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Abstract 
While Australo-Papuan death adder neurotoxicity is generally considered to be 

due to the actions of reversible competitive postsynaptic 〈-neurotoxins, the neurotoxic 

effects are often poorly reversed by antivenom or anticholinesterases. This suggests 

that the venom may contain a snake presynaptic phospholipase A2 (PLA2) neurotoxin 

(SPAN) that binds irreversibly to motor nerve terminals to inhibit neurotransmitter 

release. Using size-exclusion liquid chromatography under non-reducing conditions, 

we report the isolation and characterisation of a high molecular mass SPAN complex, 

P-elapitoxin-Aa1a (P-EPTX-Aa1a), from the venom of the common death adder 

Acanthophis antarcticus. Using the chick biventer cervicis nerve-muscle preparation, 

P-EPTX-Aa1a (44,698 Da) caused inhibition of nerve-evoked twitch contractions 

while responses to cholinergic agonists and KCl remained unaffected. P-EPTX-Aa1a 

also produced significant fade in tetanic contractions and a triphasic timecourse of 

neuromuscular blockade. These actions are consistent with other SPANs that inhibit 

acetylcholine release. P-EPTX-Aa1a was found to be a heterotrimeric complex 

composed of 〈-, ®- and ©-subunits in a 1:1:1 stoichiometry with each subunit 

showing significant N-terminal sequence homology to the subunits of taipoxin, a 

SPAN from Oxyuranus s. scutellatus. Like taipoxin, only the 〈-chain produced any 

signs of neurotoxicity or displayed significant PLA2 enzymatic activity. Preincubation 

with monovalent death adder antivenom or suramin, or inhibition of PLA2 activity by 

incubation with 4-bromophenacyl bromide, either prevented or significantly delayed 

the onset of toxicity by P-EPTX-Aa1a. However, antivenom failed to reverse 

neurotoxicity. Early intervention with antivenom may therefore be important in severe 

cases of envenomation by A. antarcticus, given the presence of potent irreversible 

presynaptic neurotoxins. 

 

Keywords: Presynaptic snake neurotoxin; SPAN; death adder; Acanthophis 

antarcticus; taipoxin; phospholipase A2 

 

1. Introduction 
The Elapidae family consists of a variety of highly venomous snakes, many of 

which are found in Australia. The common death adder Acanthophis antarcticus 
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(Serpentes: Elapidae: Acanthophiinae) is usually found in the coastal areas of the 

states of Queensland, New South Wales (NSW), South Australia and Western 

Australian [1, 2] and is considered an elapid, despite its viper-like appearance and 

behaviour. Other Acanthophis spp. have also been identified in Irian Jaya, Papua 

New Guinea and some eastern Indonesian islands [2]. Symptoms of envenomation 

from Acanthophis mainly involve neurotoxic symptoms, including ptosis and general 

flaccid muscle paralysis, with death resulting from respiratory failure [2, 3]. Although 

some cases of weak haemolytic and anticoagulant activity have been reported [4, 5], 

there have been no serious clinical cases of coagulopathies resulting from 

envenomation, as is common with bites from many other venomous Australian elapid 

snakes. Envenomation does not produce any clinical signs of myotoxicity, with 

studies confirming that there is no evidence of skeletal muscle damage [6, 7]. More 

recent studies have found myotoxicity present in the directly-stimulated chick biventer 

cervicis nerve-muscle (CBCNM) preparation after incubation with some species of 

death adder, however A. antarcticus whole venom was devoid of myotoxic activity 

[8]. Significantly, delayed-onset neurotoxicity is a problem in death adder 

envenomations, occasionally with late presentation of neurotoxicity as the first feature 

of envenoming [2, 9, 10]. This has resulted in a recommended hospital admission 

period of 24 hours for patients in Papua New Guinea and both central and northern 

Australia, and for children in any region [11]. 

The recommended primary treatment for death adder envenomation is CSL 

monovalent death adder antivenom, which has been raised against A. antarcticus 

venom [12, 13], although cross-neutralisation occurs with ‘monovalent’ taipan and 

brown snake antivenoms [14]. Death adder antivenom appears to be quite effective 

in preventing the progression of neurotoxicity from all species of death adder in 

Australia and Papua New Guinea [2, 3], showing a rapid reversal of paralysis. 

However, some reports have suggested that the neurotoxic effects can be poorly 

reversed by antivenom or anticholinesterase (neostigmine) if the patient presents late 

after envenomation [15]. In support, an in vitro study involving A. antarcticus, A. 

praelongus and A. pyrrhus venoms found that all three venoms produced rapid 

postsynaptic neurotoxicity but antivenom displayed varying efficacy to reverse toxicity 

following neuromuscular blockade over a 4 hour period. Indeed, there was only a 

22% recovery of contractile responses following complete neuromuscular blockade 

with A. antarcticus, the venom to which the antivenom is raised [16].  
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Acanthophis venoms have long been considered to be composed of 

predominantly postsynaptic 〈-neurotoxins (for a review see [17]). However, rapidly 

developing neurotoxicity from postsynaptic 〈-neurotoxins conceals the action of any 

underlying snake presynaptic phospholipase A2 (PLA2; EC 3.1.1.4) neurotoxins (so-

called ‘β-neurotoxins’ or SPANs), that bind to motor nerve terminals to inhibit 

neurotransmitter release [18], or myotoxins that may be present in the venom. These 

toxins typically have slower onsets of activity but bind irreversibly [19, 20]. In the case 

of patients with delayed-onset or slowly-developing neurotoxicity, SPANS or 

myotoxins may play a significant role in the speed of recovery following antivenom 

therapy due to the irreversible nature of their actions, and may go some way to 

explain the above resistance to antivenom therapy. While a number of monomeric 

PLA2 (12–15 kDa) proteins have been isolated from death adder venom (for a review 

see [17]), none of these have been characterized pharmacologically. Recently, 

however, we identified the presence of high molecular mass presynaptic neurotoxic 

fractions within the venom of A. antarcticus geographic variants and other Australo-

Papuan Acanthophis spp. [21]. This study therefore aimed to biochemically and 

pharmacologically characterise the high molecular mass SPAN complex present 

within A. antarcticus (NSW variant) venom. 

 

2. Materials and methods 
2.1. Venom / toxin preparation and storage 

Lyophilized pooled A. antarcticus venom (NSW variant) was provided by the 

Australian Reptile Park (Gosford, NSW). Death adders were collected from their 

natural habitats in the Sydney metropolitan region. To minimise the effects of 

individual variations in venom [22], venom was collected, pooled and lyophilised (100 

mg dry weight) by the supplier. Lyophilised venom and isolated components were 

stored at –20oC until required.  

 

2.2. Size-exclusion liquid chromatography under non-reducing conditions 

Bioassay-guided isolation of the high molecular mass SPAN complex using fast-

perfusion liquid chromatography of whole venom was performed using a Superdex 

G-75 column (10 x 300 mm, 13 µm; GE Healthcare, Sydney, NSW, Australia) 

employing methods described previously [21]. The purified SPAN complex was rerun 
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under the same conditions to ensure purity. The approximate molecular mass of the 

SPAN complex was then determined following calibration of the Superdex G-75 

column with protein standards ranging from 6.5 to 66 kDa, as described previously 

[21]. The void volume (Vo) of the column was determined by running blue dextran 

(2,000 kDa), and the elution volume (Ve) was calculated for each molecular mass 

marker. The molecular mass range of SPAN complexes were then determined from 

interpolation of a plot of log molecular mass versus retention ratio (Ve / Vo) of the 

standards. 

 

2.2.2. Reverse-phase high-pressure liquid chromatography (RP-HPLC) 

Subunits of the high molecular mass SPAN complex were isolated from the 

purified size-exclusion fraction using a Chromolith RP-18e column (4.6 x 100 mm; 

Merck KGaA, Darmstadt, Germany). Fractions were eluted using an 

acetonitrile/trifluoroacetic acid (TFA) gradient (Buffer A: 0.1% [v/v] TFA, Buffer B: 

acetonitrile / 0.085% [v/v} TFA). The gradient employed was: 0–10 min, 2% B; 10–50 

min, 2–98% B; at a flow rate of 4 ml/min. The eluant was monitored at 280 and 214 

nm.  

 

2.3 Bicinchoninic Acid Protein (BCA) Assay 

Following lyophilisation, protein concentrations were determined using the 

Quantipro™ BCA assay kit (Sigma-Aldrich). Protein contents between 5–200 µg/ml 

were detected at 560 nm by a Titertek Multiscan Plus MKII plate reader (Flow 

Laboratories Australasia, North Ryde, NSW). A standard curve was created using 

bovine serum albumin from which protein concentrations were interpolated. 

 

2.4. Mass determination of toxin subunits 

2.4.1. Matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass 

spectrometry 

Lyophilised RP-HPLC samples were analysed to determine mass and confirm 

purity using a Shimadzu AXIMA TOF2 (Shimadzu Oceania, Rydalmere, NSW, 

Australia). The system was operated in positive linear mode. Sinapinic acid (20 

mg/ml in 40% acetonitrile, 0.1% TFA) was used as the matrix. Samples were 

resuspended in 50% [v/v] acetonitrile, 1% [v/v] TFA and spotted with an equal 

volume of matrix, then allowed to dry.  Data was collected with a 337 nm nitrogen 
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laser. The signal was averaged and processed using Shimadzu Launchpad 2.7 

software (Shimadzu Oceania, Rydalmere, NSW, Australia). All spectra were 

calibrated externally with appropriate protein standard mixtures (insulin, 5,729.61 Da; 

cytochrome c, 12,361.96 Da and apomyoglobin, 16,952.27 Da). 

 

2.4.2. Electrospray ionisation quadrupole time-of-flight (ESI-Q-TOF) mass 

spectrometry 

Once purity was confirmed, the definitive mass of RP-HPLC samples was 

determined using a QSTAR Elite hybrid Q-TOF mass spectrometer system (Applied 

Biosystems/MDS Sciex, Foster City, CA, USA) equipped with a nanospray source. 

Lyophilised samples were dissolved into 10 µL of solvent A (2% [v/v] acetonitrile, 

0.2% [v/v] formic acid) and were loaded into an Eksigent AS-1 autosampler 

connected to a Tempo nanoLC system (Eksigent Technologies, Dublin, CA, USA). 

Sample was passed into a C18 reverse-phase trap column (Michrom Bioresources, 

Auburn, CA, USA) connected to a 10-way switching valve at a flow rate of 20 µL/min, 

and the trap was washed for 3 minutes. Proteins were eluted from the trap at a flow 

rate of 500 nL/min, and then flowed into a New Objective IntegraFrit column (100 

mm, 75 µm ID) packed with ProteoPep 2 C18 resin. At the moment of switching, an 

acetonitrile gradient was initiated (Solvent A: 2% [v/v] acetonitrile, 0.2% [v/v] formic 

acid. Solvent B: 98% [v/v] acetonitrile, 0.2% [v/v] formic acid. Gradient: 0–30 min, 5–

95% B; 30–32 min, 95% B; 32–35 min, 95–5% B; 35–45 min, 0% B) to elute bound 

protein from the column. Eluted proteins flowed into a MicroIonSpray II-mounted 75 

µm ID emitter tip that tapered to 15 µm. Charged proteins were then ionised by 

nanoelectrospray with a potential of 2300 V into the source of the QSTAR with a 

temperature of 150°C. A mass range of 500–2000 Da was scanned every second. 

The masses of proteins were determined as an average of the masses of multiply 

charged ions. Raw data were processed using the Analyst® QS version 2.0 (Applied 

Biosystems/MDS Sciex, Foster City, CA, USA).  

 

2.5. N-terminal sequence determination 

N-terminal sequencing of purified toxin subunits was performed by the 

Biomolecular Research Facility at the University of Newcastle, NSW, Australia using 

an Applied Biosystems Procise HT Protein Sequencer, and the Australian Proteome 
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Analysis Facility (APAF) using an Applied Biosystems/Perkin-Elmer Procise 494 

Procise protein sequencer. Samples was loaded onto a biobrene-treated, precycled 

discs and subjected to N-terminal (Edman) sequencing. Sequence homology of 

purified toxin subunits with existing proteins was determined using a Blastp search of 

the UniProt Knowledgebase (http://ca.expasy.org/tools/blast) followed by a ClustalW 

multiple alignment.  

 

2.6. Isolated chick biventer cervicis nerve-muscle preparation 

Isolated fractions were tested for neurotoxic and myotoxic activity using the 

isolated chick biventer cervicis nerve-muscle (CBCNM) preparation [23]. Male 

Australorps chicks aged 1–7 days were euthanised with CO2 and exsanguinated. The 

biventer cervicis muscle with attached nerve was dissected and placed in an organ 

bath (8 ml) under 1 gram of resting tension. The organ bath contained Krebs-

Henseleit solution of the following composition (in mM): NaCl, 118.4; KCl, 4.7; 

MgSO4, 1.2; KH2PO4, 1.2; NaHCO3, 25.0; D-glucose, 11.1; CaCl2, 2.5, which was 

bubbled with carbogen (95% O2 and 5% CO2) and maintained at 34°C. Indirect 

stimulation was applied to the motor nerve using supramaximal ca. 30 V square-

wave pulses of 0.2 ms duration at 0.1 Hz with a Grass S88 stimulator. Contractions 

were measured using an isometric force transducer (ADInstruments, Belle Vista, 

NSW, Australia). The nerve-evoked muscle tissue was allowed to equilibrate for 30 

minutes. Exclusive electrical stimulation of the nerve was ensured by complete 

blockade of twitches using 10 µM d-tubocurarine. Washout was then repeated until 

twitch tension returned to its original amplitude. Contractures to various exogenous 

agonists were subsequently recorded in the absence of electrical stimulation before, 

and after, incubation with toxin. The final bath concentrations and periods of 

incubation were as follows: acetylcholine (ACh, 1 mM) for 30 s; carbachol (CCh, 20 

µM) for 60 s; potassium chloride (KCl, 40 mM) for 30 s [24]. After each agonist 

incubation period, washout was repeated until a stable baseline was observed. 

Following addition of toxin, twitch tension amplitude was monitored for 4 hours, or 

until twitches were abolished. Time-matched or vehicle controls confirmed that 

muscle fatigue was not significant up to 4 hours after introduction of muscles into the 

organ bath. Muscle tension from isometric force transducers was amplified using a 

ML221 bridge amplifier (ADInstruments) and recorded using a Powerlab 2/25 system 

(ADInstruments) connected to a Macintosh computer. Data was digitised at 140 Hz, 
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modified with a 50/60 Hz mains filter and a 20–200 Hz low-pass filter. Muscle tension 

was recorded using Chart v5.5.4 software (ADInstruments).  

 

2.6.1. Antivenom and suramin reversibility studies 

The efficacy of monovalent death adder antivenom (CSL Biotherapies, 

Melbourne, Australia) or suramin to neutralise the activity of the toxin was assessed 

by preincubating the organ bath with 5 U/ml of antivenom or 0.3 mM suramin for 10 

min prior to addition of venom or toxin. Reversibility studies were also performed by 

the addition of 5 U/ml monovalent death adder antivenom at 90% inhibition of twitch 

contractions (t90) or 0.3 mM suramin at 50% inhibition of twitch contractions (t50). An 

additional study observed the reversibility of toxicity using suramin (0.3 mM) after the 

toxin was incubated for 30 min and then washed from the bath.  

 

2.6.2. Myotoxicity studies 

The myotoxic effects of venom or toxin were examined using direct stimulation of 

the biventer cervicis muscle. Muscles were directly stimulated every 10 s with square 

wave pulses of 2 ms duration at supramaximal voltage (ca. 30 V) using electrodes 

placed around the belly of the muscle. Muscle contractions due to any nerve-evoked 

release of ACh were blocked by the addition of 10 µM d-tubocurarine, which 

remained in the organ bath for the duration of the experiment. Toxin was left in 

contact with the preparation until blockade of twitch contractions occurred, or for a 

270 min period. Venom or toxins were considered to be myotoxic if they inhibited 

twitches elicited by direct stimulation or caused an Increase in baseline muscle 

tension [24]. 

 

2.6.3. Low quantal content studies 

The presence of Mg2+ in the bathing solution facilitates a more pronounced 

triphasic action of SPANs on twitch contractions [25, 26]. The safety margin for 

neurotransmitter release was therefore reduced in separate experiments by the 

addition of 9–17 mM Mg2+ to the bath [27]. Increasing concentrations of MgCl2 were 

titrated to suppress twitch contractions to between 10-30% of initial amplitude. After 

twitch contractions had stablised for at least 30 min toxin was then added. 

 

2.6.4. Tetanic fade studies 
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In separate experiments, the ability of the CBCNM preparation to maintain tetanic 

contractions in response to a short tetanic train of stimuli in the presence of the toxin 

was investigated. Prior to, and following, addition of toxin to the bath, three 50 Hz, 3 s 

trains every 10 s were interspersed at 0% (control), 25% (t25), 50% (t50), 75% (t75) 

and 90% (t90) neuromuscular blockade. These tetanic trains were interspersed 

between normal 0.05 ms 10 Hz stimulation. The amount of fade in the tetanic 

response was calculated by comparing the amplitude of the initial (tinitial) and final 

tension (tfinal) during the tetanic train. Tetanic fade was determined from the following 

equation: 

  

€ 

% Tetanic Fade =100 × 1−
tfinal

tinitial

$ 

% 
& 

' 

( 
)   Equation 1 

 

2.7. Secretory phospholipase A2 (sPLA2) activity assay 

The sPLA2 activities of whole venom and isolated toxins were determined using a 

colorimetric sPLA2 assay kit (Cayman Chemical Ltd, Ann Arbor, MI) as previously 

described [21]. sPLA2 activity was calculated as micromoles of substrate (1,2-dithio 

analog of diheptanoyl phosphohatidylcholine) hydrolysed per minute per milligram of 

enzyme (µmol/min/mg), with bee (Apis mellifera) venom as a positive control. 

 

2.8. Chemical modification of His48 using 4-bromophenacyl bromide 

The PLA2 enzymatic activity of the toxin was inhibited by alkylation of the His48 

residue using 4-bromophenacyl bromide (4BPB) as previously described [28]. 330 µg 

of toxin was prepared in 615 µL of 0.1 M Tris-HCl / 0.7 M EDTA buffer (pH 8.0), to 

which 10 µL of 4BPB (0.75 mg/ml in ethanol) was subsequently added, and 

incubated at 25°C for 13 hrs. The modified toxin was collected and lyophilised prior to 

assaying for sPLA2 activity and neurotoxicity.  

 

2.9. Chemicals and drugs 

Unless otherwise stated, all chemicals and drugs were purchased from Sigma-

Aldrich, Castle Hill, NSW, Australia. 

 

2.10. Data analysis 

Twitch contraction amplitude was expressed as a percentage of initial amplitude, 

prior to addition of the toxin. Contractile responses to exogenous agonists were 
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expressed as a percentage of their amplitude prior to addition of the toxin. To 

compare the neurotoxicity of venoms, the time taken to cause 90% inhibition of 

nerve-mediated twitch contractions (t90) was determined as a quantitative measure of 

potency. Values for t90 were calculated for each experiment by determining the 

elapsed time after toxin addition at 10% of the initial twitch contraction amplitude, and 

then the means and standard error of the means were calculated. Where indicated, 

statistical significance was determined by one-way analysis of variance (ANOVA) or 

paired Student’s t-test. All ANOVAs were followed by a Bonferroni-corrected multiple 

t-test. Statistical analyses were performed using the PRISM 5.0 software package 

(GraphPad Software, San Diego, CA, USA). A p-value of 0.05 was employed for all 

statistical analyses. 

 
3. Results 
3.1. Toxicity of whole venom 

Whole A. antarcticus venom (10 µg/ml) produced rapid and complete inhibition of 

nerve-evoked twitch contractions within 9 ± 1 min (n = 2; Fig. 1A), whereas with time-

matched controls there was no significant fatigue of twitch tension over a 240 min 

period (Fig. 1A). Whole A. antarcticus venom displayed classical postsynaptic 

neurotoxic activity, with complete inhibition of responses to exogenous nicotinic 

agonists (p < 0.001, n = 2; Fig. 1D).  

 

3.2. Venom fractionation under non-denaturing conditions 

Prior to separation of whole A. antarcticus venom by size-exclusion FPLC the 

Sephadex G-75 column was calibrated using a set of molecular weight markers. 

Using blue dextran (2,000 kDa), the void volume (Vo) of the Sephadex G-75 column 

was determined to be 7.6 ml while the elution volume (Ve) of a range of known 

standards was determined and the molecular mass of unknown complexed was then 

determined by interpolation of a plot of log molecular mass vs. Ve / Vo ratio (Fig 2B). 

Under non-reducing conditions, fractionation of whole A. antarcticus venom produced 

a characteristic pattern of four major peaks (Fig. 2A). This was similar to that seen 

with other geographic variants of A. antarcticus and certain other Australo-Papuan 

species of Acanthophis [21]. The retention time of the earliest eluting fraction was 

12.8–16.0 min, with the peak absorbance at 14.6 min (Fig. 2A), corresponding to a 

molecular mass of ca. 43 kDa (Fig. 2B). 
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SPAN complexes typically have molecular weights ranging between 21 kDa (the 

covalently-linked heterodimer β-bungarotoxin from Bungarus fasciatus; [29]) and ca. 

87 kDa (the heterohexameric textilotoxin; [30]). Therefore the 43 kDa fraction was 

collected for further biochemical characterisation and neurotoxicity testing. The yield 

of the early eluting fraction, as determined by BCA assay, was 6.5% w/w A. 

antarcticus venom (195 µg from ca. 3 mg of whole venom). Toxicity screening in the 

CBCNM preparation indicated that this contained prejunctional neurotoxic activity 

(see section 3.3), while the second peak (eluting at 17.4–21.5 min, ca. 3–13 kDa) 

caused a postsynaptic neurotoxic action due to inhibition of responses to the 

exogenous nicotinic agonists, ACh and CCh (data not shown). Accordingly, the 43 

kDa fraction was named P-elapitoxin-Aa1a (P-EPTX-Aa1a) using the rational 

nomenclature system for naming toxins from spiders and other venomous animals 

[31]. The activity descriptor prefix ‘P’ indicates SPANs with a presynaptic action to 

inhibit neurotransmitter release, ‘elapitoxin’ is the generic name for toxins from the 

family Elapidae, ‘Aa’ are the genus and species descriptor for Acanthophis 

antarcticus, ‘1’ represents the first family of toxins with this activity (‘1’ was chosen to 

represent multimeric SPANs vs. ‘2’ for monomeric SPAN), and ‘a’ denotes the first 

paralog (isoform) found. 

 

3.3. Neurotoxicity studies with P-EPTX-Aa1a 

P-elapitoxin-Aa1a (55–222 nM) produced a concentration-dependent inhibition of 

nerve-evoked twitch contractions of the CBCNM preparation (Fig. 1B). The t90 value 

for 222 nM P-EPTX-Aa1a for inhibition of twitch contractions was 74 ± 3.5 min (n = 4) 

that increased to 121 ± 7 min (n = 4) using 55 nM P-EPTX-Aa1a. A slight triphasic 

timecourse of action characterized by depression-enhancement-blockade of 

neurotransmission was evident as has been previously reported for a variety of other 

SPANs in mammalian nerve-muscle preparations [19, 32]. This triphasic action was 

appreciably enhanced under conditions of low quantal content (high external [Mg2+]), 

and the t90 value for inhibition of twitch contractions was also significantly reduced to 

41 ± 1 min (p < 0.001, unpaired Student’s t-test, n = 3; Fig. 3A). 

Importantly, following complete neuromuscular blockade, P-EPTX-Aa1a failed to 

inhibit responses to the exogenous cholinergic agonists ACh and CCh or the 

depolarising agonist KCl (n = 4; Fig. 1D). Interestingly, the responses to carbachol 

were enhanced in many fractions, but this has been previously reported in this 
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preparation [33-35] and may reflect time-dependent sensitization of the tissue to 

carbachol. Furthermore, P-EPTX-Aa1a failed to induce any significant change in 

baseline tension (data not shown) or directly-stimulated muscle twitches of the 

biventer cervicis muscle (n = 4; Fig. 1C). These actions are consistent with the 

presence of a SPAN complex that inhibits neurotransmitter release without any 

additional signs of myotoxicity.  

Further support that P-EPTX-Aa1a is a SPAN complex was provided by the 

ability of the toxin to induce fade in tetanic contractions that contributes to muscle 

fatigue at more physiological frequencies of nerve stimulation (Fig. 3B and C). 

Tetanic fade in controls in response to a 3 sec 50 Hz train was minimal in all 

experiments with a range of 0–6% (1 ± 1%, n = 7). In the presence of the positive 

control, 1 µM d-tubocurarine, isometric tension rapidly faded to a plateau level. With 

P-EPTX-Aa1a and taipoxin tetanic fade developed gradually in the initial 500 ms to 

1000 ms of the tetanic train to a plateau that was maintained to the end of the train 

(Fig. 3B). P-EPTX-Aa1a (55 nM) produced concentration-dependent tetanic fade of 

53 ± 11% at t75 (n = 4; Fig. 3C). This was less than the positive control, 1 µM d-

tubocurarine (87 ± 11% at t75, n = 4), but greater than the classical heterotrimeric 

SPAN, taipoxin (32 ± 14% at t75, n = 4, 55 nM) previously shown to cause tetanic 

fade [36]. Interestingly, lower concentrations produced a greater degree of tetanic 

fade (n = 4; Fig. 3C).  

 

3.4. Neutralisation and reversibility of P-EPTX-Aa1a neurotoxicity 

CSL Monovalent death adder antivenom (5 U/ml) was effective in preventing the 

development of toxicity with P-EPTX-Aa1a (Fig. 1B). However, reversal of P-EPTX-

Aa1a toxicity by antivenom applied at t90 was unsuccessful (Fig. 1B), highlighting the 

irreversible binding of SPANs. Preincubation with the polysulphonated naphthylurea 

anti-trypanosomal drug, suramin (0.3 mM), previously shown to inhibit SPAN but not 

postsynaptic α-neurotoxin toxicity [37, 38] produced a 4.3-fold increase in the time to 

t90 of P-EPTX-Aa1a to 315 ± 51 min (p < 0.01, n = 4), but unfortunately failed to 

completely inhibit neuromuscular blockade (Fig. 4). The Irreversible nature of toxin 

binding following only short incubation periods [19, 39] was further highlighted by 

experiments where unbound toxin was washed from the bath after 30 min but 

neuromuscular blockade still occurred despite subsequent addition of 0.3 mM 
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suramin (t90 = 119 ± 7.2 min, n = 4; Fig. 4). Suramin administered at t50 was even 

less effective at reversing neurotoxicity with 90% neuromuscular blockade reached at 

146 ± 37 min (n = 4; Fig. 4). Consistent with its prejunctional action, agonist 

responses were not significantly inhibited following application of antivenom or 

suramin in the above experiments (Fig. 1D). 

 

3.5 Fractionation of the P-EPTX-Aa1a complex 

Given that SPAN complexes are commonly derived of between 2 and 6 subunits 

[30, 40], P-EPTX-Aa1a subunits were separated under reducing conditions using 

C18 RP-HPLC to determine the subunit composition. This resulted in three major 

peaks (Fig. 5A). The BCA protein assay failed to detect any significant quantities of 

protein in the early eluting peak at 9.6–10.1 min, and this peak was subsequently 

excluded from further investigation. The three most abundant peaks, eluting at 16.7, 

10.8, and 17.3 min, were named the 〈-, β-, and ©-subunits of P-EPTX-Aa1a, 

respectively, based on their homology to the molecular masses (see section 3.5) and 

N-terminal amino acid sequences (see section 3.6) of known multimeric SPAN 

subunits.  

 

3.6. Mass spectrometry of P-EPTX-Aa1a subunits 

ESI-Q-TOF mass spectrometry determined the definitive mass of the α- and β-

subunits to be 13,809 Da and 13,516 Da, respectively (Figs. 5B and C). MALDI-TOF 

mass spectrometry determined that the ©-subunit was most likely heterogeneously 

glycosylated with a nominal mass of 17,373 Da (Fig. 5D). The sum of the 〈-, ®- and 

©-subunit masses resulted in an average mass of 44,698 Da, which is comparable 

with the mass estimated from calibration of the size-exclusion column (ca. 43 kDa), 

suggesting a 1:1:1 binding stoichiometry. 

 

3.7. N-terminal sequencing of P-EPTX-Aa1a subunits 

Partial N-terminal sequences of the 〈-, ®-, and ©-subunits were determined by 

Edman degradation. The α- and β-subunits showed a high degree of homology to 

each other but the γ-subunit possessed a seven residue extension at the N-terminus 

(Fig. 6A). All three subunits were then subjected to a Blastp analysis of the UniProt 

Knowledgebase and found to show significant homology to a range of SPAN 
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neurotoxin subunits (Fig. 6B). Comparing the three subunit sequences with 

corresponding N-terminal fragments of other snake proteins, the subunits of P-EPTX-

Aa1a displayed the highest overall homology to the heterotrimeric SPAN taipoxin 

from the coastal taipan Oxyuranus s. scutellatus [41], with the 〈-, ®- and ©-chains of 

taipoxin showed 85%, 87% and 90% homology to the corresponding subunits of P-

EPTX-Aa1a. Individual subunits of P-EPTX-Aa1a also showed lesser homology to 

subunits of the heteromultimeric SPANs cannitoxin from Oxyuranus s. canni [35] and 

textilotoxin from Pseudonaja textilis [42]. 

 

3.8 Neurotoxicity studies with P-EPTX-Aa1a subunits 

Of the three subunits isolated from P-EPTX-Aa1a, only the 〈-subunit (740 nM) 

produced inhibition of nerve-evoked twitch contractions compared with the time-

matched control, resulting in 79 ± 10% neuromuscular blockade after 270 min (n = 4; 

Fig. 7A). This neuromuscular blockade occurred in the absence of any significant 

inhibition of responses to exogenous agonists (Fig. 7C). There was a complete lack 

of toxicity apparent with both ®- and γ-subunits at this high concentration. Equimolar 

recombination of these subunits determined that the 〈-subunit was important in 

presenting any significant toxicity, as ®- and γ-subunits (150 nM) combined only 

caused incomplete inhibition of twitch contractions with only 51 ± 7% neuromuscular 

blockade after 270 min (Fig. 7B). The equimolar recombination of the 〈- and γ-

subunits (150 nM) caused some inhibition of twitch responses with 73 ± 13% 

neuromuscular blockade at 270 min (n = 4) while the recombination of the 〈- and β-

subunits (150 nM) resulted in complete neuromuscular blockade with a t90 value of 

149 ± 6 min (n = 4; Fig. 7B). The equimolar recombination of all 3 subunits (150 nM) 

produced the most rapid inhibition of twitches (t90 = 114 ± 7 min, n = 4; Fig. 7B), 

which was slower in comparison to the whole P-EPTX-Aa1a complex (one-way 

ANOVA, p < 0.05) but significantly more rapid than with the 〈-subunit alone. Finally, 

no individual P-EPTX-Aa1a subunit or recombined subunits inhibited agonist 

responses (Fig. 7C). 

 

3.9 Secretory phospholipase A2 (sPLA2) activity 

The sPLA2 activity of whole A. antarcticus venom and P-EPTX-Aa1a was 

determined to be 257 ± 14 µmol/min/mg and 400 ± 52 µmol/min/mg, respectively (n = 
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4; Fig 8A). In comparison, the sPLA2 activity of the positive control, Apis mellifera bee 

venom, was 287 ± 10 µmol/min/mg (n = 18). The 〈-subunit also displayed appreciable 

PLA2 activity of 211 ± 17 µmol/min/mg (n = 6) while the ®- and ©-subunits did not 

exhibit any significant PLA2 activity (n = 3). 

 

3.10 Chemical modification of histidine residues of P-EPTX-Aa1a using 4-

bromophenacyl bromide 

Modification of histidines residues in P-EPTX-Aa1a using 4BPB reduced the 

PLA2 activity to 20 µmol/min/mg, equivalent to ca. 5% of the original P-EPTX-Aa1a 

complex (Fig. 8A). This is most likely the result of alkylation of a His48 residue 

previously identified at the active site of snake PLA2 toxins [43]. Alkylated P-EPTX-

Aa1a caused significantly reduced toxicity in the CBCNM preparation, with only a 13 

± 3.2% reduction in twitch responses at 240 min (n = 4; Fig. 8B). This occurred in the 

absence of any reduction in responses to exogenous agonists (data not shown). The 

vehicle (4BPB) had no effect on twitch tension or agonist responses (Fig. 8B). 

 

4. Discussion 
While the venom of A. antarcticus displays classical postjunctional neurotoxicity, 

and is known to contain a number of long- and short-chain postsynaptic 〈-neurotoxins 

[17], the present study clearly identifies the presence of a heterotrimeric SPAN 

complex. To our knowledge, P-EPTX-Aa1a represents the first SPAN complex to be 

biochemically and pharmacologically characterised from the venom of A. antarcticus. 

P-EPTX-Aa1a caused concentration-dependent inhibition of neuromuscular 

transmission, with no reduction of contracture responses to nicotinic cholinergic 

agonists, consistent with a prejunctional action to block ACh release. Some 

monomeric SPAN neurotoxins such as notexin also have myotoxic activity [44] but 

the absence of any effect on responses to KCl and direct muscle stimulation are 

consistent with P-EPTX-Aa1a acting as a presynaptic neurotoxin lacking myotoxicity. 

P-EPTX-Aa1a also produced a pronounced triphasic action, particularly under 

conditions of low quantal content, characterised by an initial brief depression, 

followed by a period of increased tension, and then a gradual decline to complete 

neuromuscular blockade. This is typical of SPANs including β-bungarotoxin [45], 
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taipoxin [46], notexin [47] and crotoxin [48], especially under conditions of high 

[Mg2+]o [25, 26]. 

Under non-denaturing conditions the molecular mass of the P-EPTX-Aa1a 

complex was determined as ca. 43 kDa following separation of the SPAN on a size-

exclusion column. Subsequent RP-HPLC of P-EPTX-Aa1a produced three major 

subunits whose combined masses, 44,698 Da, was in close agreement with the 

molecular mass of the SPAN complex estimated from size-exclusion 

chromatography. Masses and N-terminal sequences of all three P-EPTX-Aa1a 

subunits were similar to those found in the heterotrimeric SPAN complexes taipoxin, 

cannitoxin and to a lesser extent textilotoxin [35, 42]. MALDI-TOF mass spectrometry 

revealed the ©-subunit of P-EPTX-Aa1a to be a glycoprotein as evidenced by the 

areas of heterogenous glycosylation observed in the MALDI spectra. Glycosylation 

was also described for ©-subunits of previously isolated heterotrimeric SPAN 

complexes such as taipoxin [41], cannitoxin [35], and paradoxin [49].  

Similar to other heterotrimeric SPAN complexes, only the α-subunit of P-EPTX-

Aa1a presented any significant PLA2 or neurotoxic activity, likely contributing 

significantly to the overall toxicity of the complex. Unfortunately it is difficult to 

compare PLA2 activity between studies as assay conditions vary considerably. 

However, using the same colourimetric assay, cannitoxin was found to possess a 

similar pattern of high PLA2 activity in the whole complex and α-subunit, albeit at a 

lower activity than P-EPTX-Aa1a [35]. Furthermore the lack of PLA2 activity with the 

β- and γ-subunits of P-EPTX-Aa1a was mirrored in the cannitoxin study. Despite 

lacking any significant neurotoxic or enzyme activity all three subunits of P-EPTX-

Aa1a appear to be necessary for maximum neurotoxicity, with equimolar 

recombination of all subunits yielding close to the same neurotoxicity as the native P-

EPTX-Aa1a complex. This duplication of homologous subunits possibly reflects an 

evolutionary approach to increase the affinity of the SPAN complex for its 

prejunctional target and hence its neurotoxicity [50]. This is perhaps because the 

affinity of the complex for the nerve terminal is the product of the affinities of its 

individual subunits [51], the additional subunits contribute to a better positioning of 

the PLA2 enzyme with respect to its substrate, and/or that they reduce non-specific 

binding of the active α-subunit. Regardless, the PLA2 activity of the additional 

subunits is no longer important and therefore has been lost. As evidence, oligomeric 
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SPANs such as the heterotrimeric taipoxin and paradoxin and heterohexameric 

textilotoxin are more potent than monomeric SPANs such as notexin, notechis II-5 

and pseudexin-A in lethality studies (see [17]).   

When 4BPB was used to chemically modify the active site of P-EPTX-Aa1a, both 

the enzymatic and neurotoxic activity were significantly inhibited, suggesting His48 at 

the catalytic site is important for neurotoxic activity at the neuromuscular junction. 

This loss of neurotoxicity following alkylation with 4BPB has been previously noted 

with other SPANs [35, 52, 53], although it may result from conformational changes in 

the toxin and an altered ability to form high affinity interactions with its specific 

binding protein target [54]. Nevertheless, recent studies using a single H48Q point 

mutation at the active site of the neurotoxic SPAN OS2, unlikely to cause any 

structural perturbations at the interfacial surface, completely inhibited activity in the 

CBCNM preparation but only reduced lethality by icv injection by 16-fold [55]. This 

finding supports the idea that sPLA2 activity is important for neurotoxicity at the 

neuromuscular junction but not for central neurotoxicity. 

Further support that P-EPTX-Aa1a is a SPAN complex was provided by the 

ability of P-EPTX-Aa1a to induce fade in tetanic tension as has been previously 

reported for a number of SPAN complexes [36], but not postsynaptic snake 〈-

neurotoxins [56], during the development of neuromuscular blockade. This is 

hypothesised to result from a block of prejunctional α3β2 cholinergic receptors that 

normally mediate autofacilitation of ACh release during high frequency stimulation at 

the neuromuscular junction [57]. Conversely, tetanic fade may also result from a 

block of prejunctional adenosine A2 receptors previously shown to enhance 

neurotransmitter release [58]. Interestingly, agents that block A2-mediated 

enhancement of ACh release have a very slow timecourse of action which may go 

some way to explain the enhanced degree of tetanic fade at lower concentrations of 

P-EPTX-Aa1a, presumably resulting from a slower timecourse of neuromuscular 

blockade. Of course tetanic fade may be the consequence of the external or internal 

mechanisms to interfere with synaptic vesicle release and recycling seen with SPANs 

(for a review see [59]). Regardless of the mechanism(s) that produces tetanic fade, it 

is a clinically important phenomenon that no doubt contributes to muscle fatigue in 

envenomed patients, particularly if the safety factor for neurotransmission has been 

compromised due to slowly developing neuromuscular blockade.  
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We investigated the efficacy of the polysulfonated naphthylurea anti-

trypanosomal drug suramin to reverse neuromuscular blockade as it has been 

previously shown to inhibit the myotoxic and neurotoxic effect of bothropstoxin-I [37]. 

Being a strongly acidic polysulfonated substance, it may neutralise the sPLA2 

neurotoxic activity by forming acid-base complexes, as seen with other polyanionic 

compounds such as heparin [60]. Suramin has been proven effective in prolonging 

time to paralysis with the presynaptic neurotoxins ®-bungarotoxin and crotoxin [38]. 

Preincubation with both monovalent death adder antivenom and suramin were 

effective in the prevention or significant delay of neurotoxicity, respectively. However, 

reversal of neurotoxicity with antivenom and suramin had varying degrees of 

effectiveness. Considering the partial effectiveness of suramin in slowing the onset of 

toxicity, this may be a complimentary treatment to antivenom to prevent delayed 

onset toxicity in death adder envenomation. Importantly, however, suramin has 

shown no effectiveness against postsynaptic α-neurotoxins such as 〈-bungarotoxin 

[38], and is likely to have little effect against the postsynaptic 〈-neurotoxins previously 

identified in A. antarcticus venom (see [17] for a review).  

In summary, P-EPTX-Aa1a from A. antarcticus (NSW) venom shares similar 

overall complex and subunit mass, degree of glycosylation, neurotoxicity, pattern of 

sPLA2 activity and sequence homology to the subunits of other high molecular mass 

heterotrimeric SPAN complexes. In particular, P-EPTX-Aa1a displays the highest 

overall homology with taipoxin and cannitoxin, from the coastal and Papuan taipan, 

respectively, belonging to same Acanthophiinae subfamily as Acanthophis spp. 

Importantly, while early preincubation of antivenom prevented the onset of 

neurotoxicity, late administration of antivenom (at t90) failed to neutralize the in vitro 

neurotoxicity of P-EPTX-Aa1a. Therefore, since A. antarcticus (NSW) venom 

contains a potent irreversible SPAN, clinicians may need to be attentive of possible 

presynaptic neurotoxicity following envenomation by this snake and most likely many 

other Acanthophis spp. [21]. Therefore early intervention with antivenom is critically 

important in preventing severe prolonged envenomation from A. antarcticus and 

other Australo-Papuan death adders. 
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Figures 
 

 
Fig. 1. Effects of P-EPTX-Aa1a on neuromuscular transmission in the chick biventer-

cervicis nerve-muscle preparation. (A) Rapid inhibition of indirectly-stimulated (nerve-

evoked) fast twitch contractions by 10 µg/ml whole A. antarcticus (NSW variant) 

venom (closed circles, n = 2), with no significant changes in twitch tension in time-

matched controls (open triangles, n = 3). Note the split x-axis. (B) Concentration-

dependent inhibition of indirectly-stimulated fast twitch contractions by P-EPTX-Aa1a 

(55 nM, closed squares, n = 4; 222 nM, closed circles, n = 4). Addition of 5 U/ml 

monovalent death adder antivenom 10 min prior to application of 222 nM P-EPTX-

Aa1a successfully prevented onset of toxicity (gray circles, n = 4), whereas 

antivenom applied at t90 failed to reverse the inhibition of twitch contractions (open 

circles, n = 4). (C) Lack of effect of 222 nM P-EPTX-Aa1a on twitch contractions 

evoked by direct muscle stimulation (closed circles, n = 4), in comparison to time-

matched controls (open triangles, n = 4). All muscle contractions were recorded in 

the presence of 10 µM d-tubocurarine to prevent any effects of nerve-evoked release 

of ACh. (D) Effect of venom and P-EPTX-Aa1a on contractile responses to 

exogenous ACh, CCh and KCl. Data shows the percentage of control slow fibre 
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contracture responses to exogenous agonists after complete inhibition of twitch 

contractions by 10 µg/ml venom (closed bars, n = 4) or 222 nM toxin alone (open 

bars, n = 4), or following application of 5 U/ml antivenom at t90 (thick gray striped 

bars, n = 4) or 0.3 mM suramin (black striped bars, n = 4). In the case of 5 U/ml 

antivenom preincubated 10 min prior to addition of 222 nM P-EPTX-Aa1a (thin gray 

striped bars, n = 4), data was recorded at 300 min. Note that only whole venom 

completely inhibited responses to ACh and CCh. Data represent the mean ± SEM. 

**p < 0.01, ***p < 0.001, significantly different from control response, one-way 

ANOVA. For clarity, only data points recorded every 4 min are displayed in panels B 

and C. 
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Fig. 2. Separation of the P-EPTX-Aa1a complex under non-reducing conditions. (A) 

Representative size-exclusion FPLC chromatogram of Acanthophis antarcticus 

(NSW variant) venom employing a Superdex G-75 column with an isocratic flow of 

0.1 M ammonium acetate (pH 6.8) at 0.75 ml/min. The shaded fraction, 

corresponding to P-EPTX-Aa1a, was collected for further characterisation. (B) 

Determination of the molecular mass of P-EPTX-Aa1a. Log molecular weight versus 

retention ration (Ve / Vo) standard curve for the calibration of the Superdex G-75 

column using a series of molecular weight standards. The molecular mass of P-

EPTX-Aa1a was determined to be ca. 43 kDa. 
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Fig. 3. P-EPTX-Aa1a produces both triphasic changes in twitch tension and tetanic 

fade during neuromuscular blockade in the CBCNM preparation. (A) Inhibition of 

indirectly-stimulated fast twitch contractions by 222 nM P-EPTX-Aa1a with (open 

circles, n = 3), and without (closed circles, n = 4), a reduction in quantal content using 

9–17 mM [Mg2+]o. The [Mg2+]o was titrated to achieve 10-30% of control twitch 

contractions. Note the triphasic action evident following incubation with raised [Mg2+], 

typical of SPANs. (B) Representative tension traces showing increasing degrees of 

tetanic fade during 3 sec 50 Hz tetanic trains in the course of the development of 

neuromuscular blockade by 55 nM P-EPTX-Aa1a. Note the change in calibration in 

the lower two panels at 50 and 75% neuromuscular blockade. (C) Comparison of the 

action of P-EPTX-Aa1a (55 nM, closed bars, n = 4; 222 nM, gray bars, n = 3) with 

taipoxin (55 nM, open bars, n = 4) and d-tubocurarine (1 µM, striped bars, n = 4). 

Percent tetanic fade was calculated according to Eq. 1 in Material and Methods. Data 

represent the mean ± SEM. 
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Fig. 4. Neutralisation and reversibility of toxin-induced neuromuscular blockade by 

suramin in the CBCNM preparation. Suramin preincubated for 10 mins prior to the 

addition of 222 nM P-EPTX-Aa1a (closed squares, n = 6) significantly delayed the 

onset of neurotoxicity. However suramin applied at t50 (open squares, n = 4) or at 30 

mins following washout of the toxin (see arrow, gray squares, n = 4) prolonged, but 

did not prevent, neuromuscular blockade. 222 nM P-EPTX-Aa1a (closed circles, n = 

4) is included for comparison. Note the split x-axis. Data represent the mean ± SEM. 

For clarity, only data points recorded every 4 min are displayed. 
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Fig. 5. Isolation and mass determination of P-EPTX-Aa1a subunits. (A) Purification of 

P-EPTX-Aa1a into component subunits using C18 reverse-phase HPLC employing 

an acetonitrile/TFA gradient. A representative chromatogram at 214 nm is shown. 

Subunits are labelled 〈, β and ©. (B-C) ESI-Q-TOF mass spectrometry, showing 

deconvoluted spectra of the α-subunit (panel B, 13,809 Da) and β-subunit (panel C, 

13,516 Da). (D) MALDI-TOF mass spectrometry of the γ-subunit showing a spectrum 

consistent with heterogeneous glycosylation, with a nominal mass of 17,373 Da. The 

sum of masses is 44,698 Da, which is consistent with the estimated mass from size-

exclusion chromatography. 
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Fig. 6. Sequence alignment of P-EPTX-Aa1a subunits (A) Alignment of the three 

subunits of P-EPTX-Aa1a. (B) Alignment of individual P-EPTX-Aa1a subunits with 

known sequences of other snake sPLA2 enzymes and neurotoxins. Conserved 

residues are boxed in gray while conservative substitutions are shown in grey italic 

text. Percentage identity (%I) is relative to each respective P-EPTX-Aa1a subunit 

while percentage homology (%H) includes conservatively substituted residues. ‘ID’ 

indicates the UniprotKB/SwissProt ID code or source reference. ‘Species’ refers to 

the venom source. 
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Fig. 7. Neurotoxicity of individual P-EPTX-Aa1a subunits in the CBCNM preparation. 

Inhibition of indirectly-stimulated fast twitch contractions by the (A) individual 〈-, β-, 

and ©-subunits of P-EPTX-Aa1a subunits (740 nM, squares) and (B) equimolar 

combinations of two (triangles) or three (closed circles) subunits at 150 nM. Data 

represents the mean ± SEM of 4 experiments. (C) Effect of P-EPTX-Aa1a subunits 

(individual and recombined) on contractile responses to exogenous ACh, CCh and 

KCl. Data shows the percentage of control slow fibre contracture responses to 

exogenous agonists after complete inhibition by toxin or, in the case of subunits and 

recombinations that did not result in complete blockade, at 300 min. Data represent 

the mean ± SEM of 4 experiments. *p < 0.05, **p < 0.01, significantly different from 

control response, one-way ANOVA. For clarity, only data points recorded every 4 min 

are displayed in panels A and B. 
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Fig. 8. PLA2 activity of whole venom, toxin and subunits and neurotoxicity of 

chemically-modified toxin. (A) PLA2 activity of whole Acanthophis antarcticus (NSW) 

venom (open bar, n = 6), P-EPTX-Aa1a (closed bar, n = 4) and its three subunits 

(striped bars, n = 3–6), and 4BPB-modified P-EPTX-Aa1a (stippled bar, n = 1) as 

determined by the sPLA2 assay kit. Bee (Apis mellifera) venom (left hand bar n = 18) 

was used as a positive control. (B) Alkylated P-EPTX-Aa1a (open circles, n = 4), 

produced by chemical-modification with 4-bromophenacyl bromide (4BPB), failed to 

inhibited indirectly-stimulated fast twitch contractions in the CBCNM preparation 

when compared to 4BPB vehicle controls (open triangles, n = 4). 222 nM P-EPTX-

Aa1a (closed circles, n = 4) is included for comparison. Data represent the mean ± 

SEM. For clarity, only data points recorded every 4 min are displayed in panel B. 


