features are relatively more
important to the results. With this method, we are able to select
the most important features in the dataset.

III. EXAMPLE OF THE TRAFFIC MONITORING

In this section, we present the issue of correlated data in
differential privacy with a detailed industrial example of traffic
monitoring and show how correlated data can degrade the level
of privacy in industry applications.

The traffic monitoring is one of most used technologies
in smart cities. User’s location information in a region are
collected by a trusted server and the aggregate information
of the dataset (i.e., the counts of users at each location) is
continuously released to the public. Some users in the region
may have a form of social relationship – perhaps family
members. In this case, some users may have the same location
information during some time and hence the records of users’
information can be correlated in the dataset.

As shown in Table I, the user’s locations are recorded at
different time points. It is assumed that users only appear in
one location at each time point, and it is observed that user1

and user2 take the same route from time point t = 1 to t = 4
(they may have social relationships). In this case, if one were
to change the location of user1, the location of user2 would
also change. In this way, the records for user1 and the records
for user2 are correlated.

TABLE I: Users’ locations at different times

user
t 1 2 3 4

u1 loc2 loc2 loc3 loc4
u2 loc2 loc2 loc3 loc4
u3 loc1 loc4 loc5 loc2
u4 loc4 loc5 loc2 loc5

Table II shows that the some counts at different locations
are always 2. In terms of the Laplace mechanism, adding the
amount of Lap(1/ε) noise to perturb each count in Table 2 can
achieve ε-DP at each time point. However, the expected privacy
guarantee may breach with correlated records in the dataset.
With background information of who has the relationship in
a certain region, an attack can infer the location information
of user1 and user2 at different time points. Consequently,
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TABLE II: The sum counts of users’ locations

loc
t 1 2 3 4

loc1 1 0 0 0
loc2 2 2 1 1
loc3 0 0 2 0
loc4 1 1 0 2
loc5 0 1 1 1

after releasing private count of user’s locations, the location
information of user1 and user2 may not be ε- differentially
private as expected. Instead, it is 2ε-differentially private since
changing one user’s location will change the count 2.

In summary, this example shows that correlated data in a
dataset will disclose more information than expected when these
data are used for machine learning algorithms in industrial
applications. Essentially, adding more noise to a correlated
dataset is a way to guarantee differential privacy. Such a case
reveals the level of challenge in industries when dealing with
correlated data in situations where differential privacy must be
satisfied, but high-quality query results must be maintained.

IV. THE EXTENT OF DATA CORRELATION

A. Correlated degree

Inspired by [17], we have incorporated the notion of corre-
lated degree θij ∈ [−1, 1] to denote the extent of correlation
between record i and record j. When |θij | > 0, record i and
record j have a positive correlation and vice versa. When
|θij | = 1, record i and record j are fully correlated and When
θij = 0, there is no relationship. When there are a number of
l records in a dataset, it is possible to list the relationship for
all records and form a correlated degree matrix Λ.

Λ =


θ11 θ12 · · · θ1l

θ21 θ22 · · · θ21

...
...

. . .
...

θl1 θl2 · · · θll

 (5)

A threshold θ0 is defined so as to select strongly correlated
records. For a given θ0, the value of the correlated degree is

θij =

{
θij , θij ≥ θ0,

0, θij < θ0,
(6)

A correlated degree matrix can describe the correlations of
the whole dataset and, once analyzed, the curator will hold
all knowledge of the data correlations. Data privacy can still
be protected, even when the adversary is privy to the entire
correlated degree matrix, if enough noise is added to mask
the highest impact of deleting one record using correlated
differential privacy.

B. Correlated sensitivity

Global sensitivity can only measure the maximal number
of correlated records but does not consider the extent of the
data correlation. Hence, the notion of correlated sensitivity
is introduced to measure the extent of the impact on other
records from changing one record. As mentioned earlier, global

sensitivity adds extra noise by simply multiplying the maximal
number of correlated records. Whereas, correlated sensitivity
is able to model the correlations in a more exact way.

Definition 4: (Correlated sensitivity) For a query Q, cor-
related sensitivity is based on the correlated degree and the
number of correlated records, which is defined as

∆CSq = max
i∈q

l∑
j=0

|θij |{‖(Q(Dj)−Q(D−j)‖1} (7)

where q is the set of records in a dataset, and θij is the
correlated degree between record i and record j. Dj and D−j
are neighboring datasets that differ by record j. Correlated
sensitivity lists all the sensitivity of records with the query Q.
With correlated sensitivity, the maximal effect on all records of
a dataset can be measured when one record is deleted. For any
query Q, the perturbed answer is calibrated with the equation,

Q̂(D) = Q(D) + Laplace(
∆CSq
ε

) (8)

For any query Q, the correlated sensitivity is smaller than the
global sensitivity. The global sensitivity is denoted as ∆GSq =

max
i∈q

∑k
j=0{k‖(Q(Dj) − Q(D−j)‖1}, where k denotes the

number of correlated records. Since we use the correlated
degree θij ∈ [−1, 1] to describe the extent of data correlation,
the correlated sensitivity is no larger than the global sensitivity.

We note that the correlated degree θij is related to every
feature in record i and record j. When deleting features in the
dataset, the extent of correlation between record i and record
j will also be changed. Thus, after describing the extent of
data correlation in a dataset, we use feature selection to reduce
data correlation.

V. CORRELATION REDUCTION BASED ON FEATURE
SELECTION

A. Overview of the method

In our method, we select features in terms of three principles:
1) the accuracy of training results; 2) the privacy of feature
selection; 3) the reduction of the data correlation. As Fig. 1
shows, the proposed scheme CR-FS involves five steps: 1)
removing collinear features; 2) removing unimportant features;
3) choosing features with differential privacy; 4) obtaining the
Best feature set B; and 5) adjusting the features that can reduce
data correlation within the dataset. Each of these methods is
described in detail in the following sections.

B. The proposed CR-FS scheme

Following traditional feature selection, we propose the
algorithm I that selects features with differential privacy. For a
given dataset, feature selection is a crucial step before executing
a machine learning algorithm, especially with high-dimensional
datasets. Additionally, retaining more features typically leads
to a higher degree of data correlation, which, with differential
privacy, negatively impacts the privacy level. Hence, our goal is
to select a subset of features with relatively lower levels of data
correlation while maintaining good utility for data publishing
and analysis.
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Fig. 1: The process of feature selection

Algorithm 1 Differentially private feature selection scheme
Input: Dataset, Tcf , Tfi, Tmv , ε1;
Output: Best feature set B, Adjusted feature set A;
1: Calculate feature collinearity ρfm,fn =

E[(fm−µfm )(fn−µfn )]

σfmσfn
;

/* Step 1 */
2: if ρfm,fn ≤ Tcf then
3: Remove fm or fn;
4: end if
5: Remove unimportant features with Tfi; /* Step 2 */
6: Remove missing values with Tmv
7: Calculate the fimn of features by Random forest; /* Step 3 */
8: Calculate the sensitivity ∆fim according to Equation (11);
9: for fimn; n=1,2,...,N: do

10: Add Laplace noise ˆfimn = fimn + Lap(
∆fimq

ε1
);

11: end for
12: Do the normalization fimn = ˆfimn/

∑N
n=1

ˆfimn;
13: for i=1,2,...,n: do /* Step 4 */
14: Delete features one by one according to the sequence of

feature importance and calculate the prediction;
15: end for
16: Find the Best feature set : B = {f1, f2, ...fk} and Adjusted

feature set: A = {fk+1, ..., fn};
17: Add or delete features from Adjust feature set A according to

algorithm 2;

1) Removing collinear features: The first step is to filter
out the collinear features that can decrease generalization
performance on the test set due to less model interpretability
and high variance. Usually, the extent of collinearity between
features is calculated by the absolute magnitude of the Pearson’s
correlation coefficient. The calculation of Pearson’s correlation
coefficient is

ρfm,fn =
E[(fm − µfm)(fn − µfn)]

σfmσfn
(9)

Where fm and fn are two random features in the dataset; µfm
and µfn are the mean of fm and fn; σfm and σfm are the
standard deviation of feature fm and fn. In our scheme, we
set a threshold of Tcf ∈ [0, 1] to identify collinear features and
remove the features with a collinearity of greater than Tcf .

2) Removing unimportant features: The second step is to
remove unimportant features, including 1) features of zero
importance and features of low importance; 2) features with
a high percentage of missing values; and 3) features with a
single value. Zero and low importance features can be identified
using the feature importance threshold, denoted as Tfi ∈ [0, 1].

Features with an importance value of lower than Tfi will
be removed. The threshold for missing values is defined as
Tmv ∈ [0, 1], and features with a percentage of missing values
greater than Tmv will be removed.

3) Choosing features with differential privacy: We adopt
feature importance fim in Random forest to calculate the
feature weight for each feature. Neighboring data is obtained
when record ri is deleted, the feature importance can be
calculated by Random forest and the feature importance
fimi

1, fim
i
2, ..., fim

i
N are sorted in an increasing order. Based

on this, we introduced the notion of record sensitivity of feature
importance.

Definition 5: (Record sensitivity of feature importance) For
a query Q, the record sensitivity of feature importance of ri
can be defined as,

∆fimi = ||fimi
N − fimi

1||1 (10)

Definition 6: (Sensitivity of feature importance) For a query
Q, the sensitivity of feature importance is determined by the
maximal record sensitivity of feature importance,

∆fimq = max
i∈q

(∆fimi) ≤ 1 (11)

where q is a set of records related to a query Q. It is easy
to know the sensitivity of feature importance is ∆fimq ≤ 1,
since the range of feature importance is from 0 to 1. We apply
Laplace mechanism to add noise to the feature importance.
The perturbed feature importance can be denoted as,

ˆfimn = fimn + Lap(
∆fimq

ε
) (12)

Since the sum of the feature importance
∑N
n=1 fimn = 1,

we normalize the perturbed feature importance as follow,

fimn = ˆfimn/

N∑
n=1

ˆfimn (13)

The new sequence of feature importance can be denoted as
fim1 < fim2 < ... < fimn.

4) Finding the best feature set: The third step is to find the
best feature set. The Best feature set B contains the features
that will produce the best prediction results by the machine
learning algorithm. In our method, the less important features
are deleted one by one in the order of feature importance until
the best chance of accurate predictions is achieved. Practically,
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finding Best feature set with this method demands far less
computational overhead than other methods. The features that
have not been selected for Best feature set are stored as the
Adjusted feature set. These features can be used later for a
tradeoff between utility and privacy. The Best feature set B can
be denoted as B = {f1, f2, ..., fk} and the Adjusted feature
set A can be denoted as {fk+1, fk+2, ..., fN}.

5) Adjusting feature scheme: The final step is to adjust some
features based on the Best feature set B in order to reduce data
correlation over the whole dataset, as a way to balance the
tradeoff between utility and correlated sensitivity. Basically, the
correlated sensitivity of a dataset is irrelevant to the number of
features. This means that more features of a dataset may have a
lower correlated sensitivity and less features may have a higher
correlated sensitivity. Best feature set B can achieve a good
data utility without privacy guarantee, yet it may have a higher
correlated sensitivity and a high correlated sensitivity has a
huge impact on utility for data publishing and data analysis. In
other words, if the goal is to generate a differentially private
dataset with good data utility, the process of feature selection
should also consider correlated sensitivity.

Algorithm 2 Adjusted feature selection scheme
Input: Best feature set B, Adjusted feature set A, ε2, θ0;
Output: Adjusted feature set A;
1: for fi ⊆ {fk+1, ..., fN}: do
2: Add features to the Best feature set B from the Adjusted

feature set A;
3: Calculate the correlated sensitivity of new datasets ∆CSq =

max
i∈q

∑l
j=0 |θij |{‖(Q(Dj)−Q(D−j)‖1;

4: Add Laplace noise Lap =
∆CSq

ε2
;

5: Train the dataset and get the predicted result;
6: end for
7: Obtain the Adjusted feature set A1 that has the best performance;
8: for fi ⊆ {f1, ..., fk}: do
9: Delete features from the Best feature set B one by one;

10: Calculate the correlated sensitivity of new datasets ∆CSq =
max
i∈q

∑l
j=0 |θij |{‖(Q(Dj)−Q(D−j)‖1;

11: Add Laplace noise Lap =
∆CSq

ε2
;

12: Train the dataset and get the predicted result;
13: end for
14: Obtain the Adjusted feature set A2 that has the best prediction;
15: if s(A1) ≥ s(A2) then
16: A1 is the Adjusted feature set A;
17: else
18: A2 is the Adjusted feature set A;
19: end if

Algorithm 2 shows the adjusted feature selection scheme,
which includes backward and forward feature selection methods.
The forward feature selection adds features one by one from
the Adjusted feature set A to Best feature set B. The correlated
sensitivity is calculated according to Equation (7), and then
Laplace noise is added according to Equation (8). Training
with these added features can obtain the feature set A1, which
provides optimal performance. However, sometimes adding a
large number of features only slightly increases performance,
particularly with high dimension datasets, while too many
features can lead to a less interpretive model. Hence, when a
set of added features appears to be more or less equally good,

then it makes sense to choose the simplest feature set. We set a
threshold T to evaluate the difference of training results. If the
difference of training results is smaller than T , we select the
simplest feature set that has the smallest number of predictors.

In backward feature selection, features in set are deleted one
by one according to their feature importance. By comparing the
training results with different deleted features, feature set A2 is
generated, which has the best performance. Similar to forward
feature selection, when a set of deleted features appears to
be more or less equally good, it makes sense to choose the
simplest feature set. We also use the threshold T to select the
simplest feature set. Ultimately, the Adjusted feature set A is
determined by comparing the training result s(A1) and s(A2).

C. Discussion

Best feature subset B and Adjusted feature set A, represent
the balance between utility and correlated sensitivity. Adding
the adjusted features is likely to degrade data utility somewhat,
but these extra features serve to reduce the correlated sensitivity
of the dataset, which offsets the reduction in utility. The overall
result is a feature selection scheme that strikes a balance that
leads to less data correlation while maintaining good data utility
for data analysis and data publishing.

Our proposed scheme has three advantages. First, feature
importance is a computationally-efficient method for generating
the best feature set compared to some of the other existing
methods. Feature importance is the variable that provides the
guide to select which features are best to add or delete. Second,
with differential privacy, we can choose features privately. Third,
with the consideration of data correlation, we can select features
that has less data correlation in the whole dataset and thus
reduce the correlated sensitivity and improve the data utility
of the dataset.

VI. THEORETICAL ANALYSIS

A. Privacy analysis

Theorem 2: The proposed CR-FS scheme satisfies ε-
differential privacy.
To prove that the proposed CR-FS scheme is satisfied with
differential privacy, we first analyze which steps consume
privacy budget in CR-FS scheme. According to Algorithm 1
and Algorithm 2, we access the dataset in two places: 1) the
process of feature selection and, 2) the process of data training.
To protect the data privacy, we add differential privacy noise
in these two places.

We split the total privacy budget ε into two parts ε1 and ε2
and allocate ε1 and ε2 in the process of feature selection and
the process of data training, respectively. First, we analyze the
privacy budget ε1 in the process of feature selection.

Lemma 1: The process of feature selection satisfies ε1-
differential privacy.

We know that D and D
′

are any two datasets that differ in
one feature, and f1(·) is the query for feature selection. px(z)
and py(z) denote the probability density function as,

M1(x, f1(·), ε1) = f1(x) + Lap(
∆fimq

ε1
) (14)
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Let x, y be two neighboring datasets. We compare two random
points z ∈ R and the ratio of two probability density can be
presented as

px(z)

py(z)
=

N∏
i=1

 exp
(
− ε1|f1(x)i−zi|

∆fimq

)
exp

(
− ε1|(f1(y)i−zi|

∆fimq

)
 (15)

=

N∏
i=1

exp

(
ε1 (|f1(y)i − zi| − |f1(x)i − zi|)

∆fimq

)

≤
N∏
i=1

exp

(
ε1|f1(x)i − f1(y)i‖

∆fimq

)
= exp

(
ε1 · ‖f1(x)− f1(y)‖1

∆fimq

)
≤ exp(ε1)

where the first inequality is from triangle inequality and the
second inequality is from Equation (11). The sensitivity of
feature selection is according to the maximal difference of
feature importance. Therefore, the process of feature selection
satisfies ε1-differential privacy. Second, we analyze the privacy
budget ε2 in the process of data training.

Lemma 2: The process of data training satisfies ε2-differential
privacy.
We know that D and D

′
are any two datasets that differ in one

record. f2(·) is the query for training results.The differential
privacy noise is added to the weights in training algorithms,
such as Linear Regression (LR) and Support Vector Machine
(SVM). f2(·) is the query for the training results. We use vx(z)
and vy(z) to denote the probability density function as,

M2(x, f2(·), ε2) = f2(x) + Lap(
∆CSq
ε2

) (16)

The ratio of two probability density can be presented as

vx(z)

vy(z)
=

N∏
i=1

 exp
(
− ε2|f2(x)i−zi|

∆CSq

)
exp

(
− ε2|(f2(y)i−zi|

∆CSq

)
 (17)

= exp

(
ε2 · ‖f2(x)− f2(y)‖1

∆CSq

)
≤ exp(ε2)

The ∆CSq = max
i∈q

∑l
j=0 |θij |{‖(Q(Dj)−Q(D−j)‖1}, hence

the data training satisfies ε2-differential privacy.
In the CR-FS scheme, we add privacy budget ε1 and privacy

budget ε2 sequentially. Combined with Lemma1, Lemma2 and
Theorem 1, we can prove that the proposed CR-FS scheme
satisfies {ε1 + ε2}-differential privacy.

VII. EXPERIMENTS

Our evaluation experiments involve four real-world datasets
in terms of both data analysis and data publishing tasks [26].
Utility for data analysis is tested with two machine learning
algorithms: LR and linear SVM. Utility for data publishing is
tested on count and mean queries.

A. Experimental setup

1) Dataset: The experiments involve four datasets, which
have different extent of data correlation and different number
of features.
• Adult Dataset [27]: Adult Dataset is from the UCI

Machine Learning repository. After data preprocessing,
we extract 3000 records with 12 features.

• Breast cancer Dataset [28]: This dataset can be found on
UCI Machine Learning Repository. After data preprocess-
ing resulted in 569 records with 20 features.

• Titanic Dataset [29]: This dataset comes from a Kaggle
competition where the goal was to analyze which sorts of
people were likely to survive the sinking of the Titanic.
After data preprocessing, we extract 891 records with 9
features.

• Porto Seguro Dataset [30]: Porto Seguro is a well-
known auto and homeowner insurance company. After
preprocessing, we extract 1770 records with 37 features.

2) Comparison: For better comparisons, four schemes are
considered in the experiments.
• A non-private scheme, where the dataset has no privacy

protection.
• The group scheme, where noise is added by multiplying

the number of correlated records, as proposed by Chen et
al. in [31].

• The Zhu scheme, where noise is added according to the
correlated sensitivity [17].

• The proposed scheme, where noise is added according to
the CR-FS scheme defined in this paper.

3) Parameters: For correlation knowledge between records,
no dataset suggests pre-defined knowledge of any correlated
data. We use Pearson correlation coefficient to construct the
correlated degree matrix, where a correlation exists for record
i and record j if θij ≥ θ0. θ0 is set to 0.9 for Adult Dataset,
Breast cancer Dataset and Breast cancer Dataset and θ0 in
Porto Seguro Dataset is set to 0.7. For correlation knowledge
between features, the Pearson correlation coefficient threshold
Tfi is set to 0.9. The missing value threshold Tmv is set to
0.2. The threshold of feature importance Tfi is set to 0.9.

TABLE III: Number of features in different stages

Original
dataset

After data
preparation

Best feature
set B

Adjusted feature
set A

Adult 15 12 8 12
Breast cancer 32 20 10 17
Titanic 12 9 7 9
Porto seguro 59 37 14 28

B. Experiments for data analysis

One aim of our proposed scheme is to improve utility for
data analysis, which we evaluate according to the accuracy of
the predicted results. For this set of experiments, we choose
two machine learning algorithms - LR and linear SVM - and
test the output perturbation to assess data utility.

Fig. 2 shows that, according to the Pearson correlation
coefficients, data correlation varies with the number of features.
Data correlation generally decreases with a growing number
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(a) Adult (b) Breast Cancer

(c) Titanic (d) Porto Seguro

Fig. 2: Data correlation for different number of features

(a) Adult (b) Breast cancer

(c) Titanic (d) Porto Seguro

Fig. 3: Privacy-Accuracy trade-off in SVM for different datasets

of features but eventually stabilizes. For example, Figs. 2b and
2c show that data correlation become stable at 17 features with
the Breast Cancer dataset and at 8 features with the Titanic
dataset. This observation indicates that data correlation across
the entire dataset can be reduced while preserving a suitable
number of features for data analysis because more features
means less correlation.

Table 3 shows the number of features in each dataset at
different stages of the proposed scheme. It is noted that, Best
feature set B will always contain more features than Adjusted
feature set A and, as shown in the table, Adjusted feature set A
have less data correlation than Best feature set B, demonstrating

that more features reduces correlation in a correlated dataset.
Figs. 3 and 4 show the performance of linear SVM and

LR on different datasets with the four schemes. In most cases,
LR have better accuracy than linear SVM. For example, Fig.
2a shows that when ε = 1, LR have an accuracy of around
0.675 versus linear SVM’s 0.645. Accuracy with the non-
private scheme remains constant as the privacy budget increases
and also performed better than the other schemes. This result
demonstrates that imposing any form of privacy requirement
on a dataset degrades data utility.

For the private schemes, the proposed scheme outperforms
both the group and Zhu schemes in all circumstances. Figs.
3 and 4 show the level of improvement, especially Fig. 3b.
ε = 1, the proposed scheme scores an accuracy of around 0.97
compared to around 0.85 for the Zhu scheme. We attribute the
improved performance of our scheme to the adjusted features.
These additional features reduce data correlation but have
little impact on the prediction results. Less data correlation
means less noise needs to be added, which leads to better
data utility. Other schemes do not reduce data correlation; they
only consider how to accurately describe the data correlations,
without considering that data correlation actually impedes
accuracy.

(a) Adult (b) Breast cancer

(c) Titanic (d) Porto Seguro

Fig. 4: Privacy-Accuracy trade-off in LR for different datasets

Additionally, the group and Zhu schemes present closed
curves with the first three datasets because the Pearson coeffi-
cient is set to a high-value θ0 = 0.9. This results in a similar
correlated sensitivity for both schemes and, consequently, a
similar level of noise is added. However, with the Porto Seguro
dataset, we set the Pearson coefficient to θ0 = 0.7. Hence,
there is a minor gap in performance. Also worthy of note
is that the accuracy of prediction results varied for different
datasets. This is due to the amount of data correlation in each
dataset; higher correlation means more noise must be added,
which reduces accuracy.
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C. Experiments for data publishing

The second aim of our scheme is to improve utility for
data publishing, which we evaluate with both count and mean
queries. Mean absolute error (MAE) is used as the metric
to assess both results, but different calculation formulas are
defined to analyze the base results and the impact of varying the
privacy budget. The accuracy of common queries is measured
by MAE, which is given as,

(a) Adult (b) Breast cancer

(c) Titanic (d) Porto Seguro

Fig. 5: MAE performance for count queries

MAE =
1

|Q|
∑
Qi∈Q

|Q̂i(x)−Qi(x)| (18)

where Qi(x) is the true aggregation result for one query, and
Q̂i(x)is the perturbed aggregation result calculates through
different schemes. A low MAE indicates a low error and, thus,
a better data utility.

To analyze how the proposed scheme performs with different
privacy budgets, we also define a second MAE containing
two components. One component measures the noise added
due to correlated sensitivity, the other measures the errors
introduced by adding the adjusted features. These features
have an impact on a new query object that can emerge as
errors when comparing the adjusted dataset to the original.
This MAE is defined as

MAE =
1

|Q|
∑
Qi∈Q

|Q̂i(x)− (Qi(x)−Qoi (x))| (19)

where Q̂i(x) and Qoi (x) are the true aggregation result on Best
feature set B and Adjust feature set A, respectively.

Fig. 5 shows the impact of varying privacy budgets on
the performance of count queries in terms of MAE. With
the proposed scheme, the MAE decreases as the privacy
budget grows before stabilizing toward the end. This result
demonstrates that a lower privacy requirement has better

(a) Adult (b) Breast cancer

(c) Titanic (d) Porto Seguro

Fig. 6: MAE performance for mean queries

data utility. Moreover, the MAE for the proposed scheme
is significantly smaller than the other schemes, which means
that the proposed scheme does indeed improve data utility. For
example, Figs. 5a and 5b at ε = 0.2 show an MAE of around
18 for the Adult dataset and 17 for the Titanic dataset using
our proposed scheme, whereas the group and Zhu schemes
return an MAE of around 110 and 200 on these same datasets
- an enormous increase over the proposed scheme. Again, we
attribute these results to reduced data correlation after adding
the adjusted features.

In terms of the other schemes, the MAE for the Zhu scheme
is slightly lower than for the group scheme most of the time for
the same reason as explained in the data analysis experiments.
Moreover, the MAE for the Zhu scheme decreases faster as
the privacy budget increased from 0.1 to 0.4 than when the
budget increases from 0.4 to 1. This again shows that a higher
privacy requirement creates a higher data utility cost.

The results of varying the privacy budgets with mean queries
are similar, as shown in Fig. 6. However, the MAE are much
smaller than for the count queries. This is because, after data
normalization, the scale of data falls within [−1, 1]; therefore,
each record has a similar mean value. As a result, the outcomes
of mean queries are much smaller than for count queries. In
addition, the MAE for our proposed scheme is not always
better than the group or Zhu schemes - for example, when
ε < 0.2. This shows that adding the adjusted features can
introduce additional errors. Hence, the quality of the query
results in the proposed scheme depends on the type of queries
and the dataset itself but, overall, our proposed scheme returns
a lower MAE than the other schemes.

D. Discussion

The key to the CR-FS scheme is to reduce data correlation
in the whole dataset, while maintaining a good utility for data
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analysis and data queries. We add differential private noise on
two places: feature selection and data training and still can
achieve desirable performance. This is because the fact that
sensitivity of feature selection is smaller than 1, the sequence of
feature importance will not change much. That is to say, there
is a high probability that more important features are still more
important and less important features are still less important.
In this way, a higher probability that important features are
kept for training and less important features are used to reduce
data correlation.

For data analysis, we select features in the step 5 according
to the accuracy of predicted results, thus the selected features
can have less correlation across the whole dataset and achieve
a desirable accuracy results. For data queries, the correlation
in the whole dataset also reduced with the proposed CR-FS
scheme. However, as we noted in the Figure 5 and 6, the
MAE is not always better than other schemes. This is because
the sensitivity is related the type of queries and dataset itself.
Deleted or added features in the dataset can reduce the data
correlation, which may bring in new error with regard to
different queries.

VIII. CONCLUSION

In this paper, we identified the privacy issue of the data
correlation in machine learning, which may result in more
privacy loss than expected in industrial applications. We
propose a novel feature selection scheme CR-FS to reduce
data correlation with little compromise to data utility. The
proposed CR-FS scheme includes steps that consider the
accuracy of predicted results, the privacy preserving and the
data correlation in the dataset. Our proposed algorithm strikes
a better trade-off between data utility and privacy leaks for
correlated datasets. The method’s performance is evaluated via
extensive experiments, and the results prove that our proposed
CR-FS scheme provides better data utility for both data analysis
and data queries compared to traditional schemes.
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