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Abstract—Regression bugs are a type of bugs that cause a 
feature of software that worked correctly but stop working after a 
certain software commit. This paper presents a systematic study of 
regression bug chains, an important but unexplored phenomenon 
of regression bugs. Our paper is based on the observation that a 
commit c1, which fixes a regression bug b1, may accidentally intro- 
duce another regression bug b2. Likewise, commit c2 repairing b2 
may cause another regression bug b3, resulting in a bug chain, i.e., 
b1    c1    b2    c2    b3.  We  have  conducted  a  large-scale  
study by collecting 1579 regression bugs and 2630 commits from 
57 Linux versions (from 2.6.12 to 4.9). The relationships between 
regression bugs and commits are modeled as a directed bipartite 
network. Our major contributions and findings are fourfold: 1)   
a novel concept of regression bug chains and their formulation; 
2) compared to an isolated regression bug, a bug on a regression 
bug chain is much more difficult to repair, costing 2.4 more fixing 
time, involving 1.3     more developers and 2.8     more comments; 
3) 85.8% of bugs on the chains in Linux reside in Drivers, ACPI, 
Platform Specific/Hardware, and Power Management; and 4) 83% 
of the chains affect only a single Linux subsystem, while 68% of 
the chains propagate across Linux versions. 

Index Terms—Bipartite network, bug-fixing commit (BFC), bug- 
introducing commit (BIC), Linux, regression bug, regression bug 
chain (RBC). 

 

I. INTRODUCTION 

N SOFTWARE repositories, bug reports in bug tracking sys- 
tems and commits in version control systems are widely uti- 

lized and investigated in software engineering research, since 
they provide valuable historical information of a software 

project. Mining bug reports and commits is very beneficial 
for evaluating and understanding software maintenance efforts, 
such as recovering links between bugs and commits [1]–[7], 
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risk measurement [8]–[10], understanding [11]–[15], detecting 
[16]–[18], and predicting bugs [19], [20]. 

Regression bugs are a common type of bugs that lead to a 
feature of software that worked correctly but stop working after a 
certain software commit [22]. A regression bug can be caused by 
a commit fixing an existing bug or an implementation for a new 
system feature. For example, Linux regression bug ID-51881 
was introduced by commit ID-65fe1f0f,1 whose purpose is to 
implement a new feature for the SATA device. Previous studies 
found that regression bugs account for a significant proportion 
(50.1%) of all classified bugs in Linux [15]. In the Google 
Chromium project [23], regression bugs occupy about 51.1% of 
all labeled bugs. 

The introduction of a regression bug has close relations with 
commits. Based on the relationships between bugs and com- 
mits, a commit can have one or more of the following three 
properties, i.e., bug-fixing, bug-introducing, and bug-irrelevant. 
A commit whose code changes repair a bug is called a bug-fixing 
commit (BFC), while a commit whose code changes inadver- 
tently introduce a bug into the existing project is regarded as a 
bug-introducing commit (BIC). A bug-irrelevant commit does 
not fix or introduce any bugs. When inspecting Linux regression 
bug reports, we found an interesting type of commit, i.e., hy- 
brid commit, which has both the bug-fixing and bug-introducing 
properties. For example, a hybrid commit c1 fixes a regression 
bug b1 but introduces another regression bug b2, likewise a new 
commit c2 that repairs b2 but also causes a new regression bug 
b3. These special commits together with the bugs can form a 
regression bug chain (RBC), i.e., b1   c1   b2   c2   b3.   
Note that an RBC contains at least two regression bugs and one 
hybrid commit. 

Fig. 1 presents boxplots by comparing the maintenance cost 
of the bugs on RBCs with that of isolated regression bugs (not 
on chains) in Linux. All the isolated regression bugs and the 
first bugs on RBCs are extracted from Linux version 2.6.24. 
The average fixing time of a bug on an RBC is equal to the ratio 
of the time difference between the reported time of the first bug 
and the resolved time of the last bug to the number of related 
bugs on the RBC, while the fixing time of an isolated regression 
bug is defined as the time difference between the reported time 
and the resolved time of the bug. 

Compared to an isolated regression bug, fixing a bug on RBCs 
is much more costly. The average fixing time of a bug on the 

 
1Following the common practice, we used the first eight digits to denote 
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Fig. 1. Boxplots comparing the fixing efforts of the bugs on RBCs with 
isolated regression bugs. (a) Fixing time, (b) number of developers involved, 
and (c) number of comments made in bug reports when discovering and finding 
regression bugs. Note that the results are statistically significant (tested by the 
Mann–Whitney U test [21], α = 0.05). 

 

RBCs is about 2.4 times longer than that of fixing an isolated 
regression bug. In addition, fixing a bug on the RBCs involves 
1.3 more developers and 2.8 more comments than fixing an 
isolated regression bug. The efforts made in fixing RBCs sig- 
nificantly increase the cost of software maintenance. However, 
it is an unexplored research in discovering and understanding 
the RBCs. It is interesting to formulate, summarize, and under- 
stand the RBCs so that we can provide more useful insights for 
programmers to reduce the maintenance cost by fixing this type 
of bugs. 

This paper proposes a new method to model the bug–commit 
relationships as a directed bipartite network for analyzing RBCs. 
The formal definition of the RBC and its related network param- 
eters are given based on the network. The study is conducted 
using 1579 regression bugs of the Linux kernel from 57 ver- 
sions and 2630 commits (i.e., BICs and BFCs) collected from 
the Linux kernel Git repository. This paper mainly focuses on 
answering the following three research questions. 

RQ1: How to discover and formulate the RBCs in large-scale 
software systems (e.g., Linux)? In this research question, we 
investigate how to recover RBCs from bug reports and commits 
in a large-scale Linux system. More specifically, we will explore 
the severity and the number of the RBCs and their related bugs 
and commits. 

RQ2: What are the characteristics of RBCs? To have a better 
understanding of RBCs, it is necessary to explore their char- 
acteristics. In this research question, the path lengths of RBCs 
and their distributions and the features of bugs on RBCs will be 
investigated. We will also study whether bugs in an RBC would 
propagate across Linux subsystems or versions. 

RQ3: What are the patterns of bug–commit relationships 
for regression bugs? We will investigate the bug–commit re- 
lationships and the patterns of BICs and BFCs, which may 
reflect the complexity of bugs. For example, a bug can be 
introduced by one BIC and fixed by one BFC or caused by 
two BICs and solved by one BFC. We will also investigate the 

Fig. 2. Real-world example of the RBC in Linux. 
 

correlation between patterns and the complexity of regression 
bugs. 

This paper makes the following main contributions. 
1) To the best of our knowledge, it is the first work to explore 

the RBCs in Linux and also the first to model the relation- 
ships between bugs and commits as a directed bipartite 
network. 

2) Compared to an isolated regression bug, a bug on an RBC 
is much more difficult to find and repair, costing 2.4 
more  fixing  time, involving 1.3 more developers and 
2.8 more comments for discussing and finding the bug. 

3) For 71% of the RBCs, the first bug is the most difficult to 
be fixed. 

4) For all the RBCs in Linux, 85.8% of bugs relate to 
Drivers, ACPI, Platform Specific/Hardware, and Power 
Management. 

5) For the developers maintaining more than one subsystem, 
its proportion for fixing the bugs on RBCs is about 2.3 
higher than that for fixing the isolated regression bugs. 

6) 83% of RBCs affect only a single Linux subsystem. Bugs 
on 68% of RBCs are propagated across Linux versions. 

The rest of this paper is organized as follows. Section II de- 
scribes a motivating example of a real-world RBC. Section III 
presents the directed bipartite network approach for modeling 
RBCs. Section IV introduces data collection and aggregation. 
Section V provides the analytical results for three research 
questions. Section VI discusses the threats to validity, while 
Section VII introduces related work. Finally, Section VIII con- 
cludes this paper. 

 
II. MOTIVATING EXAMPLE OF RBCS 

We show a real-world RBC in Linux as our motivating ex- 
ample. Fig. 2 depicts the RBC extracted from Linux version 
2.6.32 to version 2.6.35. This RBC is related to the graphics 
translation table (GTT), which is an input–output memory man- 
agement unit used by an accelerated graphics port. It took 290 
days to eventually fix this complicated RBC (consisting of three 
bugs), since the first bug on the chain is reported in the Bugzilla 
of the Linux kernel. The fixing (i.e., commit ID-f1befe71) of 
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is established from commit v to bug u iff bug u was introduced 
by commit v. Note that there is no cycle in the directed bipartite 
network, since every commit is assigned to a unique ID based 
on the time sequence, e.g., a bug can only be connected to a new 
BFC even if this commit has the same solution as a previous 
one. 

 
 
 
 
 
 
 
 
 

Fig. 3. Illustration of a bug–commit directed bipartite network. 
 

a regression bug (ID-15733) introduces two more regression 
bugs, and nearly 97 days were spent to fix each bug on the 
chain. The following is the comment made by the main devel- 
oper of the Intel-drm/i915 graphics kernel driver in the reports 
of bug ID-15733 and ID-16294: 

“I’d like to avoid a regression fix for a regression fix for a regression 
fix.” 
– Daniel Vetter, main developer of Intel-drm driver 

Linux regression bug ID-15733 (“Crash when accessing 
nonexistent GTT entries in i915”) was introduced by com-  
mit ID-fc619013, which aims to fix the BIOS failures in or- 
der to correctly initialize the GTT. The bug was fixed by 
commit ID-f1befe71 through restricting GTT mapping to a 
valid range on Intel i915 and i945 chipsets.  However,  the 
BFC ID-f1befe71 introduced the regression bug (ID-16294) 
due to that the new commit fails to detect GTT size on Intel 
i830 chipsets. The bug was later fixed by commit ID-e7b96f28 
(“agp/intel: Use the correct mask to detect i830 aperture size”). 
Unfortunately, commit ID-e7b96f28 again incorrectly intro- 
duced another regression bug (ID-16891), which was finally 
resolved by commit ID-e5e408fc (“intel-gtt: fix gtt_total_entries 
detection”). 

 
III. BUG–COMMIT DIRECTED BIPARTITE NETWORK 

In this section, we first introduce our network modeling ap- 
proach for representing and understanding the relations between 
bugs and commits on RBCs. Then, we describe the basic ideas 
and algorithms to analyze RBCs based on the directed bipartite 
network. 

 
A. Network Modeling 

Inspired by the real-world RBC in Fig. 2, we proposed the 
bug–commit directed bipartite network to model the relations 
between bugs and commits. As shown in Fig. 3, the relationships 
between bugs and commits are constructed as a directed bipartite 
network G =< U, V,E >, where U represents the set of bugs 
and V denotes the set of commits. Let n = |U |, m = |V |, and 
l = |E|. An edge (u, v) ∈ E is established from bug u to commit 
v iff bug u was fixed by commit v. Otherwise, an edge (v, u) ∈ E 

 

B. Basic Concepts 

1) Degree: The degree of a node, denoted as k, in a network 
represents the number of edges connected to it. There are two 
types of degrees of a node in directed networks, i.e., out-degree 
kout and in-degree kin. For a bipartite network, the meanings of 
the out-degree and in-degree are different for nodes in different 
sets, i.e., bugs and commits. Given a bug u, the out-degree 
kout(u) represents the number of commits fixing u (BFCs), while 
the in-degree kin(u) denotes the number of commits introducing 
u (BICs). On the contrary, for a commit v, the out-degree kout(v) 
indicates the number of bugs it introduces, whereas in-degree 
kin(v) represents the number of bugs it fixes. For example, as 
depicted in Fig. 3, kout and kin for bug ui are both 1, while kout 
and kin for commit vα are 1 and 0, respectively. 

2) Hybrid Node: Given a commit v, if it satisfies kin(v) > 0 
and kout(v) > 0, the commit v is named a hybrid node. Let h 
denote the number of hybrid nodes in the network. For example, 
as shown in Fig. 3, commits vβ and vγ are hybrid nodes. The 
hybrid node indicates that the commit fixes an existing bug and 
also introduces a new bug. 

3) Path  and Its Length:  Given two nodes x, y  (x, y U 
V ), a path P (x, y) of them is defined as a sequence of directed 
edges, which connect a sequence of nodes from x to y. The 
length L of a path equals the number of edges traversed along 
the path. For example, as depicted in Fig. 3, the length L of path 
P (vα , vβ ) is 2. 

4) Regression Bug Chain: Given two nodes x, y  (kin(x)= 
0; kout(y)= 0), if L(P (x, y)) 2 (x U ) or L(P (x, y)) 3 
(x V ), the path from x to y is called an RBC. For example, 
as shown in Fig. 3, there are two RBCs starting from bug uj 
and commit vα , respectively. It is noted that an RBC contains at 
least one hybrid node and two bugs. 

5) RBC Search Algorithm: Fig. 4 presents the RBC search 
algorithm, which is based on depth-first search [24]. The RBC 
search algorithm starts at a source node s, whose kin(s)= 0, 
and records the reachable nodes of s as far as possible along 
each branch using the stack V isited. As shown in lines 14–20, 
if the reachable node w satisfies kout = 0, and the path from s to 
w satisfies the length requirement of the RBC definition, we can 
obtain an RBC starting from the source node s to the reachable 
node w. 

6) Motif: Given a bug u, the motif is defined as the pattern of 
the relationship between the bug and its corresponding commits 
(i.e., BIC and BFC). The motif for a bug can be determined by 
the combination of its in-degrees and out-degrees. For example, 
as shown in Fig. 3, bug ui has the one–one relationship motif 
(i.e., introduced by one commit and fixed by one commit), while 
bug uk has the two–one relationship motif (i.e., introduced by 
two commits and fixed by one commits). 
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Fig. 4. RBC search algorithm. 

 
TABLE I 

DATA SOURCE 
 

 

   
 

 
 
 

IV. DATA COLLECTION AND AGGREGATION 

This section presents the details of our data collection and 
aggregation, including the data source and the data processing 
procedure. 

 
A. Data Source 

As shown in Table I, we utilized two types of data, in- 
cluding Linux regression bug reports and Linux Git repository 
commits.2 The Linux regression bugs are obtained from [15]. 
In this work, among the 4035 classified bugs, there are 2020 re- 
gression bugs. Note that we only investigated bug reports with 
the version numbers starting from 2.6.12. The information of 
code changes is hard to be obtained before that version because 
developers only utilized Git to track code changes since ver- 
sion 2.6.12 [25]. As a result, 1907 regression bugs are selected, 
which account for 94.4% of all regression bugs. The Linux Git 
repository is downloaded from the Linux kernel source tree (also 
called upstream tree) using the git clone command. The changes 
conducted in Linux development are recorded as commits. In 
the following section, we will elaborate on the data processing 
procedure, i.e., the extraction of BICs and BFCs. 

 
2[Online]. Available: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/ 

linux.git 

 
 

 
Fig. 5.  Extraction procedure of BICs and BFCs. Step 1: Inspection of BIC  
and BFC. Step 2: Validation of upstream commits. Step 3: Recovery of missing 
commits. 

 
TABLE II 

EXAMPLES OF KEYWORDS FOR THE DETERMINATION OF BICS AND BFCS 
 

 

 
 
 

B. Data Processing Procedure 

To explore the relationships between bugs and commits, we 
first extract BICs and BFCs. As depicted in Fig. 5, the extraction 
procedure consists of the following three steps. 

1) Step 1. Inspection of BICs and BFCs: As shown in Fig. 5, 
BICs and BFCs are first inspected in regression bug reports. We 
manually performed the inspection through several keywords, as 
illustrated in Table II. For regression bug reports, bug reporters 
or maintainers tend to describe a BIC as the first bad commit, 
the offending commit, or the culprit commit. Under certain situ- 
ations, their descriptions may contain keywords “caused by” or 
“introduced by” to explain which commit(s) may introduce this 
bug. By inspecting these keywords or phrases in bug reports, 
we can obtain BICs. Similarly, there also exist several keywords 
related to BFCs, such as “fixed by” or “patch upstreamed,” as 
shown in Table II. A BFC is usually provided at the last com- 
ment of a bug report. It is worth noting that there still exist 
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several bugs that we cannot determine their BICs or BFCs after 
conducting the manual inspection, since these reports did not 
provide complete information. The missing commit recovery 
process is handled in step 3. 

2) Step 2. Validation of Upstream Commits: BICs and BFCs 
extracted from bug reports are provided by reporters or main- 
tainers. The provided commits may reside in maintainers trees 
(i.e., the developer branches of the Linux kernel source tree), 
but not the upstream tree. This causes a problem that the commit 
IDs are different though the contents are identical, since they 
belong to different development trees. For example, the BIC ID 
of bug ID-59491 is cd7b304d (x86, range: fix missing merge 
during add range). However, the commit ID for the identical 
content (i.e., x86, range: fix missing merge during add range) in 
the upstream tree is fbe06b7b. Therefore, we should unify the 
commit IDs by validating them in the upstream tree to eliminate 
the inconsistency of different commit IDs. We wrote a script 

 
 

 

 
 

 
 

Fig. 6.    Commits of bug ID-39842. (a) BFC ID-4b00e4b3. 
(b) BIC ID-cc406341. 

TABLE III 
COLLECTED DATA FOR LINUX FROM VERSIONS 2.6.12 TO 4.9 

based on the git show command to automatically check whether    
commits are in the upstream tree. For the development commits 
not in the upstream tree, we need to know whether the code 
changes of these commits are accepted by the upstream or not. 
We searched these commits using their IDs in Google and tried 
to find their corresponding code changes, and then, we used the 
git log command together with the grep command (with option 
-B) to inspect whether these code changes are really committed 
in the upstream tree. If the changes of a development commit 
cannot be found, we discarded this commit from our collected 
dataset. After step 2, all commits are confirmed as upstream 
commits, and they can be utilized as input data for Step 3. 

3) Step 3. Recovery of Missing Commits: The recovery of 
missing commits consists of two subphases, i.e., recovery of 
the incomplete BFCs and recovery of the BICs. Because the 
recovery of BICs relies on BFCs, the recovery of missing BFCs 
should be processed first. 

a) Step 3.1. Recovery of Missing BFCs: Missing BFCs 
are recovered through searching their bug IDs in Linux Git 
repository. For example, the BFC that fixes bug ID-22672 can- 
not be found in its report from step 1. Therefore, we used the 
git log command together with the grep command (with option 
-B) to search the bug ID in the upstream tree to determine which 
commit (i.e., ID-47356eb6) fixed this bug. Worse, several bug 
reports specify fixing patches without providing fixing commit 
IDs. In this case, we searched the patch message in the up- 
stream tree to obtain their commit IDs. For example, a fixing 
patch entitled “NFS: Fix a hang/infinite loop in nfs_wb_page()” 
was provided in bug ID-29062. We used the git log command 
together with the grep command (with option -B) to search the 
patch message. Finally, we obtained the BFC ID-b8413f98 that 
fixes this bug. 

b) Step 3.2. Recovery of Missing BICs: We recovered 
missing BICs based on a popular approach for identifying bug- 
introducing changes, i.e., the SZZ approach [1], which was pro- 
posed by Śliwerski, Zimmermann, and Zeller in 2005. The SZZ 
approach first inspects BFCs by searching for the bug IDs in the 
logs of version control systems (e.g., Git, CVS, and SVN). Once 
the BFCs are obtained, the changed lines of code for fixing the 
bug are identified. SZZ traces back based on the code history of 

version control systems to find the time when the changed code 
was introduced. According to the SZZ approach, we used the git 
log command (with options -p -M –follow –stat) together with 
the grep command (with option -B) to search for BICs for the 
bugs whose BFCs are already available, but the commits that 
introduce those bugs are not directly available. 

For example, as depicted in Fig. 6(a), the BFC ID- 
4b00e4b3 of bug ID-39842 deletes the code “#define 
S3_SAVAGE4_SERIES(chip) ((chip > = S3_SAVAGE4) 
(chip < = S3_PROSAVAGEDDR))” in the file “drivers/video/ 
savage/savagefb.h.” After conducting SZZ search, it is found 
that the deleted line of code was introduced in commit ID- 
cc406341, as shown in Fig. 6(b). Note that the SZZ approach 
cannot recover a BIC by tracing a BFC, which contains newly 
added lines of code, since this code was introduced for the first 
time. To ensure the validity of the collected data, we only re- 
cover BICs for the bugs, whose BFCs only contain code changes 
in a single file. If the code changes of a BFC were conducted in 
multiple files, there may have several commits to trace back. It 
is difficult to determine which commit is the BIC because the 
result produced by the SZZ approach is not guaranteed to be 
sound [26]. Moreover, it is unnecessary to conduct step 2 for 
the recovered commits, since the recovery of missing commits 
is conducted on the upstream tree. 

After the extraction of BICs and BFCs, we collected 2630 
commits related to 1579 regression bugs for the Linux kernel 
from versions 2.6.12 to 4.9, as shown in Table III. Among the 
collected commits, there are 1148 BICs and 1542 BFCs. Note 
that each bug in the collected data possesses at least one commit. 
Finally, we have released our collected datasets found online.3 

According to the network modeling approach described in 
Section III-A, we constructed a directed bipartite network based 
on the collected bugs and commits from Linux version 2.6.12 to 

 
3[Online]. Available: https://guanpingxiao.github.io/data/linux_rgbugs.xlsx 
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TABLE IV 
NUMBERS AND PROPORTIONS OF RBCS 

 

 
4.9 shown in Table III. There are 4029 nodes (i.e., 1579 bugs and 
2630 commits) and 2872 edges. The average degrees of bugs < 
k(u) > and commits < k(v) > are 1.82 and 1.09, respectively. 
The result indicates that each bug has 1.82 commits, and each 
commit has 1.09 bugs on average. In addition, the number of 
hybrid nodes h is 60.  Note that  all the network calculations 
in this study are based on NetworkX,4 a Python package for 
analyzing graphs and networks. 

 

V. ANALYSIS 

This section presents the analytical results of our three 
research questions in terms of findings and implications. 

 
A. RQ1: How to Discover and Formulate the RBCs in 
Large-Scale Software Systems (e.g., Linux)? 

After performing the RBC search algorithm provided in 
Section III on the constructed directed bipartite network, we 
obtained the numbers and the proportions for RBCs shown in 
Table IV. The number of hybrid nodes (i.e., a commit is both 

 
 

Fig. 7. Distributions of average fixing time of the bugs on RBCs using two 
calculation formulas. 

 
and memory-related bugs (e.g., null pointer dereference: bug 
ID-14030, memory leak: bug ID-13518), it is useful to apply 
some static code analysis tools for detecting these types of bugs 
[27]–[29]. 

To understand the complexity of RBCs, we measured the 
average fixing time of the bugs on RBCs using two methods. 
The first method is calculated as follows: 

a bug-fixing and BIC) is 60. Although the hybrid nodes only 
account for 2.3% of all commits, they introduce 100 RBCs, and < tfixing >= (dbn − dreported )/n (1) 
the number of related bugs and commits is 133 and 168, respec- where dbn and db1 represent the resolved date of the last 
tively. The proportions of the bugs and commits on the RBCs bug resolved reported 

over all the regression bugs and commits are 8.4% and 6.4%, 
respectively. 

In the Linux Bugzilla, a bug is reported by a user or developer 
through a custom drop-down field in the reporting page specify- 
ing whether a bug is a regression bug. A reported regression bug 
is then further confirmed by developers. By carefully analyzing 

bn and the reported date of the first bug b1 on the chain, 
respectively, and n is the number of bugs on the chain. In this 
formula, the gaps between the resolved date of bug bi and the 
reported date of bug bi+1 are included in the average fixing time. 
In order to analyze the impact of the gaps, we defined another 
calculation method 

n 
the reports of the bugs on RBCs, most of the regression bugs 
are found after installing system updates, e.g., introducing new 

bi 
resolved 

i=1  
− dreported )/n. (2) 

system features and/or new BFCs. An abnormal functionality 
of devices or failures occurred while the system using these 
new updates. In addition, to further analyze the causes of the 
bugs on RBCs, we manually examine the BFCs of RBC bugs 
(i.e., 133 bugs). It is found that 73.7% of the bugs on RBCs 
are functional bugs, while the rest of bugs are related to con- 
currency bugs (14.3%) and memory-related bugs (12.0%). For 
the functional bugs, i.e., the causes relate to the implementa- 
tion of specific functionalities (e.g., device drivers), the high 
proportion is due to the lack of regression test cases to cover 
the code changes. Given limited test inputs, it is hard for de- 
velopers to validate a new commit that can work correctly on 
all related hardware platforms. For example, the fixing commit 
ID-1a7c618a of bug ID-12302 adds the functionality to support 
a specific kind of BIOSes (Asus Laptops). For the concurrency 
bugs (e.g., data race: bug ID-15819, deadlock: bug ID-14924) 

 
4[Online]. Available: https://networkx.github.io/ 

Fig. 7 shows the distributions of average fixing time of the 
bugs on RBCs using formulas (1) and (2). The result was tested 
using the Mann–Whitney U test [21] with a null hypothesis that 
the times calculated by the two formulas have similar values. 
After performing the test, we obtained p = 0.159, which is 
larger than the given significance level of α = 0.05. Therefore, 
we cannot reject the hypothesis. The difference in the mean 
values in Fig. 7 is negligible, i.e., the mean value of the average 
fixing time calculated by formula (1) is only 5.7% longer than the 
mean value from formula (2). The average fixing time calculated 
by the two formulas is very similar. This is because that the 
Linux kernel is one of the most popular open-source software 
with a large community consisting of many active users and 
developers. The side effects of a BFC, i.e., introducing new 
bugs, are often quickly observed by users and/or developers. 
We used the first formula, which is more intuitive, to calculate 
the average fixing time of the bugs on RBCs in this study (e.g., 
Fig. 1). 

https://networkx.github.io/


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
 

fixing fixing 

XIAO et al.: EMPIRICAL STUDY OF REGRESSION BUG CHAINS IN LINUX 7 

TABLE V 
LENGTHS OF RBCS 

 

 
 

Although the proportion of the bugs on the RBCs is not very 
high, these types of bugs are very hard to repair. For example, 
the repairing time of RBCs occupies 43.6% of the total fixing 
time of all regression bugs in Linux 2.6.24, which significantly 
increases the total maintenance efforts. 

Moreover, we have investigated the individual fixing time of 
each bug on an RBC to understand which bug is more “difficult” 
to be fixed. We  defined the difference of the fixing time as  
ΔF = tbi +1 − tbi . It is found that for 71% of RBCs, the first 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Distribution of the bugs on RBCs across Linux subsystems. 
 

50 out of 100 RBCs whose lengths are 3, and 45 RBCs whose 
lengths are 4. In addition, there are five chains whose lengths 

 bug is the most difficult to be fixed. 
To discuss a regression bug’s “latency,” we have also collected when fixing the RBC. 

the time from the moment a bug is reported until it receives    
its first comment. It is found that the average time of the first 
comment for RBC bugs is 6.0 days, while the average time of the 
first comment for isolated regression bugs is 5.8 days. However, 
the result is not statistically significant, which was tested by the 
Mann–Whitney U test [21] with a null hypothesis that the times 
of the first comments for RBCs bugs and isolated regression 
bugs have similar values. 

 
Finding #1: The numbers of RBCs, related bugs, and 
commits are 100, 133, and 168, respectively. The related 
bugs and commits account for 8.4% and 6.4% over all 
bugs and commits in the directed bipartite network. 

Finding #2: For 71% of RBCs, the first bug is the most 
difficult to be fixed. 

Implication: The efforts in fixing Linux RBCs are 
nonnegligible, and it is also interesting to investigate the 
characteristics of RBCs in other software systems. In 
addition, developers should pay more attention to the bugs 
that are difficult to fix, as their fixing commits are likely to 
introduce new bugs. 

 
 

 
 

B. RQ2: What are the Characteristics of RBCs? 

We have investigated the characteristics of RBCs from four 
aspects, including the lengths of RBCs, the distribution of the 
bugs on RBCs across Linux subsystems, bug propagation across 
Linux subsystems and/or versions, and the largest weakly con- 
nected components in the directed bipartite network. 

1) Lengths of RBCs: We have conducted a statistic of the 
lengths of RBCs, as shown in Table V. 

It can be observed that the average length of RBCs is 3.6, 
while the shortest and the longest lengths of RBCs are 3 and 6, 
respectively. Note that if both the BIC and the BFC of a bug can 
be found, the length L of an RBC satisfies L = 2n, where n is 
the number of related bugs on the chain. In Table V, there are 

Finding #3: The length of RBCs is from 3 to 6. In addition, 
the lengths of 50% of RBCs are 3 and the lengths of 45% of 
RBCs are 4. 

Implication: Understanding the relations between bugs 
and commits is helpful for understanding a software project 
and reducing its maintenance cost. Based on the proposed 
directed bipartite network, the lengths of RBCs can be 
utilized to measure the effectiveness and the maintenance 
efforts in bug-fixing processes. If the first bug on an RBC is 
fixed in a low quality, it is likely to produce a longer RBC. 

 
 

 
2) Distribution of Bugs on RBCs Across Linux Subsystems: 

We have investigated the distribution of the bugs on RBCs across 
Linux subsystems, as shown in Fig. 8. 

We observed that bugs related to Drivers, ACPI, Platform 
Specific/Hardware, and Power Management occupy 85.8% of 
all bugs on RBCs. Note that these four subsystems are closely 
related to device drivers and architecture platforms. This in- 
dicates that bugs related to these subsystems are more likely  
to appear on RBCs. According to the study [30], the number 
of functions in the drivers directory of the Linux source code 
accounts for approximately half of all functions in the Linux 
source code. The fast growing of various devices and platforms 
requires frequent software development iterations and system 
updates. Updating code in a driver-related software component 
in Linux tends to be more error-prone, and many driver-related 
parts are likely written by less experienced software developers, 
making new patches that fix existing bugs but introducing new 
bugs. Therefore, for RBCs in Linux, the high proportion of bugs 
in these subsystems is reasonable. 

To further validate the result of the distribution of the bugs on 
RBCs across Linux subsystems, we calculated statistics of the 
locations, where the bugs are fixed in the BFCs for RBCs, as 
shown in Fig. 9. It can be observed that 92.4% of the bugs on the 
chains are fixed in the drivers and arch directories. The source 
code of Drivers, ACPI, and Power Management mainly lo- 

are 6. The longer an RBC is, the more efforts developers take 
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Fig. 9. Distribution of the bugs on RBCs across locations of the Linux source 
code. 

 

 

 
 
 

 
Fig. 11. Proportions of developer distributions for the isolated and RBC bugs. 

 

 

 
Fig. 12. Illustration of a bug propagating on RBCs. (a) Across Linux subsys- 
tems. (b) Across Linux versions: the major version numbers of the two bugs are 
different. 

 
 

 
 

Fig. 10. Developer distributions of subsystems. 
 

cates in the drivers directory, while the source code of Platform 
Specific/Hardware mainly locates in the arch directory. Thus, 
the distribution of locations where the bugs are fixed is consis- 
tent with the result in Fig. 8. 

We have investigated the relationships between RBCs and 
the developers of these subsystems. To obtain distributions of 
developers of different subsystems, we have performed statistics 
of bug assignees, i.e., persons in charge of resolving bugs, based 
on 1579 collected bug reports. Fig. 10 shows the distributions 
of the developers of the eight subsystems containing RBCs. 
Note that the number of bugs in these subsystems accounts for 
91.6% of all collected bugs. Since Linux subsystems have tight 
coupling relationships [31], it can be observed from Fig. 10 that 
around 25–65% of the total developers work on more than one 
subsystem with some experienced developers work cross seven 
subsystems. 

Moreover, Fig. 11 depicts the proportions of developer dis- 
tributions of isolated regression bugs and RBC bugs. For the 
developers maintaining more than one subsystem, its proportion 
for fixing RBC bugs is about 2.3 higher than that for fixing 
isolated regression bugs. The result indicates that the bugs on 
RBCs require more experienced developers, i.e., the ones who 
are familiar with more than one subsystem. 

Finding #4: Bugs related to Drivers, ACPI, Platform 
Specific/Hardware, and Power Management are likely to 
appear on RBCs. For all the RBCs of Linux, 85.8% of bugs 
relate to Drivers, ACPI, Platform Specific/Hardware, and 
Power Management. 92.4% of the bugs on the RBCs are 
fixed in the drivers and arch directories of the Linux source 
code. 

Finding #5: For the developers maintaining more than one 
subsystem, its proportion for fixing RBC bugs is about 
2.3× higher than that for fixing isolated regression bugs. 
Implication: For bugs related to Drivers, ACPI, Platform 
Specific/Hardware, and Power Management, it is suggested 
to conduct more regression testing before releasing their 
fixes. For the bugs that have impacts on several 
subsystems, it is suggested to first analyze the closely 
related subsystems. 

 
 

 

3) RBC Bugs Propagation Across Linux Subsystems or 
Versions: We have  investigated the propagation of the bugs  
on an RBC across different Linux subsystems or versions. As 
the example presented in Fig. 12(a), the affected subsystems of 
bugs are different, which clearly indicates that bugs on RBCs are 
propagated across subsystems. Similarly, as shown in Fig. 12(b), 
since the versions of bugs have different major version numbers, 
bugs on the RBC propagate across versions. According to the 
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TABLE VI 
BUG PROPAGATING ACROSS LINUX SUBSYSTEMS OR VERSIONS ON RBCS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Largest weakly connected component of the directed bipartite 
network. 

 
 

 
                 

 

 
Fig. 13. Version interval of the bugs on RBCs having bug propagation. 

 

Linux version numbering method [30], [32], the third digit rep- 
resents the major version number from versions 2.6.11 to 2.6.39, 
while the second digit denotes the major version number from 
version 3.0. For example, version 2.6.28 is a major version, 
whereas version 2.6.28.7 is a minor version of 2.6.28. Table VI 
shows our investigation results. 

There are 83 RBCs on which the bugs are not propagated 
across subsystems. We can draw a conclusion that most of the 
RBCs affect a single subsystem. However, there are 68 out of 100 
RBCs, whose bugs propagate across versions. The result implies 
that more than two-thirds (i.e., 68%) of RBCs are exposed in 
later major Linux versions, whereas 32% of RBCs are exposed 
in the same major versions. 

In order to investigate the interval between versions of the first 
bug and the last bug in an RBC, we further conducted statistics 
of version intervals of the RBCs, which have bug propagation, as 
depicted in Fig. 13. Note that the version interval is computed as 
the difference between major version numbers. As the example 
shown in Fig. 12(b), the version interval of the RBC is 1, since 
the major version numbers of bugs a and b are 27 and 28, 
respectively. It can be found from Fig. 13 that there are 55 out 
of 100 RBCs with version intervals 1, 2, or 3. This indicates that 
the last bugs in 55% of RBCs are exposed after no more than 
three major version intervals. However, there are still 13% of 
RBCs, in which the last bugs are exposed after no less than four 
major version intervals or even to be exposed after night major 
version intervals. 

4) Largest Weakly Connected Component Related to RBCs: 
We analyzed the largest weakly connected component on the 
directed bipartite network to understand the severity of an RBC. 

Finding #6: 83% of RBCs affect only a single Linux 
subsystem. Bugs on 68% of RBCs are propagated across 
versions. Moreover, the last bugs in 13% of RBCs are 
exposed after no less than four major version intervals. 

Implication: Regression bugs are very annoying to both 
developers and users. Even if a newly released version of 
Linux may offer new features and security enhancements, 
the users may not prefer to upgrade their operating systems 
if the release contains an RBC. It is more stable to keep 
using an older Linux version before the RBC is eventually 
fixed. Worse, more than two-thirds of RBCs propagate 
across versions. Releasing a stable version highly relies on 
the effective fixing of RBCs. 

 
 

 

The largest weakly connected component is the maximal sub- 
network of the directed bipartite network G such that every pair 
of nodes (x, y) are connected to each other by some path, ig- 
noring the direction of edges. As shown in Fig. 14, the largest 
weakly connected component consists of 14 bugs, 12 commits, 
and 24 RBCs. In the largest weakly connected component, eight 
RBCs were initially started from bug ID-9998, and the largest 
version interval of these RBCs is 4. Furthermore, all bugs in 
the largest weakly connected component are related to the ACPI 
subsystem. 

 
C. RQ3: What are the Patterns of Bug–Commit Relationships 
for Regression Bugs? 

We investigated the patterns (i.e., motifs described in Sec- 
tion III-B) found in the directed bipartite network. Since some 
bugs have  only one type of commits (i.e., BFCs or BICs),   
we excluded these bugs to ensure result validity. Therefore, 
1128 regression bugs are selected. After conducting the cal- 
culation, ten motifs were found. Fig. 15 gives the numbers and 
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Fig. 16. Boxplots comparing the fixing times of bugs in each motif. 
 
 
 

Fig. 15. Top five frequent motifs found in the directed bipartite network: 
(a) one–one, (b) one–two, (c) two–one, (d) one–three, and (e) two–two. 

motifs have similar fixing times. For a significance level of α 
= 0.05, we obtained p = 0.008, which indicates that we can 
reject the null hypothesis. The average fixing time of regression 
bugs increases when the number of BFCs increases. Compared 

   to regression bugs that have one BIC, the average fixing time of 
Finding #7: In the worst case, improperly handling fixes of 
one bug can introduce at least eight RBCs. In addition, the 
largest weakly connected component related to RBCs 
consists of at least 14 bugs, 12 commits, and 24 RBCs. 

Implication: Similar bugs retrieval and developer 
recommendation are important tasks in the automated bug 
report management process [33]. The directed bipartite 
network is useful for analyzing similar bugs and 
recommending these bugs to developers. Combining with 
metadata in bug reports and commits, it can further utilize 
heterogeneous information network techniques (e.g., 
HIN2Vec [34]) to train a deep learning model for the 
prediction of similar bugs and developer recommendations. 

 
 

 
 

proportions of the top five frequent motifs. Note that the number 
of bugs in the top five motifs accounts for 99.4% of the selected 
bugs. Most of the regression bugs (91.8%) have the one–one 
relationship motif (i.e., introduced by one commit and fixed by 
one commit). The second and the third frequent motifs are one– 
two relationship (i.e., introduced by one commit and fixed by 
two commits) and two–one relationship (i.e., introduced by two 
commits and fixed by one commit), which accounts for 4.4% 
and 1.7% of the selected bugs, respectively. 

In order to analyze the relation between motifs and the com- 
plexity of regression bugs, we calculated the average fixing time 
of the bugs in each motif. To ensure the validity of the results, 
all the motifs with the two–two relationship are excluded from 
our analysis, since the number of bugs is less than 10. The fixing 
time of each regression bug is estimated as the time difference 
between the reported time and the resolved time (i.e., resolu- 
tion marked as CODE_FIX). Boxplots in Fig. 16 compare the 
fixing times of bugs in each motif. The result was tested by 
the Kruskal–Wallis test [35], with a null hypothesis that the 

regression bugs, which have two BICs, is significantly longer. 
The result indicates that motifs are good factors to reflect the 
complexity of regression bugs. 

 
Finding #8: Most of the regression bugs (91.8%) have the 
one–one relationship motif, and the proportions of 
regression bugs, which have one–two and two–one 
relationship motifs, are 4.4% and 1.7%, respectively. The 
average fixing time of regression bugs with more BFCs is 
longer than those with fewer BFCs. Likewise, a bug with 
more BICs is also much more costly to be fixed compared 
to the one with fewer BICs. 

Implication: Motif can be utilized to measure the 
complexity of regression bugs. For example, a bug that has 
a two–one motif (i.e., caused by two BICs) is likely to be 
more complicated than a bug that has a one–two motif (i.e., 
caused by one BIC). 

 
 

 
 

VI. THREATS TO VALIDITY 

A. Internal Threats 

Threats to internal validity come from experiments, i.e., man- 
ual inspection and recovering a bug’s introducing and fixing 
commits in Linux bug reports and its Git repository. We have 
carefully examined the reports and commits from Linux ver- 
sion 2.6.12 to 4.9 using around three-month time with two 
persons. 

The second threat is about the correctness of data information. 
Since bug reports are reported by users and developers, the 
correctness of the provided information (e.g., subsystems and 
versions) may have an impact on the results of relevant analyses 
in this paper. 
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The last threat comes from the calculation of bug fixing time. 
The fixing time of a bug is estimated as the time when the 
bug’s report opens until it is resolved. It does not reflect the 
actual time a developer spent in fixing the bug. In addition,  
we used the bug fixing time obtained from the bug reports as 
the criteria for evaluating the complexity of a bug. However, 
two developers may have different capabilities and levels of 
experience in repairing the same bug, i.e., spending different 
bug fixing times. 

 
B. External Threats 

Threats to external validity come from the generalization of 
our results. Linux is one of the most important open-source 
projects in the world. We believe that this paper is representa- 
tive. In addition, we have conducted the study based on 1579 re- 
gression bugs and 2630 commits from 57 Linux versions (from 
2.6.12 to 4.9). However,  we do not try to claim our findings  
or conclusions reflect all software. The prevalence and char- 
acteristics of RBCs are interesting to be explored in any other 
software projects. The proposed methodology is applicable for 
any project with version control and bug tracking systems. 

 
VII. RELATED WORK 

A. Bug–Commit Relationships 

Links between bugs in bug tracking systems and commits 
in version control systems can provide valuable information 
for software maintenance. Analyzing the relationships between 
bugs and commits is widely conducted over the past ten years. 
Related studies can be roughly classified as three categories, 
including recovering links between bugs and BFCs, recovering 
links between bugs and BICs, and studying characteristics of 
bug-fixing/introducing commits. These kinds of literature are 
discussed in the following paragraphs. 

Bachmann et al. [3] found that developers do not always 
describe which commits conduct bug fixings, and it was re- 
ported that only 46% of bugs in Apache project are linked with 
bug fixes. Traditional heuristics methods for collecting links be- 
tween bugs and commits are conducted through searching for 
keywords and bug IDs. Wu et al. [4] developed an automatic link 
recovery based on the criteria of features from explicit links to 
recover missing links. They obtained a better result than the tra- 
ditional heuristics. Along this line of research, several improved 
algorithms are proposed [5]–[7]. 

The recovery of BICs relies on BFCs. In 2005, Śliwerski et al. 
[1] proposed SZZ, an approach for identifying bug-introducing 
changes. The proposed approach recovers BICs by tracing back 
the changed code in BFCs through code history to find its intro- 
duction commits. Based on the approach in [1], Kim et al. [2] 
presented algorithms to automatically and accurately identify 
BICs. In addition, several empirical studies related to BICs in 
software projects are presented for investigating Android [36] 
and Google Chromium project [23]. Moreover, the evaluation of 
the SZZ approach is a challenging task, since the ground truth is 
not readily available. To address the problem, researchers in [26] 
proposed a framework to evaluate the results of alternative SZZ 

 
 
implementations. The framework can provide a systematic way 
to evaluate the data generated by a given SZZ implementation. 

Besides, there are several studies focusing on the charac- 
teristic analysis of BFCs and BICs. Shihab et al. [8] studied the 

risk of software changes in a large enterprise. The findings 
showed that the criteria for determining risky changes are dif- 
ferent from developers and teams. Eyolfson et al. [9] studied 

the correlation between a commit’s time-based characteristics 
and its “bugginess” in three open-source projects: the Linux 
kernel, PostgreSQL, and the Xorg server. It was found that 

commits between midnight and 4 A.M. are significantly bug- 
gier. To understand how the erroneous tendency of software 
developer changes across time, Li et al. [10] investigated the 
bug-introducing tendency of developers. They found that the 

BIC rates of developers tend to increase first before decreasing. 
Most of the existing literature focuses on separate bug– 

commit links and rarely analyzes the connections between 
bug–commit links (i.e., the relationship among bugs, BICs, and 

BFCs). Compared to the existing work, we analyzed the bug–
commit relationships by modeling bugs and commits as a 

directed bipartite network. 
 

B. Regression Bugs 

Nir et al. [22] found that regression bugs were usually in- 
troduced by bug fixes. They developed a tool for assisting the 
programmer to locate the lines of code causing a given regres- 
sion bug. Khattar et al. [23] investigated regression bugs and 
identified the code changes introducing the regression bugs in 
Google Chromium project. It was found that 51.1% of labeled 
bugs are regression bugs. In addition, more than half of regres- 
sion bugs possess high priorities. Recently, Xiao et al. [15] have 
reported that 50.1% of classified bugs in Linux are regression 
bugs, and regression bugs are more likely to be bohrbugs, i.e., 
bugs that can be consistently reproduced under a well-defined 
set of conditions since their activation and/or error propaga- 
tion are simple. To the best of our knowledge, our study is the 
first work to investigate RBCs in Linux and their characteristics 
based on the proposed directed bipartite network. 

 
C. Mining Software Repositories Based on Bipartite Networks 

The bipartite networks are appropriate for modeling the rela- 
tionships between two disjoint entities. The authors of [37] and 
[38] modeled the relations between developers and software 
modules (binaries) as a contribution bipartite network. Based 
on the network, it was found that central modules are more 
failure prone than modules located in surrounding parts of the 
contribution network. Dittrich et al. [39] described the owner- 
ship between authors and source files in Audacity project as a 
bipartite network for identifying key authors and subject matter 
experts. Schall [40] modeled the user repository as a directed 
bipartite network to introduce an approach for recommending 
relevant users to follow in large-scale online development com- 
munities. The approach was tested using a GitHub-based dataset 
and obtained excellent results regarding context-sensitive 
following recommendations. 
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VIII. CONCLUSION 

In this paper, we presented a large-scale empirical study of 
RBCs in the Linux kernel based on 1579 regression bugs and 
2630 commits from a bipartite network perspective. First, we 
proposed the modeling of the bug–commit relationships as a 
directed bipartite network and introduced a novel concept of the 
RBC based on the network. Then, we introduced the data source 
and data processing procedure. The analysis was performed on 
three aspects: the prevalence of RBCs in Linux, the characteris- 
tics of RBCs, and the patterns of the bug–commit relationships. 
Along with eight findings and their implications, our results 
provided useful insights into the software maintenance process 
for large-scale real-world software systems. 
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