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Abstract—Motivated by the practical demands for simplifica-
tion of data towards being consistent with human thinking and
problem solving as well as tolerance of uncertainty, information
granules are becoming important entities in data processing
at different levels of data abstraction. This paper proposes a
method to construct classifiers from multi-resolution hierarchical
granular representations (MRHGRC) using hyperbox fuzzy sets.
The proposed approach forms a series of granular inferences
hierarchically through many levels of abstraction. An attractive
characteristic of our classifier is that it can maintain a high
accuracy in comparison to other fuzzy min-max models at a low
degree of granularity based on reusing the knowledge learned
from lower levels of abstraction. In addition, our approach
can reduce the data size significantly as well as handle the
uncertainty and incompleteness associated with data in real-
world applications. The construction process of the classifier
consists of two phases. The first phase is to formulate the model
at the greatest level of granularity, while the later stage aims
to reduce the complexity of the constructed model and deduce
it from data at higher abstraction levels. Experimental analyses
conducted comprehensively on both synthetic and real datasets
indicated the efficiency of our method in terms of training time
and predictive performance in comparison to other types of
fuzzy min-max neural networks and common machine learning
algorithms.

Index Terms—Information granules, granular computing, hy-
perbox, general fuzzy min-max neural network, classification,
hierarchical granular representation.

I. INTRODUCTION

H IERARCHICAL problem solving, where the problems
are analyzed in a variety of granularity degrees, is a

typical characteristic of the human brain [1]. Inspired by
this ability, granular computing was introduced. One of the
critical features of granular computing is to model the data as
high-level abstract structures and to tackle problems based on
these representations similar to structured human thinking [2].
Information granules (IGs) [3] are underlying constructs of
the granular computing. They are abstract entities describing
important properties of numeric data and formulating knowl-
edge pieces from data at a higher abstraction level. They play
a critical role in the concise description and abstraction of
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numeric data [4]. Information granules have also contributed
to quantifying the limited numeric precision in data [5].

Utilizing information granules is one of the problem-solving
methods based on decomposing a big problem into sub-tasks
which can be solved individually. In the world of big data,
one regularly departs from specific data entities and discover
general rules from data via encapsulation and abstraction. The
use of information granules is meaningful when tackling the
five Vs of big data [6], i.e., volume, variety, velocity, veracity,
and value. Granulation process gathering similar data together
contributes to reducing the data size, and so the volume
issue is addressed. The information from many heterogeneous
sources can be granulated into various granular constructs, and
then several measures and rules for uniform representation
are proposed to fuse base information granules as shown
in [7]. Hence, the data variety is addressed. Several studies
constructed the evolving information granules to adapt to the
changes in the streams of data as in [8]. The variations of
information granules in a high-speed data stream assist in
tackling the velocity problem of big data. The process of
forming information granules is often associated with the
removal of outliers and dealing with incomplete data [6];
thus the veracity of data is guaranteed. Finally, the multi-
resolution hierarchical architecture of various granular levels
can disregard some irrelevant features but highlight facets of
interest [9]. In this way, the granular representation may help
with cognitive demands and capabilities of different users.

A multi-dimensional hyperbox fuzzy set is a fundamental
conceptual vehicle to represent information granules. Each
fuzzy min-max hyperbox is determined by the minimum
and maximum points and a fuzzy membership function. A
classifier can be built from the hyperbox fuzzy sets along
with an appropriate training algorithm. We can extract a
rule set directly from hyperbox fuzzy sets or by using it in
combination with other methods such as decision trees [10]
to account for the predictive results. However, a limitation of
hyperbox-based classifiers is that their accuracy at the low
level of granularity (corresponding to large-sized hyperboxes)
decreases. In contrast, classifiers at the high granularity level
are more accurate, but the building process of classifiers at
this level is time-consuming, and it is difficult to extract the
rule set interpretable for predictive outcomes because of the
high complexity of resulting models. Hence, it is desired to
construct a simple classifier with high accuracy. In addition,
we expect to observe the change in the predictive results at
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different data abstraction levels. This paper proposes a method
of constructing a high-precision classifier at the high data
abstraction level based on the knowledge learned from lower
abstraction levels. On the basis of classification errors on the
validation set, we can predict the change in the accuracy of
the constructed classifier on unseen data, and we can select
an abstraction level satisfying both acceptable accuracy and
simple architecture on the resulting classifier. Furthermore,
our method is likely to expand for large-sized datasets due
to the capability of parallel execution during the constructing
process of core hyperboxes at the highest level of granularity.
In our method, the algorithm starts with a relatively small
value of maximum hyperbox size (θ) to produce base hyperbox
fuzzy sets, and then this threshold is increased in succeeding
levels of abstraction whose inputs are the hyperbox fuzzy
sets formed in the previous step. By using many hierarchical
resolutions of granularity, the information captured in earlier
steps is transferred to the classifier at the next level. Therefore,
the classification accuracy is still maintained at an acceptable
value when the resolution of training data is low.

Data generated from complex real-world applications fre-
quently change over time, so the machine learning models
used to predict behaviors of such systems need the efficient
online learning capability. Many studies considered the online
learning capability when building machine learning models
such as [11], [12], [13], [14], [15], [16], and [17]. Fuzzy min-
max neural networks proposed by Simpson [11] and many
of its improved variants only work on the input data in the
form of points. In practice, due to the uncertainty and some
abnormal behaviors in the systems, the input data include not
only crisp points but also intervals. To address this problem,
Gabrys and Bargiela [12] introduced a general fuzzy min-max
(GFMM) neural network, which can handle both fuzzy and
crisp input samples. By using hyperbox fuzzy sets for the input
layer, this model can accept the input patterns in the granular
form and process data at a high-level abstract structure. As a
result, our proposed method used a similar mechanism as in
the general fuzzy min-max neural network to build a series of
classifiers through different resolutions, where the small-sized
resulting hyperbox fuzzy sets generated in the previous step
become the input to be handled at a higher level of abstraction
(corresponding to a higher value of the allowable hyperbox
size). Going through different resolution degrees, the valuable
information in the input data is fuzzified and reduced in size,
but our method helps to preserve the amount of knowledge
contained in the original datasets. This capability is illustrated
via the slow decline in the classification accuracy. In some
cases, the predictive accuracy increases at higher levels of
abstraction because the noise existing in the detailed levels
is eliminated.

Building on the principles of developing GFMM classifiers
with good generalization performance discussed in [18], this
paper employs different hierarchical representations of granu-
lar data with various hyperbox sizes to select a compact clas-
sifier with acceptable accuracy at a high level of abstraction.
Hierarchical granular representations using consecutive maxi-
mum hyperbox sizes form a set of multi-resolution hyperbox-
based models, which can be used to balance the trade-off

between efficiency and simplicity of the classifiers. A model
with high resolution corresponds to the use of a small value of
maximum hyperbox size, and vice versa. A choice of suitable
resolution level results in better predictive accuracy of the
generated model. Our main contributions in this paper can
be summarized as follows:

• We propose a new data classification model based on
the multi-resolution of granular data representations in
combination with the online learning ability of the general
fuzzy min-max neural network.

• The proposed method is capable of reusing the learned
knowledge from the highest granularity level to construct
new classifiers at higher abstraction levels with the low
trade-off between the simplification and accuracy.

• The efficiency and running time of the general fuzzy min-
max classifier are significantly enhanced in the proposed
algorithm.

• Our classifier can perform on large-sized datasets because
of the parallel execution ability.

• Comprehensive experiments are conducted on synthetic
and real datasets to prove the effectiveness of the pro-
posed method compared to other approaches and base-
lines.

The rest of this paper is organized as follows. Section II
presents existing studies related to information granules as
well as briefly describes the online learning version of the
general fuzzy min-max neural network. Section III shows our
proposed method to construct a classifier based on data gran-
ulation. Experimental configuration and results are presented
in Section IV. Section V concludes the main findings and
discusses some open directions for future works.

II. PRELIMINARIES

A. Related Work

There are many approaches to representing information
granules [19]. Several typical methods include intervals [20],
fuzzy sets [21], shadowed sets [22], and rough sets [23]. Our
study only focuses on fuzzy sets and intervals. Therefore,
related works only mention the granular representation using
these two methods.

The existing studies on the granular data representation have
deployed a specific clustering technique to find representative
prototypes, and then build information granules from these
prototypes and optimize the constructed granular descriptors.
The principle of justifiable granularity [24] has been usually
utilized to optimize the construction of information granules
from available experimental evidence. This principle aims to
make a good balance between coverage and specificity prop-
erties of the resulting granule concerning available data. The
coverage property relates to how much data is located inside
the constructed information granule, whereas the specificity
of a granule is quantified by its length of the interval such
that the shorter the interval, the better the specificity. Pedrycz
and Homenda [24] made a compromise between these two
characteristics by finding the parameters to maximize the
product of the coverage and specificity.
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Instead of just stopping at the numeric prototypes, partition
matrices, or dendrograms for data clustering, Pedrycz and
Bargiela [25] offered a concept of granular prototypes to
capture more details of the structure of data to be clustered.
Granular prototypes were formed around the resulting numeric
prototypes of clustering algorithms by using some degree
of granularity. Information granularity is allocated to each
numeric prototype to maximize the quality of the granulation-
degranulation process of generated granules. This process was
also built as an optimization problem steered by the coverage
criteria, i.e., maximization of the original number of data
included in the information granules after degranulation.

In [5], Pedrycz developed an idea of granular models
derived from the establishment of optimal allocation of infor-
mation granules. The authors gave motivation and plausible
explanations in bringing the numeric models to the next
abstraction levels to form granular models. In the realization
flow of the general principles, Pedrycz et al. [4] introduced a
holistic process of constructing information granules through
a two-phase procedure in a general framework. The first phase
focuses on formulating numeric prototypes using fuzzy C-
means, and the second phase refines each resulting prototype
to form a corresponding information granule by employing the
principle of justifiable granularity.

When the problem becomes complicated, one regularly
splits it into smaller sub-tasks and deal with each sub-task
on a single level of granularity. These actions give rise to
the appearance of multi-granularity computing, which aims to
tackle problems from many levels of different IGs rather than
just one optimal granular layer. Wang et al. [1] conducted a
review on previous studies of granular computing and claimed
that multi-granularity joint problem resolving is a valuable
research direction to enhance the quality and efficiency of
solutions based on using multiple levels of information gran-
ules rather than only one granular level. This is the primary
motivation for our study to build suitable classifiers from many
resolutions of granular data representations.

All the above methods of building information granules
are based on the clustering techniques and affected by a
pre-determined parameter, i.e., the number of clusters. The
resulting information granules are only summarization of the
original data at a higher abstraction level, and they did not use
the class information in the constructing process of granules.
The authors have not used the resulting granules to deal with
classification problems either. Our work is different from these
studies because we propose a method to build classifiers from
various abstraction levels of data using the hyperbox fuzzy
sets while maintaining the reasonable stability of classification
results. In addition, our method can learn useful information
from data through an online approach and the continuous
adjustment of the existing structure of the model.

In the case of formulating models in a non-stationary envi-
ronment, it is essential to endow them with some mechanisms
to deal with the dynamic environment. In [26], Sahel et al.
assessed two adaptive methods to tackle data drifting prob-
lems, i.e., retraining models using evolving data and deploying
incremental learning algorithms. Although these approaches
improved the accuracy of classifiers compared to non-adaptive

learners, the authors indicated a great demand on building
robust techniques with high reliability for dynamic operating
environments. To meet the continuous changing in data and the
adaptation of the analytic system to this phenomenon, Peters
and Weber [27] suggested a framework, namely Dynamic
Clustering Cube, to classify dynamic granular clustering meth-
ods. Al-Hmouz et al. [8] introduced evolvable data models
through the dynamic changing of temporal or spatial IGs. The
number of information granules formed from prototypes of
data can increase or decrease through merging or splitting
existing granules according to the varying complexity of data
streams. In addtion to the ability to merge existing hyperboxes
for the construction of granular hierarchies of hyperboxes, our
proposed method also has the online learning ability, so it
can be used to tackle classification problems in a dynamic
environment.

Although this study is built based on the principles of
GFMM classifiers, it differs from the GFMM neural network
with adaptive hyperbox sizes [12]. In [12], the classifier was
formed at the high abstraction level with large-sized hyper-
boxes and then repeating many times the process of traversing
entire training dataset to build additional hyperboxes at lower
abstraction levels with the aim of covering patterns missed
by large-sized hyperboxes due to the contraction procedure.
This operation can make the final classifier complex with a
large number of hyperboxes at different levels of granularity
coexisting in a single classifier, and overfitting phenomenon
on the training set is more likely to happen. In contrast, our
method begins with the construction process of the classifier
at the highest resolution of training patterns with small-sized
hyperboxes to capture detailed information and relationships
among data points located in the vicinity of each other. After
that, at higher levels of abstraction, we do not use the data
points from the training set. Instead, we reuse the hyperboxes
generated from the preceding step. For each input hyperbox,
the membership value with the hyperboxes in the current
step are computed, and if the highest membership degree is
larger than a pre-defined threshold, the aggregation process is
performed to form hyperboxes with higher abstraction degrees.
Our research is also different from the approach presented in
[28], where the incremental algorithm was employed to reduce
the data complexity by creating small-sized hyperboxes, and
then these hyperboxes were used as training inputs of an
agglomerative learning algorithm with a higher abstraction
level. The method in [28] only constructs the classifier with
two abstraction levels, while our algorithm can generate a
series of classifiers at hierarchical resolutions of abstraction
levels. In addition, the agglomerative learning in [28] is time-
consuming, especially in large-sized datasets. Therefore, when
the number of generated hyperboxes using the incremental
learning algorithm on large-sized training sets is large, the
agglomerative learning algorithm takes a long time to formu-
late hyperboxes. On the contrary, our method takes advantage
of the incremental learning ability to build rapidly classifiers
through different levels of the hierarchical resolutions.
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B. General Fuzzy Min-Max Neural Network

General fuzzy min-max (GFMM) neural network [12] is
a generalization and extension of the fuzzy min-max neural
network (FMNN) [11]. It combines both classification and
clustering in a unified framework and can deal with both fuzzy
and crisp input samples. The architecture of the general fuzzy
min-max neural network comprises three layers, i.e., an input
layer, a hyperbox fuzzy set layer, and an output (class) layer,
shown in Fig. 1.
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Fig. 1. The architecture of GFMM neural network.

The input layer contains 2 ·n nodes, where n is the number
of dimensions of the problem, to fit with the input sample
X = [X l, Xu], determined within the n-dimensional unit cube
In. The first n nodes in the input layer are connected to m
nodes of the second layer, which contains hyperbox fuzzy sets,
by the minimum points matrix V. The remaining n nodes are
linked to m nodes of the second layer by the maximum points
matrix W. The values of two matrices V and W are adjusted
during the learning process. Each hyperbox Bi is defined by
an ordered set: Bi = {X,Vi,Wi, bi(X,Vi,Wi)}, where Vi ⊂
V,Wi ⊂W are minimum and maximum points of hyperbox
Bi respectively, bi is the membership value of hyperbox Bi in
the second layer, and it is also the transfer function between
input nodes in the first layer and hyperbox nodes in the second
layer. The membership function bi is computed using (1) [12].

bi(X,Vi,Wi) = min
j=1...n

(min([1− f(xuj − wij , γj)],

[1− f(vij − xlj , γj)]))
(1)

where f(r, γ) =


1, if rγ > 1

rγ, if 0 ≤ rγ ≤ 1

0, if rγ < 0

is the threshold func-

tion and γ = [γ1, . . . , γn] is a sensitivity parameter regulating
the speed of decrease of the membership values.

Hyperboxes in the middle layer are fully connected to the
third-layer nodes by a binary valued matrix U. The elements

in the matrix U are computed as follows:

uij =

{
1, if hyperbox Bi represents class cj
0, otherwise

(2)

where Bi is the hyperbox of the second layer, and cj is the
jth node in the third layer. Output of each node cj in the third
layer is a membership degree to which the input pattern X fits
within the class j. The transfer function of each node cj in
p+ 1 nodes belonging to the third layer is computed as:

cj =
m

max
i=1

bi · uij (3)

Node c0 is connected to all unlabeled hyperboxes of the middle
layer. The values of nodes in the output layer can be fuzzy if
they are computed directly from (3) or crisp in the case that
the node with the largest value is assigned to 1 and the others
get a value of zero [12].

The incremental learning algorithm for the GFMM neural
network to adjust the values of two matrices V and W includes
four steps, i.e., initialization, expansion, hyperbox overlap test,
and contraction, in which the last three steps are repeated. In
the initialization stage, each hyperbox Bi is initialized with
Vi = 1 and Wi = 0. For each input sample X , the algorithm
finds the hyperbox Bi with the highest membership value
representing the same class as X to verify two expansion
conditions, i.e., maximum allowable hyperbox size and class
label compatibility as shown in the supplemental file. If both
criteria are met, the selected hyperbox is expanded. If no
hyperbox meets the expansion conditions, a new hyperbox
is created to accommodate the input data. Otherwise, if the
hyperbox Bi is expanded in the prior step, it will be checked
for an overlap with other hyperboxes Bk as follows. If the class
of Bi is equal to zero, then the hyperbox Bi must be checked
for overlap with all existing hyperboxes; otherwise, the overlap
checking is only performed between Bi and hyperboxes Bk
representing other classes. If the overlap occurs, a contraction
process is carried out to remove the overlapping area by
adjusting the sizes of hyperboxes according to the dimension
with the smallest overlapping value. Four cases of the overlap
checking and contraction procedures were presented in detail
in the supplemental file and can be found in [12].

III. PROPOSED METHODS

A. Overview

The learning process of the proposed method consists of
two phases. The first phase is to rapidly construct small-
sized hyperbox fuzzy sets from similar input data points. This
phase is performed in parallel on training data segments. The
data in each fragment can be organized according to two
modes. The first way is called heterogeneous mode, which
uses the data order read from the input file. The second mode
is homogeneous, in which the data are sorted according to
groups; each group contains data from the same class. The
main purpose of the second phase is to decrease the complexity
of the model by reconstructing phase-1 hyperboxes with a
higher abstraction level.
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Fig. 2. Pipeline of the training process of the proposed method.

In the first step of the training process, the input samples
are split into disjoint sets and are then distributed to dif-
ferent computational workers. On each worker, we build an
independent general fuzzy min-max neural network. When all
training samples are handled, all created hyperboxes at differ-
ent workers are merged to form a single model. Hyperboxes
completely included in other hyperboxes representing the same
class are eliminated to reduce the redundancy and complexity
of the final model. After combining hyperboxes, the pruning
procedure needs to be applied to eliminate noise and low-
quality hyperboxes. The resulting hyperboxes are called phase-
1 hyperboxes.

However, phase-1 hyperboxes have small sizes, so the
complexity of the system can be high. As a result, all these
hyperboxes are put through phase-2 of the granulation process
with a gradual increase in the maximum hyperbox sizes. At
a larger value of the maximum hyperbox size, hyperboxes at
a low level of abstraction will be reconstructed with a higher
data abstraction degree. Previously generated hyperboxes are
fetched one at a time, and they are aggregated with newly
constructed hyperboxes at the current granular representation
level based on a similarity threshold of the membership degree.
This process is repeated for each input value of the maximum
hyperbox sizes. The whole process of the proposed method is
shown in Fig. 2. Based on the classification error of resulting
classifiers on the validation set, one can select an appropriate
predictor satisfying both simplicity and precision. The fol-
lowing part provides the core concepts for both phases of
our proposed method in a form of mathematical descriptions.
The details of Algorithm 1 for the phase 1 and Algorithm 2
corresponding to the phase 2 as well as their implementation
aspects are shown in the supplemental material. The readers
can refer to this document to find more about the free text
descriptions, pseudo-codes, and implementation pipeline of the
algorithms.

B. Formal Description

Consider a training set of NTr data vectors, X(Tr) =

{X(Tr)
i : X

(Tr)
i ∈ Rn, i = 1, . . . , NTr}, and the correspond-

ing classes, C(Tr) = {c(Tr)i : c
(Tr)
i ∈ N, i = 1, . . . , NTr};

a validation set of NV data vectors, X(V ) = {X(V )
i :

X
(V )
i ∈ Rn, i = 1, . . . , NV }, and the corresponding classes,

C(V ) = {c(V )
i : c

(V )
i ∈ N, i = 1, . . . , NV }. The details of the

method are formally described as follows.
1) Phase 1:
Let nw be the number of workers to execute the hyper-

box construction process in parallel. Let Fj(X(Tr)
j ,C

(Tr)
j , θ0)

be the procedure to construct hyperboxes on the jth

worker with maximum hyperbox size θ0 using training data
{X(Tr)

j ,C
(Tr)
j }. Procedure Fj is a modified fuzzy min-max

neural network model which only creates new hyperboxes
or expands existing hyperboxes. It accepts the overlapping
regions among hyperboxes representing different classes, be-
cause we expect to capture rapidly similar samples and group
them into specific clusters by small-sized hyperboxes without
spending much time on computationally expensive hyperbox
overlap test and resolving steps. Instead, each hyperbox Bi is
added a centroid Gi of patterns contained in that hyperbox
and a counter Ni to store the number of data samples covered
by it in addition to maximum and minimum points. This
information is used to classify data points located in the
overlapping regions. When a new pattern X is presented to
the classifier, the operation of building the pattern centroid
for each hyperbox (line 12 and line 15 in Algorithm 1) is
performed according to (4).

Gnew
i =

Ni ·Gold
i +X

Ni + 1
(4)

where Gi is the sample centroid of the hyperbox Bi, Ni is
the number of current samples included in the Bi. Next, the
number of samples is updated: Ni = Ni + 1. It is noted that
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Gi is the same as the first pattern covered by the hyperbox Bi
when Bi is newly created.

After the process of building hyperboxes in all workers
finishes, merging step is conducted (lines 19-23 in Algorithm
1), and it is mathematically represented as:

M = {Bi|Bi ∈
nw⋃
j=1

Fj(X
(Tr)
j ,C

(Tr)
j , θ0)} (5)

where M is the model after performing the merging procedure.
It is noted that hyperboxes contained in the larger hyperboxes
representing the same class are eliminated (line 24 in Algo-
rithm 1) and the centroids of larger hyperboxes are updated
using (6).

Gnew
1 =

N1 ·Gold
1 +N2 ·Gold

2

N1 +N2
(6)

where G1 and N1 are the centroid and the number of samples
of the larger sized hyperbox, G2 and N2 are the centroid
and the number of samples of the smaller sized hyperbox.
The number of samples in the larger sized hyperbox is also
updated: N1 = N1 + N2. This whole process is similar to
the construction of an ensemble classifier at the model level
shown in [29].

Pruning step is performed after merging hyperboxes to re-
move noise and low-quality hyperboxes (line 26 in Algorithm
1). Mathematically, it is defined as:

H0 =

{
M1 = M \ {Bk|Ak < α ∨ Ak = Nil}, if EV (M1) ≤ EV (M2)

M2 = M \ {Bk|Ak < α}, otherwise
(7)

where H0 is the final model of stage 1 after applying the
pruning operation, EV (Mi) is the classification error of the
model Mi on the validation set {X(V ),C(V )}, α is the
minimum accuracy of each hyperbox to be retained, and Ak is
the predictive accuracy of hyperbox Bk ∈M on the validation
set defined as follows:

Ak =

Sk∑
j=1
Rkj

Sk∑
j=1

(Rkj + Ikj)
(8)

where Sk is the number of validation samples classified by
hyperbox Bk, Rk is the number of samples predicted correctly
by Bk, and Ik is the number of incorrect predicted samples.
If Sk = 0, then Ak = Nil.

The classification step of unseen samples using model H0 is
performed in the same way as in the GFMM neural network
with an exception of the case of many winning hyperboxes
with the same maximum membership value. In such a case,
we compute the Euclidean distance from the input sample X
to centroids Gi of winning hyperboxes Bi using (9). If the
input sample is a hyperbox, X is the coordinate of the center
point of that hyperbox.

d(X,Gi) =

√√√√ n∑
j=1

(xj −Gij)2 (9)

The input pattern is then classified to the hyperbox Bi with
the minimum value of d(X,Gi).

2) Phase 2:
Unlike phase 1, the input data in this phase are hyperboxes

generated in the previous step. The purpose of stage 2 is to
reduce the complexity of the model by aggregating hyperboxes
created at a higher resolution level of granular data represen-
tations. At the high level of data abstraction, the confusion
among hyperboxes representing different classes needs to be
removed. Therefore, the overlapping regions formed in phase
1 have to be resolved, and there is no overlap allowed in this
phase. Phase 2 can be mathematically represented as:

HH(Θ,ms) = {Hi|Hi = G(Hi−1, θi,ms)},∀i ∈ [1, |Θ|], θi ∈ Θ
(10)

where HH is a list of models Hi constructed through different
levels of granularity represented by maximum hyperbox sizes
θi, Θ is a list of maximum hyperbox sizes, |Θ| is the
cardinality of Θ, ms is the minimum membership degree of
two aggregated hyperboxes, and G is a procedure to construct
the models in phase 2 (it uses the model at previous step as
input), H0 is the model in phase 1. The aggregation rule of
hyperboxes, G, is described as follows:

For each input hyperbox Bh in Hi−1, the membership
values between Bh and all existing hyperboxes with the
same class as Bh in Hi are computed. We select the winner
hyperbox with maximum membership degree with respect
to Bh, denoted Bk, to aggregate with Bh. The following
constraints are verified before conducting the aggregation:

• Maximum hyperbox size:

max(whj , wkj)−min(vhj , wkj) ≤ θi, ∀j ∈ [1, n]
(11)

• The minimum membership degree:

b(Bh, Bk) ≥ ms (12)

• Overlap test. New hyperbox aggregated from Bh and Bk
does not overlap with any existing hyperboxes in Hi

belonging to other classes
If hyperbox Bk has not met all of the above conditions, the

hyperbox with the next highest membership value is selected
and the process is repeated until the aggregation step occurs or
no hyperbox candidate is left. If the input hyperbox cannot be
mergered with existing hyperboxes in Hi, it will be directly
inserted into the current list of hyperboxes in Hi. After that,
the overlap test operation between the newly inserted hyperbox
and hyperboxes in Hi representing other classes is performed,
and then the contraction process will be executed to resolve
overlapping regions. The algorithm is iterated for all input
hyperboxes in Hi−1.

The classification process for unseen patterns using the
hyperboxes in phase 2 is realized as in the GFMM neural
network. A detailed decription of the implementation steps
for the proposed method can be found in the supplemental
material.

C. Missing Value Handling
The proposed method can deal with missing values since

it inherits this characteristic from the general fuzzy min-
max neural network as shown in [30]. A missing feature
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xj is assumed to be able to receive values from the whole
range, and it is presented by a real-valued interval as follows:
xlj = 1, xuj = 0. By this initialization, the membership
value associated with the missing value will be one, and
thus the missing value does not cause any influence on the
membership function of the hyperbox. During the training
process, only observed features are employed for the update
of hyperbox minimum and maximum vertices while missing
variables are disregarded automatically. For the overlap test
procedure in phase 2, only the hyperboxes which satisfy
vij ≤ wij for all dimensions j ∈ [1, n] are verified for the
undesired overlapping areas. The second change is related to
the way of calculating the membership value for the process
of hyperbox selection or classification step of an input sample
with missing values. Some hyperboxes’ dimensions have not
been set, so the membership function shown in (1) is changed
to bi(X,min(Vi,Wi),max(Wi, Vi)). With the use of this
method, the training data uncertainty is represented in the
classifier model.

IV. EXPERIMENTS

Marcia et al. [31] argued that data set selection poses a
considerable impact on conclusions of the accuracy of learners,
and then the authors advocated for considering properties of
the datasets in experiments. They indicated the importance of
employing artificial data sets constructed based on previously
defined characteristics. In these experiments, therefore, we
considered two types of synthetic datasets with linear and
non-linear class boundaries. We also changed the number of
features, the number of samples, and the number of classes for
synthetic datasets to assess the variability in the performance
of the proposed method. In practical applications, the data
are usually not ideal as well as not following a standard
distribution rule and including noisy data. Therefore, we also
carried out experiments on real datasets with diversity in the
numbers of samples, features, and classes.

For medium-sized real datasets such as Letter, Magic, White
wine quality, and Default of credit card clients, the density-
preserving sampling (DPS) method [32] was used to separate
the original datasets into training, validation, and test sets. For
large-sized datasets, we used the hold-out method for splitting
datasets, which is the simplest and the least computationally
expensive approach to assessing the performance of classifiers
because more advanced resampling approaches are not essen-
tial for large amounts of data [32]. The classification model is
then trained on the training dataset. The validation set is used
for the pruning step and evaluating the performance of the
constructed classifier aiming to select a suitable model. The
testing set is employed to assess the efficiency of the model
on unseen data.

The experiments aim to answer the following questions:
• How is the classification accuracy of the predictor us-

ing multi-resolution hierarchical granular representations
improved in comparison to the model using a fixed
granulation value?

• How good is the performance of the proposed method
compared with other types of fuzzy min-max neural

networks and popular algorithms based on other data
representations such as support vector machines, Naive
Bayes, and decision tree?

• Whether we can obtain a classifier with high accuracy at
high abstraction levels of granular representations?

• Whether we can rely on the performance of the model
on validation sets to select a good model for unseen data,
which satisfies both simplicity and accuracy?

• How good is the ability of handling missing values in
datasets without requiring data imputation?

• How critical are the roles of the pruning process and the
use of sample centroids?

The limitation of runtime for each execution is seven days. If
an execution does not finish within seven days, it will be termi-
nated, and the result is reported as N/A. In the experiments, we
set up parameters as follows: nw = 4, α = 0.5,ms = 0.4, γ =
1 because they gave the best results on a set of preliminary
tests with validation sets for the parameter selection. All
datasets are normalized to the range of [0, 1] because of the
characteristic of the fuzzy min-max neural networks. Most
of the datasets except the SUSY datasets utilized the value
of 0.1 for θ0 in phase 1, and Θ = {0.2, 0.3, 0.4, 0.5, 0.6}
for different levels of granularity in phase 2. For the SUSY
dataset, due to the complexity and limitation of runtime for
the proposed method and other compared types of fuzzy min-
max neural networks, the θ0 = 0.3 was used for phase 1,
and Θ = {0.4, 0.5, 0.6} was employed for phase 2. For Naive
Bayes, we used Gaussian Naive Bayes (GNB) algorithm for
classification. The radial basis function (RBF) was used as a
kernel function for the support vector machines (SVM). We
used the default setting parameters in the scikit-learn library
for Gaussian Naive Bayes, SVM, and decision tree (DT) in
the experiments. The performance of the proposed method
was also compared to other types of fuzzy min-max neural
networks such as the original fuzzy min-max neural network
(FMNN) [11], the enhanced fuzzy min-max neural network
(EFMNN) [33], the enhanced fuzzy min-max neural network
with a K-nearest hyperbox expansion rule (KNEFMNN) [34],
and the general fuzzy min-max neural network (GFMMNN)
[12]. These types of fuzzy min-max neural networks used the
same pruning procedure as our proposed method.

Synthetic datasets in our experiments were generated by us-
ing Gaussian distribution functions, so Gaussian Naive Bayes
and SVM with RBF kernel which use Gaussian distribution
assumptions to classify data will achieve nearly optimal er-
ror rates because they match perfectly with underlying data
distribution. Meanwhile, fuzzy min-max classifiers employ
the hyperboxes to cover the input data, thus they are not
an optimal representation for underlying data. Therefore, the
accuracy of hyperbox-based classifiers on synthetic datasets
cannot outperform the predictive accuracy of Gaussian NB or
SVM with RBF kernel. However, Gaussian NB is a linear
classifier, and thus, it only outputs highly accurate predictive
results for datasets with linear decision boundary. In contrast,
decision tree, fuzzy min-max neural networks, and SVM
with RBF kernel are universal approximators, and they can
deal effectively with both linear and non-linear classification
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problems.
All experiments were conducted on the computer with Xeon

6150 2.7GHz CPU and 180GB RAM. We repeated each
experiment five times to compute the average training time.
The accuracy of types of fuzzy min-max neural networks
remains the same through different iterations because they only
depend on the data presentation order and we kept the same
order of training samples during the experiments.

A. Performance of the Proposed Method on Synthetic Datasets

The first experiment was conducted on the synthetic datasets
with the linear or non-linear boundary between classes. For
each synthetic dataset, we generated a testing set containing
100,000 samples and a validation set with 10,000 instances
using the same probability density function as the training
sets.

1) Linear Boundary Datasets:
Increase the number of samples:

We kept both the number of dimensions n = 2 and the
number of classes C = 2 the same, and only the number of
samples was changed to evaluate the impact of the number of
patterns on the performance of classifiers. We used Gaussian
distribution to construct synthetic datasets as described in
[35]. The means of the Gaussians of two classes are given
as follows: µ1 = [0, 0]T , µ2 = [2.56, 0]T , and the covariance
matrices are as follows:

Σ1 = Σ2 =
[

1 0
0 1

]
With the use of these configuration parameters, training sets
with different sizes (10K, 1M, and 5M samples) were formed.
Fukunaga [35] indicated that the general Bayes error of
the datasets formed from these settings is around 10%. We
generated an equal number of samples for each class to remove
the impact of imbalanced class property on the performance
of classifiers. Fig. 3 shows the change in the error rates of
different fuzzy min-max classifiers on the testing synthetic
linear boundary datasets with the different numbers of training
patterns when the level of granularity (θ) changes. The other
fuzzy min-max neural networks used the fixed value of θ
to construct the model, while our method builds the model
starting from the defined lowest value of θ (phase 1) to the
current threshold. For example, the model at θ = 0.3 in our
proposed method is constructed with θ = 0.1, θ = 0.2, and
θ = 0.3.

It can be seen from Fig. 3 that the error rates of our method
are lower than those of other fuzzy min-max classifiers, es-
pecially in high abstraction levels of granular representations.
At high levels of abstraction (corresponding to high values of
θ), the error rates of other classification models are relatively
high, while our proposed classifier still maintains the low error
rate, just a little higher than the error at a high-resolution
level of granular data. The lowest error rates of the different
classifiers on validation (EV ) and testing (ET ) sets, as well
as total training time for six levels of abstraction, are shown
in Table I. Best results are highlighted in bold in each table.
The training time reported in this paper consists of time for
reading training files and model construction.

TABLE I
THE LOWEST ERROR RATES AND TRAINING TIME OF CLASSIFIERS ON
SYNTHETIC LINEAR BOUNDARY DATASETS WITH DIFFERENT NUMBER

OF SAMPLES (n = 2, C = 2)

N Algorithm minEV minET θV θT Time (s)

10K

He-MRHGRC 10.25 10.467 0.1 0.1 1.1378
Ho-MRHGRC 10.1 10.413 0.1 0.1 1.3215
GFMM 11.54 11.639 0.1 0.1 8.6718
FMNN 10.05 10.349 0.1 0.1 46.4789
KNEFMNN 12.07 12.232 0.1 0.1 9.4459
EFMNN 10.44 10.897 0.1 0.1 48.9892
GNB 9.85 9.964 - - 0.5218
SVM 9.91 9.983 - - 1.5468
DT 15.33 14.861 - - 0.5405

1M

He-MRHGRC 10.31 10.386 0.3 0.3 20.0677
Ho-MRHGRC 10.24 10.401 0.1 0.1 16.0169
GFMM 11.47 11.783 0.1 0.1 405.4642
FMNN 10.98 11.439 0.2 0.2 13163.1404
KNEFMNN 10.36 10.594 0.1 0.1 413.8296
EFMNN 11.61 11.923 0.6 0.6 10845.1280
GNB 9.87 9.972 - - 5.0133
SVM 9.86 9.978 - - 21798.2803
DT 14.873 14.682 - - 9.9318

5M

He-MRHGRC 10.11 10.208 0.5 0.5 101.9312
Ho-MRHGRC 10.04 10.222 0.1 0.1 75.2254
GFMM 13.14 13.243 0.1 0.1 1949.2138
FMNN 12.68 12.751 0.6 0.6 92004.7253
KNEFMNN 17.31 17.267 0.1 0.1 1402.1173
EFMNN 12.89 13.032 0.1 0.1 41888.5296
GNB 9.88 9.976 - - 22.9343
SVM N/A N/A - - N/A
DT 15.253 14.692 - - 70.2041

We can see that the accuracy of our method on unseen
data using the heterogeneous data distribution (He-MRHGRC)
regularly outperforms the accuracy of the classifier built based
on the homogeneous data distribution (Ho-MRHGRC) using
large-sized training sets. It is also observed that our method
is less affected by overfitting when increasing the number
of training samples while keeping the same testing set. For
other types of fuzzy min-max neural networks, their error
rates frequently increase with the increase in training size
because of overfitting. The total training time of our algorithm
is faster than that of other types of fuzzy min-max classifiers
since our proposed method executes the hyperbox building
process at the lowest value of θ in parallel, and we accept
the overlapping areas among hyperboxes representing different
classes to rapidly capture the characteristics of sample points
locating near each other. The hyperbox overlap resolving step
is only performed at higher abstraction levels with a smaller
number of input hyperboxes.

Our proposed method also achieves better classification
accuracy compared to the decision tree, but it cannot over-
come the support vector machines and Gaussian Naive Bayes
methods on synthetic linear boundary datasets. However, the
training time of the support vector machines on large-sized
datasets is costly, even becomes unacceptable on training sets
with millions of patterns. The synthetic datasets were con-
structed based on the Gaussian distribution, so the Gaussian
Naive Bayes method can reach the minimum error rate, but our
approach can also obtain the error rates relatively near these
optimal error values. We can observe that the best performance
of the He-MRHGRC attains at quite high abstraction levels
of granular representations because some noisy hyperboxes at
high levels of granularity are eliminated at lower granulation
levels. These results demonstrate the efficiency and scalability
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Fig. 3. The error rate of classifiers on synthetic linear boundary datasets with the different number of samples.

TABLE II
THE LOWEST ERROR RATES AND TRAINING TIME OF CLASSIFIERS ON
SYNTHETIC LINEAR BOUNDARY DATASETS WITH DIFFERENT CLASSES

(N = 10K,n = 2)

C Algorithm minEV minET θV θT Time (s)

2

He-MRHGRC 10.25 10.467 0.1 0.1 1.1378
Ho-MRHGRC 10.10 10.413 0.1 0.1 1.3215
GFMM 11.54 11.639 0.1 0.1 8.6718
FMNN 10.05 10.349 0.1 0.1 46.4789
KNEFMNN 12.07 12.232 0.1 0.1 9.4459
EFMNN 10.44 10.897 0.1 0.1 48.9892
GNB 9.85 9.964 - - 0.5218
SVM 9.91 9.983 - - 1.5468
DT 15.33 14.861 - - 0.5405

4

He-MRHGRC 19.76 19.884 0.4 0.4 1.0754
Ho-MRHGRC 19.97 21.135 0.1 0.1 1.5231
GFMM 22.34 22.515 0.1 0.1 10.8844
FMNN 20.00 20.350 0.1 0.1 65.7884
KNEFMNN 20.54 20.258 0.1 0.1 12.5618
EFMNN 21.75 21.736 0.1 0.1 55.1921
GNB 19.35 19.075 - - 0.5492
SVM 19.34 19.082 - - 1.6912
DT 26.94 27.014 - - 0.5703

16

He-MRHGRC 30.11 30.996 0.1 0.4 1.2686
Ho-MRHGRC 28.70 30.564 0.1 0.1 1.8852
GFMM 32.66 33.415 0.1 0.1 18.0554
FMNN 29.78 31.035 0.1 0.1 69.6761
KNEFMNN 33.42 34.670 0.1 0.1 22.3418
EFMNN 31.80 33.239 0.1 0.1 76.0920
GNB 27.12 28.190 - - 0.5764
SVM 27.29 28.103 - - 1.6455
DT 38.813 39.644 - - 0.6023

of our proposed approach.
Increase the number of classes:
The purpose of the experiment in this subsection is to

evaluate the performance of the proposed method on multi-
class datasets. We kept the number of dimensions n = 2,
the number of samples N = 10, 000, and only changed the
number of classes to form synthetic multi-class datasets with
C ∈ {2, 4, 16}. The covariance matrices stay the same as in
the case of changing the number of samples.

Fig. 4 shows the change in error rates of fuzzy min-max
classifiers with a different number of classes on the testing
sets. It can be easily seen that the error rates of our method
are lowest compared to other fuzzy min-max neural networks
on all multi-class synthetic datasets at high abstraction levels
of granular representations. At high abstraction levels, the error
rates of other fuzzy min-max neural networks increase rapidly,
while the error rate of our classifier still maintains the stability.

In addition, the error rates of our method also slowly augment
in contrast to the behaviors of other considered types of fuzzy
min-max neural networks when increasing the abstraction
level of granular representations. These facts demonstrate the
efficiency of our proposed method on multi-class datasets. The
lowest error rates of classifiers on validation and testing sets, as
well as total training time, are shown in Table II. It is observed
that the predictive accuracy of our method outperforms all
considered types of fuzzy min-max classifiers and decision
tree, but it cannot overcome the Gaussian Naive Bayes and
support vector machine methods. The training time of our
method is faster than other fuzzy min-max neural networks
and support vector machines on the considered multi-class
synthetic datasets.

Increase the number of features:
To generate the multi-dimensional synthetic datasets with

the number of samples N = 10K and the number of classes
C = 2, we used the similar settings as in generation of datasets
with different number of samples. The means of classes are
µ1 = [0, . . . , 0]T , µ2 = [2.56, 0, . . . , 0]T , and the covariance
matrices are as follows:

Σ1 = Σ2 =

[
1 . . . 0

...
. . .

...
0 . . . 1

]
The size of each expression corresponds to the number of
dimensions n of the problem. Fukunaga [35] stated that the
general Bayes error of 10% and this Bayes error stays the
same even when n changes.

Fig. 5 shows the change in the error rates with different
levels of granularity on multi-dimensional synthetic datasets.
In general, with a low number of dimensions, our method
outperforms other fuzzy min-max neural networks. With high
dimensionality and a small number of samples, the high levels
of granularity result in high error rates, and misclassification
results considerably drops when the value of θ increases. The
same trend also happens to the FMNN when its accuracy at
θ = 0.5 or θ = 0.6 is quite high. Apart from the FMNN
on high dimensional datasets, our proposed method is better
than three other fuzzy min-max classifiers at high abstraction
levels. Table III reports the lowest error rates of classifiers on
validation and testing multi-dimensional sets as well as the
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Fig. 4. The error rate of classifiers on synthetic linear boundary datasets with the different number of classes.
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Fig. 5. The error rate of classifiers on synthetic linear boundary datasets with the different number of features.

TABLE III
THE LOWEST ERROR RATES AND TRAINING TIME OF CLASSIFIERS ON

SYNTHETIC LINEAR BOUNDARY DATASETS WITH DIFFERENT FEATURES
(N = 10K,C = 2)

n Algorithm minEV minET θV θT Time (s)

2

He-MRHGRC 10.250 10.467 0.1 0.1 1.1378
Ho-MRHGRC 10.100 10.413 0.1 0.1 1.3215
GFMM 11.540 11.639 0.1 0.1 8.6718
FMNN 10.050 10.349 0.1 0.1 46.4789
KNEFMNN 12.070 12.232 0.1 0.1 9.4459
EFMNN 10.440 10.897 0.1 0.1 48.9892
GNB 9.850 9.964 - - 0.5218
SVM 9.910 9.983 - - 1.5468
DT 15.330 14.861 - - 0.5405

8

He-MRHGRC 10.330 10.153 0.3 0.3 21.9131
Ho-MRHGRC 10.460 10.201 0.3 0.3 23.0554
GFMM 12.170 12.474 0.1 0.2 196.0682
FMNN 10.250 10.360 0.6 0.6 302.8683
KNEFMNN 12.720 12.844 0.1 0.1 618.2524
EFMNN 11.300 10.907 0.4 0.4 579.3113
GNB 9.940 9.919 - - 0.5915
SVM 9.980 9.927 - - 2.0801
DT 15.383 15.087 - - 0.6769

32

He-MRHGRC 11.070 10.995 0.5 0.5 226.3193
Ho-MRHGRC 11.070 10.995 0.5 0.5 226.0611
GFMM 12.390 12.625 0.3 0.3 847.6977
FMNN 11.830 11.637 0.5 0.6 1113.6836
KNEFMNN 17.410 18.395 0.1 0.4 837.9571
EFMNN 13.890 13.766 0.4 0.4 1114.4976
GNB 10.280 10.088 - - 0.7154
SVM 10.220 10.079 - - 4.5937
DT 15.400 15.201 - - 1.0960

total training time through six abstraction levels of granular
representations. The training time of our method is much
faster than other types of fuzzy min-max neural networks.
Generally, the performance of our proposed method overcomes
the decision tree and other types of fuzzy min-max neural
networks, but its predictive results cannot defeat the Gaussian
Naive Bayes and support vector machines. It can be observed
that the best performance on validation and testing sets obtains
at the same abstraction level of granular representations on all
considered multi-dimensional datasets. This fact indicates that
we can use the validation set to choose the best classifier at
a given abstraction level among constructed models through
different granularity levels.

2) Non-linear Boundary:
To generate non-linear boundary datasets, we set up the
Gaussian means of the first class: µ1 = [−2, 1.5]T , µ2 =
[1.5, 1]T and the Gaussian means of the second class: µ3 =
[−1.5, 3]T , µ4 = [1.5, 2.5]T . The covariance matrices for
the first class Σ1,Σ2 and for the second class Σ3,Σ4 were
established as follows:

Σ1 =

[
0.5 0.05
0.05 0.4

]
,Σ2 =

[
0.5 0.05
0.05 0.3

]
,

Σ3 =

[
0.5 0
0 0.5

]
,Σ4 =

[
0.5 0.05
0.05 0.2

]
,

The number of samples for each class was equal, and the
generated samples were normalized to the range of [0, 1]. We
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created only a testing set including 100,000 samples and a
validation set with 10,000 patterns. Three different training
sets containing 10K, 100K, and 5M samples were used to
train classifiers. We aim to evaluate the predictive results of
our method on the non-linear boundary dataset when changing
the sizes of the training set.

Fig. 6 shows the changes in the error rates through different
levels of granularity of classifiers on non-linear boundary
datasets. It can be observed that the error rates of our proposed
method trained on the large-sized non-linear boundary datasets
are better than those using other types of fuzzy min-max neural
networks, especially at high abstraction levels of granular
representations. While other fuzzy min-max neural networks
show the increase in the error rates if the value of θ grows up,
our method is capable of maintaining the stability of predictive
results even in the case of high abstraction levels. When the
number of samples increases, the error rates of other fuzzy
min-max classifiers usually rise, whereas the error rate in
our approach only fluctuates a little. These results indicate
that our approach may reduce the influence of overfitting
because of constructing higher abstraction level of granular
data representations using the learned knowledge from lower
abstraction levels.

The best performance of our approach does not often happen
at the smallest value of θ on these non-linear datasets. Results
regarding accuracy on validation and testing sets reported in
Table IV confirm this statement. These figures also illustrate
the effectiveness of the processing steps in phase 2. Unlike the
linear boundary datasets, our method overcomes the Gaussian
Naive Bayes to become two best classifiers (along with SVM)
among classifiers considered. Although SVM outperformed
our approach, its runtime on large-sized datasets is much
slower than our method. The training time of our algorithm
is much faster than other types of fuzzy min-max neural
networks and SVM, but it is still slower than Gaussian Naive
Bayes and decision tree techniques.

B. Performance of the Proposed Method on Real Datasets

Aiming to attain the fairest comparison, we used 12 datasets
with diverse ranges of the number of sizes, dimensions, and
classes. These datasets were taken from the LIBSVM [36],
Kaggle [37], and UCI repositories [38] and their properties
are described in Table V. For the SUSY dataset, the last
500,000 patterns were used for the test set as shown in
[39]. From the results of synthetic datasets, we can see that
the performance of the multi-resolution hierarchical granular
representation based classifier using the heterogeneous data
distribution technique is more stable than that utilizing the
homogeneous distribution method. Therefore, the experiments
in the rest of this paper were conducted for only the hetero-
geneous classifier.

Table VI shows the number of generated hyperboxes for the
He-MRHGRC on real datasets at different abstraction levels
of granular representations. It can be seen that the number of
hyperboxes at the value of θ = 0.6 is significantly reduced
in comparison to those at θ = 0.1. However, the error rates
of the classifiers on testing sets at θ = 0.6 do not change so

TABLE IV
THE LOWEST ERROR RATES AND TRAINING TIME OF CLASSIFIERS ON

SYNTHETIC NON-LINEAR BOUNDARY DATASETS WITH DIFFERENT
NUMBER OF SAMPLES (n = 2, C = 2)

N Algorithm minEV minET θV θT Time (s)

10K

He-MRHGRC 9.950 9.836 0.2 0.2 0.9616
Ho-MRHGRC 9.820 9.940 0.1 0.1 1.1070
GFMM 10.200 9.787 0.4 0.5 10.5495
FMNN 9.770 9.753 0.5 0.5 61.1130
KNEFMNN 9.890 9.505 0.2 0.2 16.1099
EFMNN 9.750 9.565 0.1 0.4 60.6073
GNB 10.740 10.626 - - 0.5218
SVM 9.750 9.490 - - 1.5565
DT 14.107 13.831 - - 0.5388

100K

He-MRHGRC 10.130 9.670 0.3 0.3 2.5310
Ho-MRHGRC 9.910 9.412 0.1 0.1 2.3560
GFMM 11.810 11.520 0.1 0.1 44.7778
FMNN 10.880 10.575 0.1 0.1 588.4412
KNEFMNN 12.470 11.836 0.1 0.1 42.9151
EFMNN 11.020 10.992 0.1 0.1 485.7613
GNB 10.830 10.702 - - 0.9006
SVM 9.650 9.338 - - 93.4474
DT 14.277 13.642 - - 1.1767

5M

He-MRHGRC 10.370 10.306 0.1 0.6 91.7894
Ho-MRHGRC 9.940 9.737 0.1 0.1 69.5106
GFMM 15.260 14.730 0.1 0.1 1927.6191
FMNN 13.160 13.243 0.1 0.1 53274.4387
KNEFMNN 15.040 14.905 0.1 0.1 1551.5220
EFMNN 15.660 15.907 0.2 0.2 54487.6978
GNB 10.840 10.690 - - 22.9849
SVM N/A N/A - - N/A
DT 13.790 13.645 - - 49.9919

much compared to those at θ = 0.1. This fact is illustrated in
Fig. 7 and figures in the supplemental file. From these figures,
it is observed that at the high values of maximum hyperbox
size such as θ = 0.5 and θ = 0.6, our classifier achieves
the best performance compared to other considered types of
fuzzy min-max neural networks. We can also observe that the
prediction accuracy of our method is usually much better than
that using other types of fuzzy min-max classifiers on most
of the data granulation levels. The error rate of our classifier
regularly increases slowly with the increase in the abstraction
level of granules, even in some cases, the error rate declines
at a high abstraction level of granular representations. The
best performance of classifiers on validation and testing sets,
as well as training time through six granularity levels, are
reported in the supplemental file.

Although our method cannot achieve the best classification
accuracy on all considered datasets, its performance is located
in the top 2 for all datasets. The Gaussian Naive Bayes
classifiers obtained the best predictive results on synthetic
linear boundary datasets, but it fell to the last position and
became the worst classifier on real datasets because real
datasets are highly non-linear. On datasets with highly non-
linear decision boundaries such as covtype, PhysioNet MIT-
BIH Arrhythmia, and MiniBooNE, our proposed method still
produces the good predictive accuracy.

The training process of our method is much faster than other
types of fuzzy min-max neural networks on all considered
datasets. Notably, on some large-sized complex datasets such
as covtype and SUSY, the training time of other fuzzy min-
max classifiers is costly, but their accuracy is worse than
our method, which takes less training time. Our approach is
frequently faster than SVM and can deal with datasets with
millions of samples, while the SVM approach cannot perform.
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Fig. 6. The error rate of classifiers on synthetic non-linear boundary datasets with the different number of samples.

TABLE V
THE REAL DATASETS AND THEIR STATISTICS

Dataset #Dimensions #Classes #Training samples #Validation samples #Testing samples Source
Poker Hand 10 10 25,010 50,000 950000 LIBSVM
SensIT Vehicle 100 3 68,970 9,852 19,706 LIBSVM
Skin NonSkin 3 2 171,540 24,260 49,257 LIBSVM
Covtype 54 7 406,709 58,095 116,208 LIBSVM
White wine quality 11 7 2,449 1,224 1,225 Kaggle
PhysioNet MIT-BIH Arrhythmia 187 5 74,421 13,133 21,892 Kaggle
MAGIC Gamma Telescope 10 2 11,887 3,567 3,566 UCI
Letter 16 26 15,312 2,188 2,500 UCI
Default of credit card clients 23 2 18,750 5,625 5,625 UCI
MoCap Hand Postures 36 5 53,104 9,371 15,620 UCI
MiniBooNE 50 2 91,044 12,877 26,143 UCI
SUSY 18 2 4,400,000 100,000 500,000 UCI

TABLE VI
THE CHANGE IN THE NUMBER OF GENERATED HYPERBOXES THROUGH

DIFFERENT LEVELS OF GRANULARITY OF THE PROPOSED METHOD

Dataset θ
0.1 0.2 0.3 0.4 0.5 0.6

Skin NonSkin 1012 248 127 85 64 51
Poker Hand 11563 11414 10905 3776 2939 2610
Covtype 94026 13560 5224 2391 1330 846
SensIT Vehicle 5526 2139 1048 667 523 457
PhysioNet
MIT-BIH
Arrhythmia

60990 26420 15352 8689 5261 3241

White wine quality 1531 676 599 559 544 526
Default of credit
card clients

2421 529 337 76 48 29

Letter 9236 1677 952 646 595 556
MAGIC Gamma
Telescope

1439 691 471 384 335 308

MiniBooNE 444 104 24 10 6 6
SUSY - - 26187 25867 16754 13017

On many datasets, the best predictive results on validation
and testing sets were achieved at the same abstraction level of
granular representations. In the case that the best model on the
validation set has different abstraction level compared to the
best model on the testing set, the error rate on the testing set
if using the best classifier on the validation set is also near the
minimum error. These figures show that our proposed method
is stable, and it can achieve a high predictive accuracy on both
synthetic and real datasets.
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Fig. 7. The error rate of classifiers on the Letter datasets through data
abstraction levels.

C. The Vital Role of the Pruning Process and the Use of
Sample Centroids

This experiment aims to assess the important roles of the
pruning process and the use of sample centroids on the
performance of the proposed method. The experimental results
related to these issues are presented in Table VII. It is easily
observed that the pruning step contributes to significantly
reducing the number of generated hyperboxes, especially in
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TABLE VII
THE ROLE OF THE PRUNING PROCESS AND THE USE OF SAMPLE CENTROIDS

Dataset Num hyperboxes Error rate
before

pruning (%)

Error rate
after pruning

(%)

No. of predicted
samples using centroids

before pruning

No. of predicted
samples using centroids

after pruning
Before pruning After pruning Total Wrong Total Wrong

Skin NonSkin 1,358 1,012 0.1726 0.0974 1,509 73 594 30
Poker Hand 24,991 11,563 53.5951 49.8128 600,804 322,962 725,314 362,196
SensIT Vehicle 61,391 5,526 23.6730 20.9073 2 1 0 0
Default of credit card clients 9,256 2,421 22.3822 19.7689 662 291 312 127
Covtype 95971 94026 7.7335 7.5356 2700 975 2213 783
PhysioNet MIT-BIH Arrhythmia 61,419 60,990 3.6589 3.5492 49 9 48 8
MiniBooNE 1,079 444 16.4289 13.9043 14,947 3,404 11,205 2,575
SUSY 55,096 26,187 30.8548 28.3456 410,094 145,709 370,570 124,850

SensIT Vehicle, Default of credit card clients, SUSY datasets.
When the poorly performing hyperboxes are removed, the
accuracy of the model increases considerably. These figures
indicate the critical role of the pruning process with regards
to reducing the complexity of the model and enhancing the
predictive performance.

We can also see that the use of sample centroids and
Euclidean distance may predict accurately from 50% to 95%
of the samples located in the overlapping regions between
different classes. The predictive accuracy depends on the
distribution and complexity of underlying data. With the use
of sample centroids, we do not need to use the overlap test
and contraction process in phase 1 at the highest level of
granularity. This strategy leads to accelerating the training
process of the proposed method compared to other types
of fuzzy min-max neural networks, especially in large-sized
datasets such as covtype or SUSY. These facts point to the
effectiveness of the pruning process and the usage of sample
centroids on improving the performance of our approach in
terms of both accuracy and training time.

D. Ability to Handling Missing Values

This experiment was conducted on two datasets containing
many missing values, i.e., PhysioNet MIT-BIH Arrhythmia and
MoCap Hand Postures datasets. The aim of this experiment
is to demonstrate the ability to handle missing values of
our method to preserve the uncertainty of input data without
doing any pre-processing steps. We also generated three other
training datasets from the original data by replacing missing
values with the zero, mean, or median value of each feature.
Then, these values were used to fill in the missing values of
corresponding features in the testing and validation sets. The
obtained results are presented in Table VIII. The predictive
accuracy of the classifier trained on the datasets with missing
values cannot be superior to ones trained on the datasets
imputed by the median, mean or zero values. However, the
training time is reduced, and the characteristic of the proposed
method is still preserved, in which the accuracy of the classifier
is maintained at high levels of abstraction, and its behavior
is nearly the same on both validation and testing sets. The
replacement of missing values by other values is usually biased
and inflexible in real-world applications. The capability of
deducing directly from data with missing values ensures the
maintenance of the online learning property of the fuzzy min-
max neural network on the incomplete input data.

TABLE VIII
THE TRAINING TIME AND THE LOWEST ERROR RATES OF OUR METHOD

ON THE DATASETS WITH MISSING VALUES

Dataset Training
time (s)

minEV minET

Arrhythmia with replacing
missing values by zero values

53,100.2895 3.0762
(θ = 0.1)

3.5492
(θ = 0.1)

Arrhythmia with replacing
missing values by mean values

60,980.5110 2.6879
(θ = 0.1)

3.3848
(θ = 0.1)

Arrhythmia with replacing
missing values by median
values

60,570.4315 2.7031
(θ = 0.1)

3.2980
(θ = 0.2)

Arrhythmia with missing
values retained

58,188.8138 2.6955
(θ = 0.1)

3.1473
(θ = 0.1)

Postures with replacing missing
values by zero values

5,845.9722 6.6482
(θ = 0.1)

7.7529
(θ = 0.4)

Postures with replacing missing
values by mean values

5,343.0038 8.5370
(θ = 0.1)

9.7631
(θ = 0.3)

Postures with replacing missing
values by median values

4,914.4475 8.4089
(θ = 0.1)

9.9936
(θ = 0.3)

Postures with missing values
retained

2,153.8121 14.5662
(θ = 0.4)

13.7900
(θ = 0.4)

E. Comparison to State-of-the-art Studies

The purpose of this section is to compare our method
with recent studies of classification algorithms on large-
sized datasets in physics and medical diagnostics. The first
experiment was performed on the SUSY dataset to distinguish
between a signal process producing super-symmetric particles
and a background process. To attain this purpose, Baldi et
al. [39] compared the performance of a deep neural network
with boosted decision trees using the area under the curve
(AUC) metrics. In another study, Sakai et al. [40] evaluated
different methods of AUC optimization in combination with
support vector machines to enhance the efficiency of the final
predictive model. The AUC values of these studies along with
our method are reported in Table IX. It can be seen that our
approach overcomes all approaches in Sakai’s research, but
it cannot outperform the deep learning methods and boosted
trees on the considered dataset.

The second experiment was conducted on a medical dataset
(PhysioNet MIT-BIH Arrhythmia) containing Electrocardio-
gram (ECG) signal used for the classification of heartbeats.
There are many studies on ECG heartbeat classification such
as deep residual convolution neural network [41], a 9-layer
deep convolutional neural network on the augmentation of
the original data [42], combinations of a discrete wavelet
transform with neural networks, SVM [43], and random forest
[44]. The PhysioNet MIT-BIH Arrhythmia dataset contains
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TABLE IX
THE AUC VALUE OF THE PROPOSED METHOD AND OTHER METHODS ON

THE SUSY DATASET

Method AUC
Boosted decision tree [39] 0.863
Deep neural network [39] 0.876
Deep neural network with dropout [39] 0.879
Positive-Negative and unlabeled data based AUC optimization [40] 0.647
Semi-supervised rankboost based AUC optimization [40] 0.709
Semi-supervised AUC-optimized logistic sigmoid [40] 0.556
Optimum AUC with a generative model [40] 0.577
He-MRHGRC (Our method) 0.799

TABLE X
THE ACCURACY OF THE PROPOSED METHOD AND OTHER METHODS ON

THE PhysioNet MIT-BIH Arrhythmia DATASET

Method Accuracy(%)
Deep residual Convolutional neural network [41] 93.4
Augmentation + Deep convolutional neural network [42] 93.5
Discrete wavelet transform + SVM [43] 93.8
Discrete wavelet transform + NN [43] 94.52
Discrete wavelet transform + Random Forest [44] 94.6
Our method on the dataset with the missing values 96.85
Our method on the dataset with zero padding 96.45

many missing values and above studies used the zero padding
mechanism for these values. Our method can directly handle
missing values without any imputations. The accuracy of
our method on the datasets with missing values and zero
paddings is shown in Table X along with results taken from
other studies. It is observed that our approach on the dataset
including missing values outperforms all other methods con-
sidered. From these comparisons, we can conclude that our
proposed method is extremely competitive to other state-of-
the-art studies published on real datasets.

V. CONCLUSION AND FUTURE WORK

This paper presented a method to construct classification
models based on multi-resolution hierarchical granular rep-
resentations using hyperbox fuzzy sets. Our approach can
maintain good classification accuracy at high abstraction levels
with a low number of hyperboxes. The best classifier on the
validation set usually produces the best predictive results on
unseen data as well. One of the interesting characteristics
of our method is the capability of handling missing values
without the need for missing values imputation. This prop-
erty makes it flexible for real-world applications, where the
data incompleteness usually occurs. In general, our method
outperformed other typical types of fuzzy min-max neural
networks using the contraction process for dealing with over-
lapping regions in terms of both accuracy and training time.
Furthermore, our proposed technique can be scaled to large-
sized datasets based on the parallel execution of the hyperbox
building process at the highest level of granularity to form
core hyperboxes from sample points rapidly. These hyperboxes
are then refined at higher abstraction levels to reduce the
complexity and maintain consistent predictive performance.

The patterns located in the overlapping regions are currently
classified by using Euclidean distance to the sample centroids.
Future work will focus on deploying the probability estimation
measure to deal with these samples. The predictive results of

the proposed method depend on the order of presentations of
the training patterns because it is based on the online learning
ability of the general fuzzy min-max neural network. In
addition, the proposed method is sensitive to noise and outliers
as well. In real-world applications, noisy data are frequently
encountered; thus they can lead to serious stability issue.
Therefore, outlier detection and noise removal are essential
issues which need to be tackled in future work. Furthermore,
we also intend to combine hyperboxes generated in different
levels of granularity to build an optimal ensemble model for
pattern recognition.
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[13] J. de Jesús Rubio, “Sofmls: online self-organizing fuzzy modified least-
squares network,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6,
pp. 1296–1309, 2009.

[14] X.-M. Zhang and Q.-L. Han, “State estimation for static neural networks
with time-varying delays based on an improved reciprocally convex
inequality,” IEEE transactions on neural networks and learning systems,
vol. 29, no. 4, pp. 1376–1381, 2017.
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