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ABSTRACT

Recently, deep learning methods have been successfully ap-
plied to single image super-resolution tasks. However, some
networks with extreme depth failed to achieve better perfor-
mance because of the insufficient utilization of the local resid-
ual information extracted at each stage. To solve the above
question, we propose a Dense Information Flow Network
(DIF-Net), which can fully extract and utilize the local residu-
al information at each stage to accomplish a better reconstruc-
tion. Specifically, we present a Two-stage Residual Extraction
Block (TREB) to extract the shallow and deep local residu-
al information at each stage. The dense connection mecha-
nism is introduced throughout the model and within TREB-
s to dramatically increase the information flow. Meanwhile
this mechanism prevents the shallow features extracted earlier
from being diluted. Finally, we propose a lightweight subnet
(residual enhancer) to efficiently recycle the overflow residual
information from the backbone net for detail enhancement of
the residual image. Experimental results demonstrate that the
proposed method performs favorably against the state-of-the-
art methods with relatively-less parameters. Code is available
at https://github.com/suzhuoi/DIF-Net.

Index Terms— Single image super-resolution, Enhanced
residual information, Dense connection

1. INTRODUCTION

Single image super-resolution (SISR) is a classical prob-
lem in low-level computer vision, which reconstructs a high-
resolution (HR) image from a low-resolution (LR) image
without altering the semantics of the image. The same L-
R image can be obtained by downsampling from an infinite
number of HR images. Hence, the SR problem is inherently
an ill-posed problem. In order to solve the problem, numerous
SISR methods have been presented, including interpolation-
based methods and reconstruction-based models. But they

normally suffer dramatically degeneration in restoration per-
formance with some large upscaling factors.

We first review CNN-based SR methods and then intro-
duce the main contributions of the proposed approach.

1.1. Related Work

CNN-based SR methods have been witnessed noteworthy
progress recently [1, 2, 3]. Dong et al. [4] first exploit-
ed a three-layer convolutional neural network (SRCNN), to
jointly optimize the feature extraction, non-linear mapping
and image reconstruction stages into an end-to-end manner.
Aimed at the disadvantage of too much computation, a mod-
ified method (FSRCNN) is constructed by Dong et al. [5],
which adopts the original LR image as input without interpo-
lation. These improvements provide FSRCNN [5] better per-
formance but lower computational cost than SRCNN [4]. The
work in [6] then presented an efficient sub-pixel convolution-
al neural network (ESPCN), which replaces the upsampling
operation with an efficient sub-pixel convolution.

Nevertheless, constrained by the challenge of training,
many deep models cannot achieve ideal results. Kim et al. [7]
increased the network depth to 20 layers by migrating ResNet
into SISR. Residual information is sparse and more accessi-
ble to learn, which helps to speed up VDSR’s [8] convergence
during training. Leding et al. [9] presented SRGAN to further
increase the depth to 30 layers. Removing some redundant
modules from the residual network, Lim et al. [10] were able
to train their model (EDSR) with 160 layers. Tai et al. [11]
proposed MemNet with long-term memory. They mimicked
the workings of the cerebral cortex and formulated the skip
connection mechanism to bridge the long-term dependencies.
Haris et al. [12] illustrated error feedback mechanism to char-
acterize or constrain the features in early layers. Recently,
Zheng et al. [13] constructed a simple network (IDN) with the
key component DBlock consists of an enhancement unit and a
compression unit. Their proposed method achieved real-time
speed while still maintaining good reconstruction accuracy.

https://github.com/suzhuoi/DIF-Net
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Fig. 1. Architecture of the proposed network. Backbone net contains two 3×3 convolutional layers for extracting residual
information from LR images. The following TREBs extract information progressively. All information will flow to GRFB for
a global fusion. The light gray component is the residual enhancer for recycling the overflow information.

Although achieving prominent performance, most of the
deep networks still have some drawbacks. Most networks
lack sufficient information flow, which may lead to a low-
er information utilization rate1. Taking [13, 8] as examples,
information extracted by each block only flow to the next
block, and there are no direct connections between noncon-
secutive blocks. The straight-forward structure dilutes previ-
ously extracted information as continuous convolution opera-
tions. Though using skip connection mechanism to enhance
the contacts between different blocks, the structure of Mem-
Net [11] is still sparse. And these models only pay attention
to the depth of networks rather than the compactness, which
results in the insufficient excavation of hierarchical features
and restriction of information utilization rate.

1.2. Contributions

To address these drawbacks, we propose a novel model DIF-
NET (Fig. 1) with dense connections both locally and glob-
ally to increase the information flow and extract hierarchical
residual information in each phase as much as possible. The
main contributions of the proposed method are three-fold.

• Two-stage Residual Extraction Block. TREB is the
core module for DIF-NET. We divide the procedure of
extracting local residual information into two stages:
firstly shallow information and then the deep one. D-
ifferent from IDN [13], we utilize dense connection
mechanism to ensure sufficient excavation of local
residual information. Two Information Denoising U-
nits are placed behind shallow/deep residual extraction
unit separately. Compression unit fuses the extracted

1 The utilization rate can be defined as the ratio of data to parameters,
and less parameters means higher utilization rate once data is fixed.

shallow and deep information as well as reduces the
dimension of feature maps. The ingenious two-stage
structure prevents the dilution of extracted shallow in-
formation while still obtaining deep information.

• Global Residual Fusion Mechanism. Different from
skip connection mechanism presented in MemNet [11],
we utilize dense connections to reinforce the associ-
ations between TREBs. As illustrated in Fig. 2, the
compact connections between blocks increase the in-
formation flow remarkably, leading to the growth of the
information utilization rate.

• Residual Enhancer. Dense connections do not guar-
antee the full utilization of information, a huge amount
of information flow will lead to the overflow of effec-
tive information. We innovatively design a residual en-
hancer consisting of Residual Recycle Blocks (RRBs)
to recycle the residual information spilled from each
TREB. A residual image with clearer texture will be
obtained after enhancement of subnet.

2. PROPOSED METHODS

In this section, we first describe the proposed model architec-
ture and then suggest the MREB, the residual enhancer and
global residual fusion mechanism.

2.1. Network Structure

As shown in Fig. 1, our model consists of a backbone net and
a subnet (residual enhancer). In the backbone net, informa-
tion passes through Feature Extraction Block (FEB), several
TREBs, Global Residual Fusion Block (GRFB) and finally
a deconvolution block successively. The split operations are
placed between TREBs to implement the dense connection
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Fig. 2. Architecture of the proposed TREB.

mechanism. Subnet contains several RRBs and a deconvolu-
tion block. IL and IH represent the input and output of our
model separately. FEB, which are firstly utilized to extract the
features from the LR image, can be formulated as:

R0 = F (IL) = F2(F1(IL)), (1)

where R0 denotes the output of FEB, F1(·) and F2(·) indi-
cate the first two convolution operations, F (·) represents FEB
function. It is worthy of note that R0 only contains high fre-
quency information that related to details in LR image, i.e.
residual information. Theoretically FEB can be regarded as
a high-pass filter which selectively suppresses background-
related low frequency information and extracts high frequen-
cy information. R0 is then utilized to extract hierarchical
information by series of TREBs. There exists n blocks of
TREBs, the k-th output Rk can be expressed as:

Rk =Mk(Sk,out), (2)

and Mk(·) denotes the k-th TREB function. The input of a
split operation is the same as all its outputs, which can be
described as:

Sk,in = Sk,out = Rk−1 ⊕ Sk−1,out ⊕ ...⊕ S1,out. (3)

Rk−1 indicates the output of the (k-1)-th TREB, Sk,in and
Sk,out represent the input of the k-th split operation as well
as all its outputs respectively. ⊕ denotes the sum operation.
Hierarchical information will be extracted sufficiently at each
stage through TREBs. After extracting features deep enough
with a set of TREBs, we further conduct GRFB, which fuses
all the hierarchical information from every stage. The output
RG of GRFB can be obtained by:

RG = G(C([Rn;Sn,out;Sn−1,out; ...;S1,out])), (4)

where G(·) denotes the GRFB function. Since we have ob-
tained sufficient features that stock residual information from
each stage, a deconvolution block is placed at the end of the
backbone net to map the features to HR space:

IrH = D1(RG). (5)

Here, IrH denotes the output of the backbone net (i.e.
the residual image), D1(·) indicates deconvolution function.
Dense connections are used to increase the information flow
of our model, meanwhile residual enhancer recycle the spilled
information from the backbone net. The outputBk of the k-th
RRB can be expressed as:

Bk = Rk(C([Bk−1;Sk,out])), (6)

where Bk−1 demonstrates the k-th RRB function. Finally a
deconvolution block is utilized to map the output of the last
RRB to HR space, this procedure can be formulated as:

IfH = D2(Bn), (7)

specifically IfH denotes the output of the residual enhancer
and we regard it as enhanced residual detail. Residual en-
hancer will be specifically described in Section 2.3. Hence
the output of the proposed model can be summarized as:

IH = F(IL) = IB + IrH + IfH , (8)

and IB represents the image after bicubic upsampling pro-
cessing, F(·) is the construction function of our model.

2.2. Two-stage Residual Extraction Block

As illustrated in Fig. 2, TREB can be roughly divided into five
units: shallow residual extraction unit (SREU) and deep resid-
ual extraction unit (DREU) followed by a residual denoising
unit (RDU) respectively, a 1x1 convolution layer named com-
pression unit (CU) is utilized to computation reduction. The
output Uk

1 of k-th SREU can be expressed as:

Uk
1 = Hk

s (Sk−1,out) = Hk
s3(H

k
s2(H

k
s1(Sk−1,out))), (9)

whereHk
s (·) represents the k-th SREU function. Hk

s1∼3(·) in-
dicates the first three convolution operation of the k-th TREB.
Dense connection is also implemented to allow information
flows across layers. We further have Uk

2 :

Uk
2 = Hk

r1(U
k
1 ), (10)

and Hk
r1(·) is the RDU function. RDUs stabilize the train-

ing by removing noise from residual information. Uk
2 is then

divided into two parts by slice operation:

Uk
2,1 = ζ1−q(U

k
2 ), U

k
2,2 = ζq(U

k
2 ). (11)

Specifically we know that the dimension of Uk
2,2 is q (q ∈

(0, 1)) times that of Uk
2 . Uk

2,2 is then concatenated with Sk,out

in channel dimension, we have:

Rk
c = C[Uk

2,2, Sk−1,out], (12)

letting C denotes the concatenation operation. Therefore par-
tially local shallow residual information is reserved to prevent
from being diluted. The rest information is further used to ex-
tract local deep residual information:

Uk
3 = Hk

d (U
k
2,1) = Hk

d3(H
k
d2(H

k
d1(U

k
2,1))),

Uk
4 = Hk

r2(U
k
3 ),

(13)

where Hk
d (·) denotes the DREU function and Hk

r2(·) denotes
the RDU function. Uk

3 and Uk
4 represents the outputs sepa-

rately. Finally the CU fuses the extracted local shallow resid-
ual information and deep residual information:

Rk = Hk
c ((U

k
4 ⊕Rk

c )), (14)

and Hk
c (·) represents the k-th CU function.



Methods Time（s） PSNR（dB）Parameters（k）
DRCN 18.991 37.63 1700
DRRN 21.569 37.74 300
VDSR 2.065 37.53 700

LapSRN 0.605 37.52 700
MemNet 56.862 37.78 700

SRDenseNet 20.844 37.60 1800
IDN 1.185 37.61 500
Ours 2.000 37.85 600
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Fig. 3. Trade-off between average performance vs. speed and
parameters on the Set5 dataset with 2 times. The size of the
circle represents the number of parameters.

2.3. Residual Enhancer
Most methods improve reconstruction performance by deep-
ening the depth of the networks, which may lead to a decline
in information utilization. Constrained by the number of para-
ments, effective information will inevitably spill when flow-
ing through blocks. The proposed lightweight residual en-
hancer is utilized to recycle the spilled residual information
to extract more subtle details further. These enhanced details
are finally mapped to the HR space at the end of the subnet.

As illustrated in Fig. 1, subnet is composed of a set of
RRBs and a deconvolution block. Each RRB consists of three
layers of 3×3 convolution layers followed by rectified linear
units (ReLU) respectively. Specifically, for the output Bk of
the k-th RRB, we have:

Bk = Rk(C[Bk−1, Sk,out]), (15)

where Bk−1 is the output of the previous RRB. Rk(·) indi-
cates the k-th RRB function. The output IfH of the subnet is
called enhanced residual detail, as illustrated in Eq. 7.

2.4. Global Residual Fusion Mechanism

As described in Section 2.2, the straight-forward information
flow mode dilutes the shallow residual features extracted for-
merly as continuous convolution operations. Moreover, the d-
eficiency of information flow in a way restricts the expressive
ability of the model, which likewise leads to a low informa-
tion utilization rate. We introduce dense connections, named
as global residual fusion mechanism, to connect the whole
network. Residual information extracted by each TREB will
flow into all the following TREBs and subnet, which increase
network flow remarkably. Meanwhile, all residual informa-
tion will gather at the end of the backbone net through con-
catenation operation. Eventually we obtain the final residual
information using a 3×3 GRFB.

3. EXPERIMENTAL RESULTS

In this section, we first introduce training details, then analy-
sis our models, and compre it with state-of-the-arts.

(a) (b)

(c) (d)

Fig. 4. The residual images comparison and corresponding
data distribution histogram analysis using the “butterfly” im-
age from Set5 dataset.

3.1. Implementation and training details

We use a high-quality (2K resolution) dataset DIV2K dataset
as the training data. DIV2K consists of 800 training images,
100 validation images, and 100 test images. We train all of
our models with 800 training images and use 5 validation
images in the training process. For testing, we use four s-
tandard benchmark datasets: Set5, Set14, BSD100 and Ur-
ban100. The SR results are evaluated with PSNR and SSIM
on Y channel (i.e., luminance) of transformed YCbCr space.

We set the parameters of mini-batch size and weight decay
to 64 and 1e-4 respectively. Training a DIF-Net roughly takes
a day with a NVIDIA GeForce GTX 1080 GPU for 2x model.

3.2. Model Analysis

As illustrated in Fig. 3, due to the concise structure of pro-
posed DIF-Net and parameters sharing strategy within and be-
tween modules, it is faster than several CNN-based SR meth-
ods and maintains better reconstruction accuracy. Here, our
DIF-Net model outperforms all state-of-the-art models, and
has less parameters than other models.

As shown in Fig. 4, (a) and (b) represent the residual im-
ages without and with enhancement by the residual enhancer
respectively. A clearer texture in (b) can be told from the mag-
nified details in (a) and (b). The blurred and jagged edge in
(a) becomes observably clearer and smoother as shown in (b)
with reinforcement of residual enhancer. The corresponding
data distribution histograms are shown in (c) and (d) sepa-
rately, which both subject to the Gaussian distribution. The
larger variance value (indicated by red arrows) in (d) repre-
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0 0 0 0 0 0 0
0.5 34.36564649 33.81883369 34.39990482 33.63702365 33.63702365 35.49269959

1 34.2515663 33.71106745 35.6513595 33.0910956 33.0910956 36.51445116
1.5 36.00747132 35.89531542 36.31438541 35.5607621 35.5607621 36.79653889

2 33.33615682 35.26198865 33.39685094 34.18016014 34.18016014 36.74869463
2.5 36.57800873 36.55248108 36.65851259 36.14022991 36.14022991 37.21414481

3 36.58212123 37.02805528 37.12911109 36.91768318 36.91768318 37.28180094
3.5 37.07397251 37.29181564 37.15971133 37.04128864 37.04128864 37.39317321

4 36.26347594 37.19828044 36.58482624 36.04047722 36.04047722 37.28392163
4.5 37.29822011 37.3386742 37.35792822 37.23872936 37.23872936 37.40503402

5 36.4089541 36.66078041 36.90468633 36.62287738 36.62287738 37.48231036
5.5 36.73865437 37.15778409 37.14007816 37.11979145 37.11979145 37.52852802

6 36.63725622 36.69652338 36.18789765 36.73242604 36.73242604 37.64005357
6.5 37.22341576 37.38124497 37.37649415 37.33643344 37.33643344 37.45205306

7 37.46905681 37.48663362 37.37236532 37.26818266 37.26818266 37.61384579
7.5 37.15915206 37.17113043 37.01289897 37.26128646 37.26128646 37.59071693

8 37.49870388 37.54316083 37.21343454 37.47043941 37.47043941 37.62574804
8.5 37.5847848 37.57696025 37.58810081 37.57367098 37.57367098 37.66592691

9 37.54818478 37.56656276 37.55833336 37.49979846 37.49979846 37.62518697
9.5 36.87650273 37.21863541 37.10543917 37.14944022 37.14944022 37.60128725
10 37.4930845 37.29553834 37.55573066 37.32550634 37.32550634 37.64063015

10.5 36.32278559 36.47561125 37.00662138 37.03357308 37.03357308 37.62929043
11 37.25003639 36.99143934 37.39468538 37.53622427 37.53622427 37.66179957

11.5 37.55241538 37.6703648 37.6426865 37.19831286 37.19831286 37.70685393
12 37.53799329 37.60323467 37.56530148 37.55712603 37.55712603 37.62312741

12.5 37.63130847 37.62118743 37.58336373 37.59606385 37.59606385 37.68514255
13 37.56657938 37.5748911 37.60137058 37.62018032 37.62018032 37.67137849

13.5 37.57920696 37.62034163 37.65167741 37.62471277 37.62471277 37.64241998
14 37.73992629 37.70063026 37.71846563 37.7557791 37.7557791 37.78187959

14.5 37.52706672 36.50688006 36.50788745 36.88660656 36.88660656 37.63302957
15 37.30047144 37.57555064 37.42235782 37.47626246 37.47626246 37.67211806

15.5 37.59986515 37.41055353 37.5451175 37.61259945 37.61259945 37.70628842
16 37.60045737 37.4244894 37.64004514 37.61907414 37.61907414 37.69553822

16.5 37.71142897 37.74348664 37.76896954 37.73628991 37.73628991 37.63513689
17 37.01592174 37.62059527 37.55156844 37.5145006 37.5145006 37.64512995

17.5 37.63566352 37.56586424 37.60117226 37.58791568 37.58791568 37.69491772
18 37.59870513 37.60490972 37.56749996 37.62405825 37.62405825 37.66099333

18.5 37.68193924 37.71399874 37.5987883 37.53681378 37.53681378 37.72299805
19 37.59368999 37.58691014 37.573966 37.56788388 37.56788388 37.50942804

19.5 37.68244702 37.68848144 37.67048584 37.6732849 37.6732849 37.73575775
20 37.59028412 37.61665213 37.60297393 37.65105406 37.65105406 37.70750106

20.5 37.59353754 37.65796066 37.60408195 37.55415279 37.55415279 37.72409315
21 37.55058345 37.6528821 37.68228263 37.50138707 37.50138707 37.68985124

21.5 37.60857048 37.601911 37.64002514 37.65032585 37.65032585 37.72616163
22 37.66648605 37.68084074 37.72682585 37.63461125 37.63461125 37.73334229

22.5 37.59719739 37.56972351 37.62972744 37.41122216 37.41122216 37.67788899
23 37.62013452 37.70513742 37.70443794 37.58929494 37.58929494 37.75073914

23.5 37.63489593 37.5746344 37.52811105 37.67514948 37.67514948 37.68857848
24 37.60780491 37.54010163 37.64410232 37.39377652 37.39377652 37.62489842

24.5 37.76339942 37.81350183 37.71018927 37.65351943 37.65351943 37.80963565
25 37.51863497 37.65148234 37.1835 37.68882492 37.68882492 37.69283256

25.5 37.72759437 37.73518014 37.76702962 37.77251681 37.77251681 37.76339581
26 37.74037132 37.7400465 37.76707155 37.77635692 37.77635692 37.80122175

26.5 37.75930868 37.7723826 37.78199387 37.83684391 37.83684391 37.80695302
27 37.747546 37.76406452 37.79056825 37.7534643 37.7534643 37.79711471

27.5 37.77283557 37.77468714 37.80282995 37.79453186 37.79453186 37.82320935
28 37.74444141 37.73874791 37.74866149 37.79218774 37.79218774 37.78371344

28.5 37.75949194 37.75151049 37.79302865 37.80343268 37.80343268 37.79875336
29 37.77370154 37.78302595 37.79077768 37.85531727 37.85531727 37.81955605

29.5 37.76998946 37.73877007 37.79723439 37.78962164 37.78962164 37.79276301
30 37.78423798 37.76556742 37.83094704 37.78306548 37.78306548 37.83414082

30.5 37.72787113 37.84286276 37.83426784 37.77267151 37.77267151 37.78085282
31 37.77020714 37.76449372 37.78809627 37.81134174 37.81134174 37.81604593

31.5 37.77165078 37.78167946 37.79343727 37.81387591 37.81387591 37.81029054
32 37.78641161 37.75061846 37.77738761 37.81285052 37.81285052 37.83940649

32.5 37.83502216 37.79225894 37.79640709 37.76437353 37.76437353 37.86249499
33 37.77863891 37.78746572 37.7948029 37.80206227 37.80206227 37.7781399

33.5 37.76929181 37.78743693 37.80727392 37.8391756 37.8391756 37.78929128
34 37.75261555 37.74083253 37.75789283 37.82127389 37.82127389 37.81920543

34.5 37.78380123 37.78423794 37.79386566 37.86580694 37.86580694 37.82544282
35 37.78519198 37.72420149 37.80016644 37.75767931 37.75767931 37.83062436

35.5 37.79847561 37.79483778 37.80090436 37.81259771 37.81259771 37.83285085
36 37.76074967 37.85486644 37.83560478 37.80519649 37.80519649 37.78126493

36.5 37.77647086 37.73066995 37.75015525 37.7991505 37.7991505 37.79649337
37 37.77443903 37.78200649 37.80920444 37.86201744 37.86201744 37.82732535

37.5 37.78574264 37.77044084 37.80620756 37.7774868 37.7774868 37.84013391
38 37.8280613 37.80011722 37.81093288 37.79797717 37.79797717 37.84565476

38.5 37.74960126 37.84477096 37.8352158 37.82379364 37.82379364 37.81280323
39 37.77454949 37.79366744 37.80059947 37.87292524 37.87292524 37.83031937

39.5 37.77599916 37.77362783 37.79493102 37.81294462 37.81294462 37.82342201
40 37.78155706 37.76112252 37.77674181 37.81157174 37.81157174 37.82819959

40.5 37.84117099 37.75202705 37.80842903 37.77237526 37.77237526 37.87712778
41 37.79049351 37.79823254 37.80870721 37.82546215 37.82546215 37.74436532

41.5 37.78006461 37.80873621 37.82543674 37.81875859 37.81875859 37.80075903
42 37.75937198 37.74517602 37.76965369 37.81934027 37.81934027 37.83382353

42.5 37.79391125 37.77933324 37.78895031 37.78675306 37.78675306 37.84009687
43 37.79039742 37.79551063 37.82550192 37.82418652 37.82418652 37.83131913

43.5 37.80527719 37.81973668 37.82300065 37.82799997 37.82799997 37.82210983
44 37.76975176 37.86351192 37.86144856 37.82257896 37.82257896 37.80911866

44.5 37.78424532 37.72228408 37.76466412 37.86994901 37.86994901 37.79094287
45 37.78126724 37.79477891 37.81806191 37.78378983 37.78378983 37.84101829

45.5 37.78984494 37.77776325 37.80567646 37.82771 37.82771 37.82832828
46 37.8307383 37.79041353 37.80411344 37.82075656 37.82075656 37.84675596

46.5 37.75534481 37.85201614 37.84184155 37.82952007 37.82952007 37.79260584
47 37.77923939 37.78193483 37.75917897 37.87679163 37.87679163 37.8145782

47.5 37.77776438 37.80213632 37.80081497 37.81245499 37.81245499 37.82576585
48 37.78543758 37.77039793 37.82964942 37.80889979 37.80889979 37.82231444

48.5 37.84171477 37.81149686 37.82277167 37.79697078 37.79697078 37.88337047
49 37.79762886 37.79810188 37.7980473 37.82496149 37.82496149 37.76095203

49.5 37.7679766 37.80154846 37.81852901 37.82826443 37.82826443 37.80516362
50 37.75862926 37.7575347 37.78052465 37.83080671 37.83080671 37.82486358
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Fig. 5. Convergence analysis of DIF-Net with different values
of T, C, and R. The curves for each combination are based on
the PSNR on Set5 with scaling factor x2.

sents a higher image contrast in (b), conforming to the visual
cognition that (b) has a clearer texture.

As shown in Fig. 5, we investigate the basic network pa-
rameters: the number of TREB (T), the number of Conv lay-
ers per TREB (C), and whether use residual enhancer (R),
larger T or C and R=1 would lead to higher performance.

3.3. Comparison with State-of-the-art Methods

We compare the proposed method with other SR methods,
including bicubic, FSRCNN [5], VDSR [8], DRCN [7], Lap-

SRN [14], DRRN [15], DSRN [16], SRMD [17] and IDN
[13]. Table 1 and Fig. 6 shows PSNR and SSIM values on
four benchmark datasets. The proposed performs favorably
against state-of-the-art results on most datasets.

4. CONCLUSION

This paper has presented a novel network for single image
super-resolution, which can fully use the hierarchical infor-
mation. We have utilized the dense connections to increase
the information flow as well as prevent the dilution of shallow
features. The proposed residual enhancer with relatively-less
parameters can efficiently recycle the spilled residual infor-
mation. Experimental results have demonstrated that the pro-
posed method performs favorably against the state-of-the-art
methods on four benchmark datasets, especially in terms of
PSNR, SSIM and time performance.
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Table 1. Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM for scale 2x, 3x and 4x. Red color
indicates the best and blue color indicates the second best performance.

DataSet Scale Bicubic FSRCNN [4] VDSR [8] LapSRN [14] DRCN [7] DRRN [15] DSRN [16] SRMD [17] IDN [13] DIF-Net (Ours)

Set5
x2
x3
x4

33.66/0.930
30.39/0.868
28.42/0.810

36.99/0.955
33.15/0.913
30.71/0.865

37.53/0.958
33.66/0.921
31.35/0.882

37.52/0.959
33.81/0.922
31.54/0.885

37.63/0.959
33.82/0.922
31.53/0.884

37.74/0.959
33.93/0.923
31.68/0.888

37.66/0.959
33.88/0.922
31.40/0.883

37.53/0.959
33.86/0.923
31.59/0.887

37.75/0.959
33.92/0.923
31.44/0.884

37.84/0.960
34.02/0.924
31.64/0.887

Set14
x2
x3
x4

30.24/0.869
27.55/0.774
26.00/0.703

32.73/0.909
29.53/0.826
27.70/0.756

32.97/0.913
29.77/0.831
28.03/0.770

33.08/0.913
29.79/0.833
28.19/0.772

32.98/0.913
29.76/0.833
28.04/0.770

33.23/0.913
29.94/0.834
28.21/0.772

33.15/0.913
30.26/0.837
28.07/0.770

33.12/0.914
29.84/0.833
28.15/0.772

33.10/0.913
29.87/0.833
28.06/0.769

33.35/0.915
29.94/0.834
28.15/0.772

BSD100
x2
x3
x4

29.56/0.843
27.21/0.739
25.96/0.668

31.51/0.891
28.52/0.790
26.97/0.714

31.90/0.896
28.82/0.798
27.29/0.726

31.80/0.895
28.82/0.798
27.32/0.728

31.85/0.894
28.80/0.797
27.24/0.724

32.05/0.897
28.91/0.799
27.38/0.728

32.10/0.897
28.81/0.797
27.25/0.724

31.90/0.896
28.87/0.799
27.34/0.728

32.02/0.898
28.86/0.798
27.27/0.725

32.08/0.899
28.91/0.800
27.34/0.728

Urban100
x2
x3
x4

26.88/0.840
24.46/0.735
23.14/0.658

29.87/0.901
26.42/0.807
24.61/0.727

30.77/0.914
27.14/0.828
25.18/0.753

30.41/0.910
27.07/0.828
25.21/0.756

30.76/0.913
27.15/0.828
25.14/0.752

31.23/0.919
27.38/0.833
25.44/0.764

30.97/0.916
27.16/0.828
25.08/0.747

30.89/0.916
27.27/0.833
25.34/0.761

31.13/0.918
27.16/0.830
25.09/0.752

31.33/0.919
27.43/0.835
25.39/0.761
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