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ABSTRACT

The sketch segmentation problem remains largely un-
solved because conventional methods are greatly challenged
by the highly abstract appearances of freehand sketches and
their numerous shape variations. In this work, we tackle such
challenges by exploiting different modes of sketch data in a
unified framework. Specifically, we propose a deep neural
network SPFusionNet to capture the characteristic of sketch
by fusing from its image and point set modes. The image-
modal component SketchNet learns hierarchically abstract ro-
bust features and utilizes multi-level representations to pro-
duce pixel-wise feature maps, while the point set-modal com-
ponent SPointNet captures local and global contexts of the
sampled point set to produce point-wise feature maps. Then
our framework aggregates these feature maps by a fusion net-
work component to generate the sketch segmentation result.
The extensive experimental evaluation and comparison with
peer methods on our large SketchSeg dataset verify the effec-
tiveness of the proposed framework.

Index Terms— sketch segmentation, multi-modal fusion,
deep neural network

1. INTRODUCTION

Sketches are very intuitive to humans and have long been used
as an convenient communicative tool. With the popularity of
touchscreen devices, sketching has become convenient and u-
biquitous. Research on sketches has consequently flourished
in recent years, with a wide range of applications being inves-
tigated, including sketch recognition [1], sketch segmentation
and labeling [2], sketch-based object retrieval [3], scene mod-
eling [4] and free-hand sketch synthesis [5].

However, prior works on sketch segmentation typically
analyze an input sketch with conventional hand-crafted fea-
tures from separate modes (e.g., image based HOG [6] and
geometric based shape context [7]). They are often coupled
with complicated models like Mixed Integer Programming
[8] and Conditional Random Field [2] to yield the final se-
mantically segmented components with labels. However, the
segmentation accuracy is far from satisfying although plenty
of effort has been dedicated. Inspired by the recent break-
throughs of deep learning approaches [9, 10, 11], we inves-
tigate an elegant unified framework that is capable of joint
optimization to incorporate multiple complemental modes of
sketch data for segmentation.
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Fig. 1. Illustration of our unified framework tackling sketch
segmentation by fusing image and point set modes.

Therefore, in this paper we propose a novel deep neural
network, Sketch-Point Fusion Network (SPFusionNet), as il-
lustrated in Fig. 1, for free-hand sketch segmentation. Our
SPFusionNet well exploits the characteristics of sketch with
both sketch image and point set data by aggregating two net-
work components: the SketchNet takes a sketch image as in-
put and produces pixel-wise feature maps, and the SPoint-
Net takes a 2D point set sampled from the sketch and pro-
duces point-wise feature maps. Specifically, the SketchNet
is designed in an encoder-decoder scheme, where concate-
nated Spatial Invariance Enhanced Residual (SIER) blocks
are designed to facilitate effective feature learning and handle
sketch deformation while multi-level abstract feature repre-
sentations are combined and decoded into pixel-wise feature
maps. On the other hand, the SPointNet borrows the network
structure from the PoinNet for 3D point cloud, and it encodes
and combines global and local features from the 2D point set
to produce point-wise feature maps. In the aggregation stage,
these feature maps are fed into a fusion network component
in our framework to yield the final segmentation results.

The contributions of this paper are threefold. First, we
propose a unified deep neural network framework to fuse mul-
tiple complementary modes of sketch data for the sketch seg-
mentation task, and our method can easily be generalized to
other related tasks such as the classification and retrieval of
sketches or 3D models. Second, we introduce a spatial invari-
ance enhanced residual block for learning more robust image
features. Third, we have constructed a large dataset Sketch-
Seg for training and evaluating deep learning-based sketch
segmentation methods, and conducted extensive experimen-
tal results on it to verify the effectiveness of our method.

The rest of the paper is organized as follows: Section 2
discusses related work, and we describe the proposed SPFu-
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Fig. 2. Illustration of the proposed SPFusionNet framework.

sionNet in Section 3. Experimental results are presented in
Section 4 and the last section concludes the paper.

2. RELATED WORK

Most existing works on sketch segmentation [2, 8, 12] build
their models on hand-crafted features. In [12], Radial Basis
Functions are used for modeling sketches. Schneider et al. [2]
apply Conditional Random Field to find the labels of sketch
segments. Huang et al. [8] use Mixed Integer Programming
for this task by optimizing over both local component fitness
and global structure plausibility. However, these methods are
greatly challenged by the sparse visual information of sketch-
es and their large appearance variations, rendering the sketch
segmentation task remains largely unsolved.

Recently, deep neural networks (DNNs) have been wit-
nessed to achieve great performance in image segmentation
[11, 13] that is closely related to sketch segmentation. Farabet
et al. [14] apply DNNs to extract dense feature vectors from
raw pixels and then employ multiple post-processing methods
to fulfil pixel labeling. Long et al. [11] propose a fully con-
volutional network (FCN) to achieve impressive performance
gain on image segmentation. Chen et al. [13] introduce
the idea of atrous convolutions to further improve the per-
formance. Ronneberger et al. [15] modify FCN and present
the U-Net model for biomedical image segmentation by con-
structing a strictly symmetric convolution-deconvolution ar-
chitecture. However, although these DNN-based image seg-
mentation methods can easily be applied to sketch segmen-
tation, there exist no suitable large datasets for training these
models, which inspires our construction of the large Sketch-
Seg dataset.

Many DNN-based methods also have been developed for

3D shape analysis that may provide geometric structure based
modeling solutions for sketch data. In [16, 17], 3D convolu-
tional filters are defined to capture volumetric representations
of 3D shapes, but these methods are constrained and costly
for sparse point cloud data. Yi et al. [18] introduce a spectral
parametrization of dilated convolutional kernels and a spec-
tral transformer network for 3D shape segmentation by com-
bining the power of DNNs and spectral analysis. Qi et al. [10]
propose the PointNet model, a novel type of DNN that direct-
ly works on 3D point clouds. Although PointNet is inferior to
volumetric based DNNs in accuracy, its efficiency is notable.
And it inspires us to handle sketches in the point set mode.
Li et al. [19] train a deep neural network to transfer exist-
ing segmentations and labelings from 3D models to freehand
sketches, but each category requires separate training.

3. PROPOSED METHOD

3.1. Overview of SPFusionNet

Our framework addresses the sketch segmentation problem
by well exploring multiple modes of sketch data. Specifically,
we design a deep neural network, termed Sketch-Point Fusion
Network (SPFusionNet), to take sketch images and point sets
as input and fuse them effectively to achieve accurate sketch
segmentation.

Figure 2 illustrates the detailed configuration of the pro-
posed SPFusionNet. It incorporates two components Sketch-
Net and SPointNet, which turn the sketch image and the point
set into pixel-wise and point-wise feature maps, respectively.
The two types of feature maps are converted and concatenat-
ed in the pixel-wise form and are further fed into a fusion
network component to obtain the sketch segmentation result.



The detail of each component will be described thereinafter.

3.2. SketchNet

The SketchNet aims to explore the characteristic of sketch
images and works in an encoder-decoder way. In the encod-
ing stage, a sequence of Spatial Invariance Enhanced Residual
(SIER) blocks are utilized to learn and extract hierarchically
abstract feature representations. These multi-level represen-
tations are then combined in the decoding stage to yield pixel-
wise feature maps for segmentation.
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Fig. 3. Illustration of the SIER block.

Our designed SIER block for encoding can facilitate ef-
fective feature learning and handle sketch deformation, and
it consists of two modules, i.e., a residual learner and a s-
patial transformer, as shown in Fig. 3. The residual learner
takes advantage of the residual structure [9] that is proved to
have powerful learning ability, and it consists of stacked con-
volution layers with residual shortcut connections. Different
SIER blocks can use residual learners of different structures.
The spatial transformer is used to learn enhanced feature rep-
resentations robust to sketch deformation, and it is formulated
as a spatial transform network (STN) [20] that includes three
parts: localization net, grid generator and sampler.

We use a series of deconvolution layers for decoding in S-
ketchNet, and their number is the same as that of SIER blocks.
If a SIER block extracts feature representation with the size
k times reduced, its corresponding deconvolution layer will
upsample the feature maps by a factor of k. As exhibited in
Fig. 2, skip-connections are used to aggregate multi-level fea-
ture representations. Specifically, before the feature maps are
input to a deconvolution layer, the output of its SIER block
counterpart will be convolved with 1 x 1 filters and added to
each channel of the input feature maps.

Given a sketch image I with size of W x H, SketchNet
will output its feature maps £5 € RW*H*(C+1)  where W,
H and C' + 1 are the width, height and channel number, re-
spectively. Moreover, C' equals to the total number of sketch
component labels in the dataset, and we add a label O for the
blank background to result in C' + 1 labels. In this work, the
SketchNet is implemented with 3 SIER blocks whose learn-
ers are specified by a 34-layer ResNet model [9] so as to take
advantage of the model parameters pre-trained on the Ima-
geNet. Specifically, the first 16, middle 12, and last 6 layers

of the ResNet-34 model are used as the structures of the 3
learners separately. In this case, the 3 SIER blocks will ex-
tract feature representation with sizes reduced by 8, 2 and 2
times, respectively. Therefore, 3 deconvolution layers with
upsampled factors of 2, 2 and 8 are used correspondingly.

3.3. SPointNet

The SPointNet component is employed to capture the charac-
teristic of sketch in the point set form where the coordinates
of points describe geometry information implicitly. SPoint-
Net is inspired by the work [10] that uses PointNet for 3D
point cloud processing, but it instead takes 2D point set as in-
put for sketch segmentation. A point set P = {p; € R2}}¥
from the sketch contour is sampled by scanning the sketch im-
age I from left to right and top to bottom. The SPointNet will
capture global context of the sampled point set and combine
with point-wise features to produce point-wise feature maps.

In this work, we directly use the PointNet architecture
[10] for configuring our SPointNet. Specifically, the point
set is first passed through three 1 x 1 convolution layers with
64, 128 and 1024 channels respectively, and the output fea-
ture map of size IV x 1024 are max pooled to obtain a 1024-
dimensional vector representing global context of the point
set. Then this vector is duplicated IV times and concatenated
with the point-wise feature map of size N x 64 from the first
convolution layer. Afterwards, the concatenated feature maps
are processed by five 1 x 1 convolution layers to result in a
N x C feature map. We add a IN-dimensional column vector
of zeros representing the background to obtaina N x (C'+1)
feature map f for later processing.

3.4. Multi-modal fusion

In the final stage of SPFusionNet, we fuse the output feature
maps from SketchNet and SPointNet to generate the sketch
segmentation result. First of all, these feature maps should be
in the same form, and thus the feature map f P from SPoint-
Net will be converted to the pixel-wise form. Specifically, we
initialize feature maps of size W x H x (C' + 1) with all zeros
and the i-th row vector of £ will be assigned to the pixel lo-
cation that corresponds to the i-th point’s coordinates, so that
we obtain the pixel-wise feature maps f7 in accordance with
fP. Then feature maps £° and £7 are aggregated by a fusion
function, formulated as

s = g(f%,£7), (1)

where s € RW>H>(C+1) denotes the score matrix, with el-
ement s, j, . representing the probability of pixel (w, h) be-
longing to label ¢ (¢ = 0, ...,C). In this work, the function
g(+) is implemented by a 1 x 1 convolution layer and a soft-
max layer.



3.5. Optimization

Given a dataset with M training samples {I™,Y™}M_,

where I'™ is the m-th sketch image with size W x H, and
Y™ = (Yw,n )y g 18 its corresponding segmentation ground
truth with y,, 5, € {0, ..., C} denoting the component label of
pixel (w, h). Here C is the total number of sketch components
in the dataset and label O is used for background. A point set
P™ = {pm}N  is sampled for the m-th sketch image as input
of SPointNet. For pixel (w, h) in sketch I"™, we further define
a one-hot label distribution vector y77' ), € R(C+1) | where the
c-thelement 7', . = 1if pixel (w, h) has label ¢ and all the
other elements are 0.

The proposed SPFusionNet can be trained end-to-end by
minimizing the following balanced cross entropy loss func-
tion:

M C+1
L==2" 2 A 2 Vilncloglsine) @
m=1 w,h c=1
where sy}, . is the (w, h, ¢) element of the m-th sample’s pre-

dicted score matrix s, and \. (¢ = 0, ..., C) is the weight for
c-th component label. In this paper, we set Ay = 0 for back-
ground, and A, (¢ = 1,...,C) is reciprocal to the portion of
component c in the dataset measured in pixels.

4. EXPERIMENTS

In this section, we will present extensive experimental evalu-
ation and comparison with state-of-the-art methods to verify
the effectiveness of our method, and conduct ablation study
to analyze the contribution of each component in our SPFu-
sionNet framework.

4.1. Experimental settings
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Fig. 4. Examples of sketches and their segmentation labels
from the SketchSeg dataset.

Dataset. Existing datasets for sketch segmentation are un-
suitable for learning and evaluating deep learning-based mod-
els. Therefore, we construct a large dataset SketchSeg, which

consists of 10,000 pixel-wisely labeled sketches, for evalua-
tion and comparison. The SketchSeg dataset contains 10 cat-
egories (1,000 sketches for each) with 24 semantic compo-
nent labels. Sketch examples with their segmentation labels
are exhibited in Fig. 4. We make the dataset open access on
the Google Drive to help promote research in related com-
munities (https://drive.google.com/open?id=
1WucqueaSFozOXYgPxplKfzZuB89IMwVS).

Evaluation metrics. We follow existing works [8] to adopt
two metrics for evaluation: Pixel-based accuracy (P-metric)
that reflects the percentage of correctly labeled pixels, and
Component-based accuracy (C-metric) that reflects the per-
centage of correctly labeled segments, which has 75% of its
pixels correctly labeled.

Implementation details. Our SPFusionNet is implemented
in PyTorch. We train our model for 50 epochs with SGD op-
timizer, where the size of mini-batch is 5, initial learning rate
is 0.01 and momentum is 0.9. Three cutting-edge methods
U-Net [21], LinkNet [22] and FCN [11] are used for compar-
ison. We use the open source codes of U-Net and LinkNet
and implement FCN. The U-Net is based on the VGG model,
while Link-Net and FCN are based on the ResNet-34 model
as ours. Moreover, we use the same skip-connections in our
SketchNet for FCN, so actually it only differs from Sketch-
Net by having no spatial transformer. All the compared meth-
ods are trained on a training set of 7,500 sketches from the
SketchSeg dataset and tested on the rest. We perform the ex-
periments on a PC with Intel i7 CPU, 32 GB RAM and GTX
1080ti GPU.

4.2. Experimental results and comparison

We report the experimental results of the compared method-
s in Tables 1 and 2. As can be observed, our SPFusionNet
achieves an average segmentation performance of 92.9% in
P-metric and of 90.7% in C-metric, ranking first in both eval-
uation metrics. Among the competitive methods, FCN per-
forms the second best, but our method can outperform it by a
large margin, with 11.2% increase in P-metric and 13.6% in-
crease in C-metric. For each category of sketches, our SPFu-
sionNet also shows obvious performance boost in both met-
rics compared with other methods. Some examples of the
segmentation results are exhibited in Fig. 5. It can be seen
that our SPFusionNet produces more accurate segmentation
results, while the other compare methods generate many more
wrongly labeled fragments. These quantitative and qualita-
tive results strongly demonstrate the effectiveness of our pro-
posed method. The advantage comes from the fact that our
method well exploits the characteristics of sketch from mul-
tiple modes of data by a well-designed deep neural network
framework. We will take further analysis in the next subsec-
tion.



Table 1. Segmentation accuracy (%) on the SketchSeg dataset in P-metric

Method airplane bicycle candelabra chair fourleg human lamp rifle table vase|Average
U-Net 68.9 68.1 89.3 84.0 741 719 922 548 79.6 89.9| 773
LinkNet 78.0 65.3 88.3 89.1 767 745 91.2 599 82.5 93.8| 799
FCN 78.2 71.4 90.8 869 803 756 928 652 814 944| 817
SketchNet 92.1 92.7 93.4 882 874 844 899 90.1 88.1 92.2| 899
SPointNet 76.7 75.4 73.6 83.1 719 654 83.7 788 69.8 79.0| 75.7
Ours(SPFusionNet) | 95.1 95.0 96.0 928 914 861 939 92.7 913 949| 929
Table 2. Segmentation accuracy (%) on the SketchSeg dataset in C-metric
Method airplane bicycle candelabra chair fourleg human lamp rifle table vase|Average
U-Net 52.6 49.7 90.3 819 545 626 924 389 70.1 90.7| 68.4
LinkNet 67.7 55.7 89.0 892 672 679 924 445 80.3 96.6| 75.0
FCN 66.5 59.2 94.5 848 735 721 925 547 753 98.1| 77.1
SketchNet 86.8 84.7 93.7 882 844 827 905 822 842 932 87.1
SPointNet 533 44.6 55.8 755 528 454 849 58.1 55.7 64.4| 59.1
Ours(SPFusionNet) | 91.0 87.2 96.3 93.9 90.2 821 944 86.6 89.6 95.7| 90.7

4.3. Ablation study

We conduct experiments to evaluate the contribution of each
component in our framework, and meanwhile compare with
the baseline models used for implementing our method. The
experimental evaluation are reported in the lower parts of Ta-
bles 1 and 2. As can be observed, when removing the SPoint-
Net component from our framework, the SketchNet alone can
achieve an average segmentation performance of 89.9% in P-
metric and 87.1% in C-metric, with 3.0% and 3.6% decrease
from those of SPFusionNet, respectively. On the contrast,
when using the SPointNet alone, more obvious performance
drop is witnessed, with 17.2% and 31.6% decrease in P-metric
and C-metric, respectively. These results show that SketchNet
plays a more critical role in our framework, but incorporating
SPointNet to explore the point set mode of sketch data can
help boost the performance favorably. Because SPointNet us-
es the architecture of PoinNet [10], it also reveals that our
SPFusionNet performs largely better on sketch segmentation
when compared with PoinNet. We further evaluate the ef-
fectiveness of spatial transformer used in the SIER blocks of
SketchNet. As mentioned in Section 4.1, FCN is in fact the S-
ketchNet with spatial transformers removed, and the compar-
ison results show that it has a performance drop of 8.2% and
10.0% in P-metric and C-metric from the SketchNet, which
indicates that incorporating the spatial transformer does help
learn more robust feature representation to achieve evident
performance gain.

5. CONCLUSION

In this work, we have proposed a unified deep learning based
framework that exploits multi-modal data fusion with end-to-
end joint optimization for sketch segmentation, and demon-

strated the effectiveness of using image and point set modes
of sketch data in conjunction by conducting extensive eval-
uation and comparison with peer methods and analyzing the
contribution of each single modal network component on our
constructed large SketchSeg dataset. In future, we would like
to explore the use of other modes like spectrum and addi-
tional information (e.g., strokes order), extend our SketchSeg
dataset and generalize our framework to other related tasks.
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