
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



Semi-persistent V2X Resource Allocation with
Traffic Prediction in Two-tier Cellular Networks

Ping Chu1,2, J. Andrew Zhang2, Xiaoxiang Wang1, Gengfa Fang2, Dongyu Wang1
1Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications, China

2University of Technology Sydney, Global Big Data Technologies Centre (GBDTC), Australia
ping.chu@student.uts.edu.au; {Andrew.Zhang; Gengfa.Fang}@uts.edu.au; {cpwang; dy wang}@bupt.edu.cn

Abstract—In a dense urban area, conventional cellular V2X
communications require frequent and heavy resource allocation,
which can lead to processing congestion and large delay. In
this paper, we propose a semi-persistent resource allocation
scheme using least minimum mean square error (LMMSE) traffic
prediction in a two-tier network. The two-tier network architec-
ture includes a central macro base station (MBS) and multiple
roadside units (RSU). In the proposed scheme, the MBS pre-
allocates persistent resource to RSUs based on predicted traffic,
and then allocate dynamic resource upon real-time requests from
vehicles through RSUs. We formulate an optimization problem
for minimizing the total bandwidth under latency constraints, and
provide optimal solution to the problem. Simulation is conducted
for both artificially generated and real-world data, and the results
validate the effectiveness of the proposed semi-persistent scheme.

Index Terms—V2X communications, resource allocation,
LMMSE, heterogeneous networks

I. INTRODUCTION

Vehicular communications have been widely studied in
recent years [1]–[4]. The 3rd Generation Partnership Project
(3GPP) group has completed initial Cellular Vehicle-to-
Everything (V2X) standard [5]. V2X communications aim
to make transportation safer, comfortable and more efficient,
and also pave the way for autonomous driving. There are
mainly two categories of vehicular services, namely non-safety
and safety services. Targeting at decreasing traffic accidents,
safety service has more stringent requirements on delay and
reliability. System latency includes both signal transmission
time and the delay caused by associated signalling process,
e.g., resource request and allocation.

For cellular V2X communications, resource allocation and
interference management are important issues to be addressed
due to limited spectrum and resource reuse between traditional
cellular users and vehicles. A number of recent works have
emerged focusing on V2X resource allocation. A theoretical
analysis for resource allocation for D2D-based V2X com-
munications is given in [6], where optimization for capacity
without considering delay was investigated. In [7], the authors
proposed interference graph-based resource sharing schemes
for resource allocation in order to enhance the network
throughput. In [8], a resource allocation scheme with laten-
cy constraints for LTE V2V communications was proposed,
where the scenario of cellular and vehicular users coexistence
was studied under a one-tier cellular network. There are also

quite a few studies on investigating heterogeneous networks
for vehicular communication [9]–[12], with major focus on
the cooperation between different vehicular networks for V2X
communications. Resource allocation for V2X networks using
delay as the priority is still very limited.

In this paper, we propose a semi-persistent resource al-
location scheme based on a two-tier heterogeneous cellular
network. This scheme can offload the signalling requests
that could potentially cause network traffic congestion, and
significantly reduce the signalling delay. In the two-tier cellular
architecture, a macro base station (MBS) centrally controls
multiple micro base stations, which we call as RSUs. The MBS
provides centralized control over resource allocation for RSUs,
and each RSU provides direct short-range communications
to vehicles in its coverage. This architecture can efficiently
offload the centralized traffic and reduce processing latency,
as well as improving the sum-rate capacity.

Considering the predictability of vehicular network traf-
fic, we combine the prediction into resource allocation for
V2X communications, and propose a semi-persistent resource
allocation scheme for V2X communications with strict la-
tency requirements. We introduce a non-model-based linear
minimum mean square error (LMMSE) predictor for predict-
ing vehicular network traffic. Based on predicted traffic, the
MBS pre-allocates persistent resource to each RSU and then
provides additional real-time dynamic resource allocation to
those RSUs with insufficiently allocated resource during pre-
allocation. With pre-allocated resource, each RSU can directly
provide initial resource allocation to vehicles when receiving
their requests, without having to wait for the resource being
assigned by the MBS. This pre-allocation can significantly
reduce the signaling latency and mitigate congestion. A cost
function for the total bandwidth for the area of interest is
developed under latency constraints for resource allocation.

The remainder of this paper is organized as follows. Section
II formulates the research problem and introduces the semi-
persistent resource allocation scheme. Section III presents
the LMMSE predictor for network traffic prediction and the
optimization of cost function. Finally, simulation results are
provided in Section IV, and Section V concludes the paper.

II. SEMI-PERSISTENT RESOURCE ALLOCATION

In this section, we present the system model, propose the
semi-persistent resource allocation scheme, and then formulate
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Fig. 1. Two-tier cellular architecture and the segmented road model.

the cost function of the total bandwidth.

A. System Model

As shown in Fig.1, we consider an urban cellular V2X
network with a two-tier architecture where a macro base
station (MBS) is in the first tier and several roadside units
(RSUs) are in the second tier. We divide the area of interest
into N segments, where each RSU supports the communi-
cation of vehicles in each segment. Denote the segment set
as N = {1, 2, ..., N}. Assume that MBS provides centralized
control over network resource for RSUs, and each RSU is
directly responsible for providing access to vehicles in the
V2I communication mode, or do local resource allocation for
vehicles in the mode of direct V2V communications within its
segment as shown in the subfigure Fig. 1 (a).

In this paper, we mainly investigate bandwidth allocation
across segments in the area in the two-tier heterogeneous net-
work. Assume that there is no frequency reuse and orthogonal
frequency channels are allocated across segments.

B. Semi-persistent Resource Allocation

In the two-tier heterogeneous network, purely dynamic
resource allocation will incur delay due to resource requests
and confirmation from all vehicular users. As shown in Fig.
1 (b), each vehicle user who wants to communicate with
other needs to send a request to MBS via RSU. This is also
impractical due to the instantaneous very-high loading resulted
from the fast-varying traffic flow in the urban area.

Our semi-persistent scheme combines pre-allocation based
on prediction and dynamic allocation, which can achieve an
excellent balance between improving bandwidth efficiency and
reducing latency. In the proposed semi-persistent scheme, the
MBS pre-allocates resources to each RSU based on network
traffic prediction in advance, which will be detailed in Section
III. In real-time, the MBS then further allocates resources
dynamically to the vehicle users who need additional resources
based on their delay requirements.

Note that our prediction is only for the mean traffic for
one time period of Ts, and hence the resource pre-allocation

is applied every Ts seconds. Real-time traffic request and
dynamic allocation then happens many times during the Ts
seconds. Assume that we are at time tTs, and are now
processing the resource allocation problem for the next time
period from tTs to (t+ 1)Ts. For simplicity, we use t+ 1 to
represent this period. We now define some symbols and rules
as follows:

• The total allocated persistent and dynamic bandwidth are
denoted as BP , BD respectively.

• The pre-allocated persistent bandwidth for n-th segment
at time t + 1 is Bp

n(t + 1), n ∈ N . Therefore BP =∑N
n=1B

p
n(t+ 1).

• The dynamic bandwidth allocated to n-th segment for
t+ 1 is Bd

n(t+ 1), where BD =
∑N

n=1B
d
n(t+ 1).

• The actual bandwidth requirement at t+ 1 is denoted as
Breq

n (t+ 1).
• When Bp

n(t + 1) < Breq
n (t + 1), some vehicle users in

the n-th segment will request dynamic resources from the
MBS via RSU.

• The transmission latency requirements of vehicular users
in the n-th segment at time t + 1 is trn and a signalling
latency tsn will be introduced for vehicular users who need
dynamic allocation.

C. Formulation of the Cost Function

Now, we formulate a cost function for the total required
bandwidth in the area of interest. Our main objective is to
minimize the total bandwidth under the transmission latency
constraints of vehicular users. Based on the proposed semi-
persistent scheme, the total required bandwidth can be ex-
pressed as

B(t+ 1) =

N∑
n=1

[Bp
n(t+ 1) +Bd

n(t+ 1)]. (1)

Therefore, the cost funtion can be defined by

min
{tn}Nn=1

B(t+ 1)

subject to 0 < trn ≤ T r
n . (2)

Where T r
n is the threshold of latency for vehicular communi-

cations in the n-th segment.

III. LMMSE PREDICTOR FOR NETWORK TRAFFIC AND
OPTIMIZATION OF COST FUNCTION

A. LMMSE Predictor for Persistent Allocation

Network traffic exhibits high correlation in short timescales
and long-range dependence over segments, and such correla-
tion and dependence can be well exploited for traffic predic-
tion. In this paper, we introduce an LMMSE predictor which
is widely used for channel estimation and traffic prediction.
[13], [14].

Let b(t) be the average network traffic in the [(t−1)Ts, tTs]
time period, where Ts is the interval of observations. We



propose the following M -coefficients linear predictor

b̂(t+ 1) =

M−1∑
k=0

a(k)b(t− k) (3)

for predicting the mean network traffic one sample ahead
of the current one, where a0, a1, ..., aM−1 are the LMMSE
coefficients. These coefficients can be obtained as

[a(0) a(1) ... a(M − 1)] = [R(1) R(2) ... R(L)] R†t ,

Rt =


R(0) R(1) ... R(L− 1)
R(1) R(0) ... R(L− 2)
... ... ... ...

R(M − 1) R(M − 2) ... R(L−M)

 , (4)

where L ≥ M , the superscript † denotes the pseudo-inverse
of a matrix, Rt is the autocorrelation matrix at time t with

R(i) =
1

M

M+i∑
t=i+1

b(t)b(t− i), 0 ≤ i ≤M − 1. (5)

According to the predicted network traffic, the MBS allo-
cates persistent bandwidth to each segment. Here, we intro-
duce a scaling factor θ instead of directly using the predicted
value to allocate the bandwidth to segments, and the pre-
allocated persistent bandwidth for the n-the segment is given
by

Bp
n(t+ 1) = θb̂n(t+ 1). (6)

The reason we introduce θ here is that there will be gaps be-
tween the predicted and real values. Therefore, an appropriate
θ is helpful for minimizing the total bandwidth for the area
of interest. In Section IV, we will investigate the optimal θ
numerically.

B. Minimization of Total Bandwidth

After allocating the persistent bandwidth, we now need to
complete dynamic allocation in real time. With a given θ, our
goal is to find the optimal dynamic allocation Bd

n(t+1) based
on the actually requested bandwidth Breq

n (t+1) and the latency
threshold. Note that in the case of Bp

n(t+1) ≥ Breq
n (t+1), the

allocated persistent bandwidth can already meet the latency
requirement of vehicular communications. Let V denote the
index sets of the segments where Bp

n(t + 1) < Breq
n (t + 1).

The size of the sets is denoted as V . Then we can rewrite (1)
as

B(t+ 1) = θ

N∑
n=1

b̂n(t+ 1) +

V∑
v=1

Bd
v(t+ 1) (7)

According to the Shannon’s capacity formula, the transmission
rate of a vehicular communication link is r = B log(1+SNR),
where B denotes the channel bandwidth. Assume that breq bits
need to be transmitted over one link. Thus, the transmission

delay can be expressed by t =
breq

B log(1 + SNR)
. It is

obvious that the transmission delay is inversely proportional to
the bandwidth. Therefore, we define the relationship between

transmission delay and bandwidth as tn =
cn
Bn

. Thus, we can

obtain

trv =
cv

Breq
v (t+ 1)−Bp

v(t+ 1)
,∀v ∈ V. (8)

For the v-th segment, the transmission time needs to meet
the following relationship based on the constraints of the
latency

trv − tsv =
cv

Bd
v(t+ 1)

. (9)

By substituting (8) into (9), the allocated dynamic
bandwidth can be expressed by Bd

v(t + 1) =
trv

trv − tsv
[Breq

v (t+ 1)−Bp
v(t+ 1)]. We then rewrite (7)

as

B(t+1) = θ

N∑
n=1

b̂n(t+1)+

V∑
v=1

trv
trv − tsv

[Breq
v (t+1)−Bp

v(t+1)].

(10)
With a given θ and the constraint 0 < trv ≤ T r

v , Bd
v(t+ 1)

obtains its minimum value when trv = T r
v . The minimum is

given by

Bop(t+ 1) = θ

N∑
n=1

b̂n(t+ 1)+

V∑
v=1

T r
v

T r
v − tsv

[Breq
v (t+ 1)−Bp

v(t+ 1)]. (11)

IV. SIMULATION RESULTS

In this section, we present simulation results for the pro-
posed semi-persistent resource allocation scheme (SPRAS)
and demonstrate its performance based on two types of data
sets. One data set is generated from simulated AR process,
and the other is from real measured traffic flow data.

For comparison, we also provide results for the conventional
purely dynamic resource allocation scheme (DRAS) which
allocates bandwidth based on the latency requirements in real
time. The minimum total bandwidth for DRAS is given by

BD
op(t+ 1) =

N∑
n=1

T r
n

T r
n − tsn

Breq
n (t+ 1). (12)

In order to evaluate the performance of proposed prediction
model LMMSE, we define and use Mean Absolute Percent
Error (MAPE) [15] as a performance metric

MAPE =
1

n

n∑
j=1

∣∣∣∣∣ b̂j − bjbj

∣∣∣∣∣ . (13)

Larger MAPE means worse prediction performance.

A. Simulation Results based on Autoregressive (AR) Model

Firstly, we generate the average bandwidth needs using
an AR model with coefficients ai = exp(r ∗ i), i = 1, 2, 3
and Gaussian noise with variance 10−4. Let the prediction
interval be Ts = 5s. Denote the generated average band-
width for [tTs, (t + 1)Ts] as B

req

n (t + 1). We generate 8
sets of data (i.e., N = 8) based on different values of r
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Fig. 2. Minimum total bandwidth versus θ for dynamic and semi-persistent
schemes; MAPE=5.63%; ts = 15ms.

(r = −0.95,−1,−1.05,−1.1,−1.15,−1.2,−1.25, 1.3). Each
set includes 500 data samples. Using the LMMSE predictor,
we can obtain the predicted bandwidth requirement for each
segment, i.e., b̂(t+1). Based on the predicted average traffic,
persistent bandwidth will be requested and pre-allocated in
advance.

Assume that the actual bandwidth requirement in each 2s
period follows the Gaussian distribution with mean B

req

n (t+1)
and variance 0.2B

req

n (t+1). In this paper, each 5s interval is
divided into 20 timeslots. In each timeslot, dynamic bandwidth
is then requested and allocated.

According to the requirement specified by 3GPP TR 36.885
[5], we adopt 100ms as the latency threshold of vehicular
communication in the simulation, i.e., T r

n = 100ms and the
signalling delay tsn is set to vary from 5ms to 25ms.

We first study whether there is an optimal θ for the proposed
scheme. Fig. 2 presents the optimal total bandwidth for SPRAS
and DRAS, respectively, with ts = 15ms. Note that the curve
for the dynamic scheme is a level straight line as it is unrelated
to θ. We can see that SPRAS provides smaller total bandwidth
compared with DRAS for all of the θ values. Moreover, there
exists an optimal θ (θ = 0.93 in this example). The green curve
is for the ideal situation (denoted as Bideal(t+ 1)) where the
accuracy of traffic prediction equals to 100%. When θ = 0.93,
the gap between Bop(t + 1) and Bideal(t + 1) reaches the
minimum value.

In Fig. 3, we show how the total bandwidth varies with the
signalling latency ts, where θ = 0.93. As expected, the total
bandwidth increases linearly with ts for DRAS. Across the
simulated range of ts, the proposed SPRAS grows slowly with
ts increasing, and always achieves the lower total bandwidth.

In Fig. 4, we present the optimal values of θ for different
signalling latencies for SPRAS. The optimal θ increases with
ts growing. The range of the optimal θ is [0.894 0.952].
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Fig. 3. Achieved total bandwidth versus signalling latency ts for DRAS and
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Fig. 4. Optimal θ with varying signalling latency ts; θ = 0.93

B. Simulation Results based on Real Traffic Flow Data

Assume there is a direct mapping between vehicle density
and the network bandwidth requirements, we test the perfor-
mance of the proposed scheme using real vehicle density data
collected from a section of Interstate 80 (I-80) freeway located
in Emeryville, California [16]. There are six traffic stations
collecting the data, resembling six RSUs (i.e., N = 6). The
record is for 10 days and the traffic flow data from the eighth
day (8:00am-12am) is selected for testing. The time interval
of the collected data is 30s, and hence Ts = 30s. Similarly,
we divide Ts into 100 timeslots, and real-time bandwidth
requirement in each timeslot is simulated using the same
Gaussian distribution with that in Section IV-A.

Firstly, for the prediction correlation matrix Rt, we fix the
product of the number of its rows M and the number of
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density data; MAPE=9.15%; ts = 15ms.

columns L (M ∗ L = 48) to be 48, and testing the prediction
performance of the LMMSE predictor. In Fig. 5, we compare
the MAPE values for different pairs of (M,L). The algorithm
is found to achieve the best accuracy when M = 6 and L = 8.

Fig. 6, Fig. 7 and Fig. 8 show the simulation results for
the real traffic data, in parallel to those for the artificially
generated ones in Fig. 2, 3 and 4. Both of these results
demonstrate the effectiveness of the proposed semi-persistent
resource allocation scheme in minimizing the bandwidth usage
under given time delay constraints.

V. CONCLUSIONS

We have presented a novel semi-persistent resource al-
location scheme based on a two-tier heterogeneous cellular
network for V2X communication. Using the predicted average
network traffic for a small time interval of Ts seconds, the
MBS pre-allocates persistent (bandwidth) resource to each
RSU, which is responsible for V2X communications of the
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Fig. 7. Total bandwidth versus signalling latency ts for DRAS and SPRAS
with the real vehicle density data; θ = 0.89.
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vehicles in its segment. During each timeslot in the Ts period,
real-time dynamic bandwidth is further requested and allocated
by MBS through RSU when needed. The total bandwidth
is minimized by formulating an optimization problem under
latency constraints. Simulation results demonstrate that our
proposed scheme can achieve significant saving on the total
allocated bandwidth when meeting the delay constraint, com-
pared to conventional fully real-time resource allocation.
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