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Small object detection in crowded scene aims to find those tiny targets with very limited resolution from 

crowded scenes. Due to very little information available on tiny objects, it is often not suitable to detect 

them merely based on the information presented inside their bounding boxes, resulting low accuracy. In 

this paper, we propose to exploit the semantic similarity among all predicted objects’ candidates to boost 

the performance of detectors when handling tiny objects. For this purpose, we construct a pairwise con- 

straint to depict such semantic similarity and propose a new framework based on Discriminative Learning 

and Graph-Cut techniques. Experiments conducted on three widely used benchmark datasets demonstrate 

the improvement over the state-of-the-art approaches gained by applying this idea. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Small object detection in crowded scenes is very common in

eal world applications, such as face detection for large scale video

urveillance, object detection in Remote Sensing Images (RSIs) for

arth Vision£ and small nodule detection and anatomy detection

n medical image analysis [1–3] . In recent years, many efficient

nd accurate face detectors [4–12] have been proposed. These ap-

roaches have achieved impressive results on large and medium

aces in most constrained scenes. However, their performance on

andling tiny faces in crowded scenes is far from satisfactory, as

hown in Fig. 1 . On the other hand, object detection in RSIs [13–

7] has remained as an unsolved problem, not only because of the

carcity of well annotated datasets of objects in RSIs, but also due

o the huge variation in the scales of objects on the Earth’s surface,

s shown in Fig. 6 . In this work, we focus on the practical task of

mall object detection in Crowded Scenes (SCS), which is to esti-

ate the bounding boxes of physical objects (such as a face, ship,

irplane and large or small vehicle) from natural and aerial images
ith crowded scenes. 
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Recently, great progress on object detection has been achieved

y convolutional neural network (CNN) based methods [18,19] that

earn deep features from the regions of interest (RoIs) and perform

lassification based on the learned representation. However, they

sually fail to detect small ( e.g ., 10 × 10 pixel) and crowded ( e.g .,

00 instances) objects. The main difficulty of SCS is that each small

bject contains no more than 100 pixels and lack sufficient details

o be distinguished from similar background. For example, it is dif-

cult to distinguish a face from hands, a ship from wave, etc. An-

ther difficulty is that CNN-based detectors use convolutional lay-

rs with a stride of 8, 16 or 32 to sample objects. They are too

oarse to extract useful features from tiny objects. What is worse,

he pooling layers down-sample feature maps and tiny objects’ fea-

ures always disappear after several pooling layers [3] . Therefore, it

s challenging for CNN-based methods to efficiently and accurately

etect small and crowded objects. 

The existing methods for SCS fall into three classes. The first

lass (e.g., [20] ) attempts to use deep learning networks to extract

cale-invariant features. However, their performance drops dramat-

cally when targets become too small, because it is very difficult to

earn sufficiently discriminative features from targets’ poor-quality

ppearance at a small scale. Another class tries to generate addi-

ional information from inside the objects’ bounding boxes. For ex-

mple, the work in [12] demonstrated that interpolating the lowest

ayer of image pyramid was significantly beneficial for capturing

mall objects. However, increasing the scale of images often results
text: Exploring semantic similarity for small object detection in 
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Fig. 1. Tiny faces detected with our proposed approach (shown as yellow and green 

boxes) and the HR approach [12] (shown as yellow boxes). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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in heavy time consumption for both training and testing. The third

class (e.g., [21] ) seeks to incorporate the information surrounding

the objects (i.e., context) to improve the performance of small and

crowded object detection. Are there any other ways to improve

the performance for SCS? It is commonly accepted that computer

vision techniques need additional contextual information to accu-

rately detect targets. However, how to effectively encode context is

one of the practical challenges. 

Note that existing classification-based detectors typically apply

a simple threshold on its classification score to determine whether

a candidate is a target or not, as shown in the first stage of Fig. 2 .

However, obtaining a threshold optimal to various scenarios is of-

ten difficult. In this paper, we propose a novel idea to exploit the

semantic information (consisting of spatial location, scale and tex-

ture) of a candidate’s neighbors to classify the candidate as object

of interest or background. Specifically, based on such semantic in-

formation we try to group candidates containing the same class

object into one cluster, while backgrounds are kept far away from

the cluster. For this purpose, we propose a Discriminative Learn-

ing and Graph-Cut (DLGC) framework, which carries out a further

classification on the candidates produced by other object detectors.

Fig. 2 illustrates the framework of this idea. 

We first obtain a high-recall classifier, which aims to retrieve

all the targets in the image, but may unavoidably introduce lots of

false positives. Our focus is to retrieve the targets with low clas-

sification scores while removing these false positives. In order to

do this, we propose a discriminative learning method to learn a

similarity matrix to evaluate the similarity of each pair of candi-

dates. A graph model is built to represent the similarity matrix of

these candidates. The graph-cut technique is utilized to divide the

graph into several groups where candidates in the same group are

similar and those in different groups are dissimilar to each other.

Finally, the candidates in each group are classified as target or not,

correspondingly, by voting. 

The main contributions of this paper can be highlighted as fol-

lows. First, aiming to boost the detection performance, we pro-

pose a novel discriminative learning and graph-cut framework to

exploit the semantic information between targeting objects’ neigh-

bors. Secondly, to depict a local neighborhood relationship, we in-

troduce a pairwise constraint into tiny face detector to improve the

detection accuracy. Thirdly, to realize such pairwise constraint, we
Please cite this article as: Y. Xi, J. Zheng and X. He et al., Beyond con

crowded scenes, Pattern Recognition Letters, https://doi.org/10.1016/j.pa
onvert the problem of regression that estimates the similarity be-

ween different candidates into a classification problem which pro-

uces scores of classification for each pair of candidates. 

. Related works 

In this section we describe the existing works relevant to our

pproach discussed in this paper. They are organized and pre-

ented in three main aspects, i.e., small and crowded object de-

ection, context in object detection, and discriminative learning for

emantic similarity. 

.1. Small and crowded object detection 

As a special case of small and crowded object detection, tiny

ace detection has attracted more and more interest. In face de-

ection, since the pioneer work of [11] who designed a cascade

f weak classifiers using Haar features and AdaBoost for fast and

obust face detection, numerous approaches have been developed

o improve the performance with more sophisticated hand-crafted

eatures [22] and more powerful classifiers [23] . However, these

ethods just used non-robust hand-crafted features and optimized

ach component separately, and resulted in sub-optimal face de-

ection frameworks. Recently, face detectors based on CNNs [24–

6] have greatly bridged the gap between human vision and artifi-

ial detectors. 

On the one hand, object detection in RSIs is a fundamental

ut challenging problem in Earth Vision. Various methods [13–

7] have been proposed to address the task, including the classi-

al methods such as [16,17] . Recently, some researchers have at-

empted to transfer deep-learning-based detection algorithms de-

eloped for natural scenes to RSIs [13–15] . G.-S. Xia et al. [13] in-

roduced the dataset DOTA, which is the largest annotated object

ataset with a variety of categories in RSIs. They also benchmarked

eep-learning-based detection algorithms on DOTA as the baseline.

. Li et al. [14] proposed an end-to-end deep-learning-based de-

ection framework. The framework combines the region proposal

etwork and the contextual feature fusion network to handle the

roblem of object rotation variations and appearance ambiguity.

ong [15] designed a rotation-invariant Fisher discriminative CNN

odel to handle the problems of object rotation and between-class

imilarity. Different from their work, we focus on many small ob-

ect instances crowded in the scene, such as in aerial images. SCS

ims to detect a large number of small objects ( e.g . small face, air-

raft, ship, large or small vehicle) in crowded scenes. It is totally

ifferent from general object detection, because the cues for de-

ecting a 3-pixel object are fundamentally different from those for

etecting a 300-pixel object [12] . Li et al. [27] proposed a per-

eptual Generative Adversarial Networks to generate the super-

esolved representation of a small object, which is similar to those

f large objects in order to boost small object detection perfor-

ance. Merely in the aspect of applications, the most related pre-

ious research to our work is [28] , which presented a counting-

etection framework with the combination of density map estima-

ion and segmentation. While the images were crowded with small

bjects, the background is sample so that is effectively to estimate

ts density map. As we all know, it is not sufficient to detect small

bjects merely by extracting deep learning features from the tex-

ure inside the object region. One main drawback is that, these ap-

roaches have neglected local semantic information. We have ob-

erved that there exists local coherent relationships in terms of

patial location, scale, and texture in high-density tiny face detec-

ion, regardless of the viewpoints. For example, as shown in Fig. 1 ,

ace bounding boxes close to each other are similar in their scales

nd textures. Local semantic information helps tiny face detectors

etter eliminate false positive. 
text: Exploring semantic similarity for small object detection in 
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Fig. 2. The framework of our proposed DLGC. In the stage for discriminative learning, each candidate pair is shown as boxes with same colors each pair. Some pairs are 

true matches (top right), while other are false matches (bottom left). The green or yellow arrows pointing left and right means a max-margin separating hyperplane. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

The Average Precision of Classification on the DOTA Validation set. 

Methods mAP plane small vehicle large vehicle ship 

DLGC 64.37 92.58 47.49 66.51 50.88 

Faster R-CNN 61.93 90.21 43.91 64.72 48.91 
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.2. Context in object detection 

Context is an effective cue for humans to detect small instance

n crowded scene [12,29–32] . C. Zhu et al. [29] firstly introduced

ody context information to the Faster R-CNN object detector [33] ,

hich was the key to finding small instances. S. Bell et al. [30] pre-

ented the Inside-Outside Net (ION) to model context outside the

egion of interest and showed improvements on small object de-

ection. Very recently, P. Hu et al. [12] designed a foveal descriptor

hat captured both coarse context and high-resolution image fea-

ures in order to effectively encode context information. The de-

criptors has achieved state-of-the-art performance on the WIDER

ACE dataset. C. Chen et al. [31] incorporated context information

y concatenating deep learning features of objects and context re-

ion to boost small object detection performance. However, when

mall objects are crowded together, the context region may contain

mall objects. X. Tang et al. [32] designed a novel context anchor,

amed PyramidAnchor, to supervise a face detector to learn fea-

ures from contextual parts around a face. 

.3. Discriminative learning for semantic similarity 

Discriminative learning [34–38] for semantic similarity usually

akes a pair of images as input and output a similarity score by

alculating the distance between the images’ features. In 1993,

34] first used discriminative learning to compute the similarity

etween a pair of images for signature verification. S. Cao et al.

35] proposed an SVM-based discriminative learning model to pre-

ict matching and non-matching image pairs for large-scale im-

ge matching. [38] used triplet samples for training the network

hich considered the images from the sample place and different

laces for place recognition. D. Yi et al. [36] split an image into

hree horizontal parts and trained three part-CNNs to extract fea-

ures. The semantic similarity of two images was computed by the

istance among those three features. Similarly, [37] combined CNN

ith some gate functions, which aimed to adaptively focus on the

imilar parts of input image pairs. Our problem is very different

rom theirs in the way that, the targets in our problem are very

ifficult to be split into parts, due to their very tiny size. To intro-

uce local coherent relationships, our proposed method introduces

 discriminative component to represent this coherence and uses

he graph-cut algorithm to divide candidates into several groups,

here candidates in the same group are similar, and dissimilar

hen they are in different groups. 
Please cite this article as: Y. Xi, J. Zheng and X. He et al., Beyond con

crowded scenes, Pattern Recognition Letters, https://doi.org/10.1016/j.pa
. The proposed method 

Our goal is to integrate the local coherent relationship into tiny

ace detection. To represent such a local coherent relationship, we

efine a pairwise constraint, which contains the equivalence con-

traint for pairs of data points belonging to the same classes, and

he inequivalence constraint for pairs of data points belonging to

ifferent classes. To better estimate similarity of different candi-

ate pairs, we use a max-margin separating hyperplane to learn a

eighting of different features. 

As shown in Fig. 2 , we propose a DLGC framework for high-

ensity tiny object detection. We first use a linear-SVM to estimate

djacency matrix among all candidates ( Section 3.1 ) and then we

onstruct a graph model and use the graph-cut algorithm to divide

andidates into several groups ( Section 3.2 ). Finally, we design a

oting method to classify groups ( Section 3.2 ). 

.1. Discriminative learning based on linear-SVM 

Let X = { x 1 , x 2 , . . . , x N } denote the set of the N candidates

i.e., face or non-face bounding boxes). To introduce the pairwise

onstraints, we first build a similarity matrix S = s (x i , x j ) , x i , x j ∈
, i, j = 1 , 2 , . . . N, where s ( x i , x j ) represents the similarity between

 i and x j . s (x i , x j ) = 1 means that x i has a strong resemblance of x j ,

nd s (x i , x j ) = 0 means that x i is completely different from x j . 

In order to obtain the similarity score between two candidates

 i and x j , it is difficult to evaluate their similarity through regres-

ion, because it is difficult to label their ground truth similarity.

herefore we convert the problem into an unsupervised, binary-

lassification problem, namely whether they are similar or not.

e use SVM to compute the similarity score between two candi-

ates x i and x j based on multiple cues, i.e., the positions, scales,

lassification scores and deep features of the candidates, which

re concatenated together into a feature vector φ( x i ). Note that

lassification scores and deep features of a candidate x i are ob-

ained from the tiny face detector [12] . During the training stage,

e sort X by their scores in descending order. We suppose that

 Top denotes the top 10% of X which are face patches, while
text: Exploring semantic similarity for small object detection in 
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Fig. 3. The precision-recall (PR) curves obtained using our proposed DLGC approach and the state of the arts. 

Fig. 4. The PR curves obtained on WIDER FACE validation set using our proposed DLGC approach and the state of the arts. 

Table 2 

The Average Precision of Classification on DOTA Testing set. 

Methods mAP plane small vehicle large vehicle ship 

DLGC 61.73 83.59 57.89 54.31 51.14 

Faster R-CNN 59.12 80.32 53.66 52.49 50.04 

R-FCN 56.27 81.01 49.77 45.04 49.29 

YOLO-V2 50.01 76.9 38.73 32.02 52.37 

SSD 29.89 57.85 0.05 36.93 24.74 
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X Bottom 

denotes the bottom 10% of X which are non-face patches.

As shown in Fig. 2 , in Stage 2 of our DLGC, we build a train-

ing set { (x 
′ 
1 , 1 

, y 
′ 
1 , 1 

) , (x 
′ 
1 , 2 

, y 
′ 
1 , 2 

) , . . . (x 
′ 
n,n , y 

′ 
n,n ) } , x 

′ 
i, j 

= φ(x i ) − φ(x j ) ,

y 
′ 
i, j 

= { 0 , 1 } . If x i , x j ∈ X Top , y 
′ 
i, j 

= 1 . If x i ∈ X Top , x j ∈ X Bottom 

, y 
′ 
i, j 

= 0 .

During the testing stage, we feed x 
′ 
i, j 

= φ(x i ) − φ(x j ) to the SVM

classifier, and then use the output score as the similarity score s ( x i ,

x j ) between x i and x j . Thus, we build the similarity matrix S . 

3.2. Graph-cut based on spectral clustering 

Given a set of candidates X = { x 1 , x 2 , . . . , x N } and a similarity

matrix S , our goal is to cluster X into different groups where can-

didates in the same group are similar and dissimilar when they are

in different groups. In this work, we adopt the graph-cut algorithm

for this purpose. First, we build a graph model G = (V, E) to rep-

resent X , where each vertex v i ∈ V represents a candidate x i , and

e ij ∈ E represents the similarity s ( x i , x j ) between the corresponding

candidates x i and x j . Now the problem can be reformulated with

the graph model, i.e., we want to find a partition of the graph so

that the weights of edges between different subgraphs are very

low (indicating that points in different clusters are dissimilar from

each other) and the weights of edges in the same group are very
Please cite this article as: Y. Xi, J. Zheng and X. He et al., Beyond con

crowded scenes, Pattern Recognition Letters, https://doi.org/10.1016/j.pa
igh (meaning that points within the same cluster are similar to

ach other). Formally, 

ut(A 1 , A 2 , . . . , A k ) = 

1 

2 

k ∑ 

i =1 

W (A i , Ā i ) (1)

here A i ⊂ V, A i ∩ A j = ∅ and A 1 ∪ A 2 ∪ . . . ∪ A k = V, W (A i , Ā i ) =
 

m ∈ A i ,n ∈ ̄A i w mn , w mn = exp( −S mn / 2 δ2 ) used to boost local neigh-

orhood relationships. 

However, the solution simply separates one individual vertex

rom the rest of the graph. To avoid unbalanced graph-cut situa-

ion that there is a large difference in sizes of subgraphs, we intro-

uce the size of subgraph | A | which is the number of vertexes in

 to ensure the set of subgraph { A 1 , A 2 , . . . , A k } is reasonably large.

herefore, we can transform Eq. (1) as follows: 

ut(A 1 , A 2 , . . . , A k ) = 

1 

2 

k ∑ 

i =1 

W (A i , Ā i ) 

| A i | (2)

According to [39] , 

rg min cut(A 1 , A 2 , . . . , A k ) = arg min 

H 

T r(H 

T LH) (3)

here L is the Laplacian matrix , H 

T H = I, and the indicator H =
 h 1 , h 2 , . . . , h k } is 

 i, j = 

{
1 √ 

A j 
if v i ∈ A j 

0 otherwise 
(4)

here i = 1 , 2 , . . . , N; j = 1 , 2 , . . . , k . Eq. (3) is the standard form of

 trace minimization problem. According to the Rayleigh–Ritz the-

rem [40] , the solution is given by choosing the matrix U which

ontains the first k eigenvectors of L and then uses the k -means

lgorithm on U . Therefore, we manage to cluster X into k groups

 A 1 , A 2 , . . . , A k } . Finally, the candidates in each group are classified

s faces or non-faces using voting. 
text: Exploring semantic similarity for small object detection in 
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Fig. 5. Qualitative results of spectral clustering given similarity matrix between different candidates. Faces (shown as green rectangle) and background regions (shown as 

red rectangle) are clustered into different groups. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Qualitative results of object detection with our method in RSIs (shown as yellow and green boxes) and Faster RCNN (shown as yellow boxes). Red boxes are introduced 

by reducing classification threshold and removed by our method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Please cite this article as: Y. Xi, J. Zheng and X. He et al., Beyond context: Exploring semantic similarity for small object detection in 
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4. Experiments 

In this section, we first introduce our experimental settings. We

then present three groups of experiments to evaluate the perfor-

mance of our method with comparisons to several baseline meth-

ods. We finally discuss the effectiveness of our proposed Discrimi-

native Learning and Graph-Cut method. 

4.1. Experimental settings 

4.1.1. Datasets and evaluation metrics 

To make a fair comparison with the state-of-the-art meth-

ods in object detection [12,20,29,41–51] , we evaluate our method

on three face detection benchmark datasets including WIDER

FACE [52] , Annotated Faces in the Wild (AFW) [48] , Pascal

Faces [46] , and object detection in RSIs (DOTA) [13] , which is the

latest, largest and most difficult dataset for object detection in re-

mote sensing imageries. In WIDER FACE, small faces of which the

height ranges from 10 to 50 pixels account for about 50% of the

data set. Similarly, in the DOTA dataset, small targets of which the

height ranges from 10 to 50 pixels account for 57% of the data set.

In terms of performance measurement, for the ease of comparison,

in face detection we use the standard evaluation metrics precision-

recall curves, whereas in object detection in RSIs, we use standard

evaluation metrics Averages Precision (AP) and mean of AP (mAP)

for evaluation, same as in the corresponding literature. 

4.1.2. Implementation details 

Our code is based on the publicly available finding tiny face

framework [12] built on the Matconvnet [53] and Faster R-CNN

framework [50,54] built on the Mxnet [55] . In order to extract tex-

ture features of candidates, we feed the result patches of the origi-

nal object detection into original network and Faster R-CNN frame-

work individually and use feature of res4b22x in resnet-101. The

model is trained on a NVIDIA Quadro P20 0 0, and Inter Core i7-

7700HQ CPU @ 2.8 GHz. 

4.2. Performance comparison 

4.2.1. Results obtained on the WIDER FACE dataset 

The WIDER FACE Dataset is the most challenging public face

datasets due to the variety of face scales and occlusion. It contains

32,203 images split into training (40%), validation (10%) and test-

ing (50%) set. The validation set and testing set are divided into

“easy”, “medium”, and “hard” subsets according to the difficulties

of the detection. Both images and annotations of the training and

validation set can be available online 1 , but annotations of its test-

ing set are not released yet. So we should send our results to the

database server for receiving precision-recall curves. 

We compare our DLGC with the HR, Faceness, ScaleFace [42] ,

CMS-RCNN [29] and Multitask Cascade CNN [43] . The PR curves on

the testing set is presented in Fig. 3 c, and our method outperforms

HR by 0.2% in “easy” subset. The PR curves on the validation set is

presented in Fig. 4 and our method outperforms the HR by 0.5%,

0.2%, 0.3%, in “easy”, “medium” and “hard” subsets respectively. 

4.2.2. Results obtained on the AFW and PASCAL FACE dataset 

The AFW dataset has 205 images containing in total 473 la-

belled faces. We evaluate our model against the HR, DPM [44] ,

Headhunter, SquaresChnFtrs [45] , Structured Models [46] , Shen

et al. [47] , TSM [48] and commercial detectors (e.g., Face.com,

Face ++ and Picasa). As illustrated in Fig. 3 a, our DLGC outperforms

all other detectors on precision-recall (PR) curves. 
1 http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/ . 

Please cite this article as: Y. Xi, J. Zheng and X. He et al., Beyond con

crowded scenes, Pattern Recognition Letters, https://doi.org/10.1016/j.pa
The PASCAL FACE dataset contains 1,335 labeled faces in 851

mages, which are collected from PASCAL person layout subset. Be-

ause this paper focuses on face detection, we ignore images with-

ut persons from the original dataset, similar like DPM [44] . We

lso evaluate our model against the HR, DPM [44] , Headhunter,

quaresChnFtrs [45] , Structured Models [46] , Shen et al. [47] ,

SM [48] and commercial detectors (e.g., Face ++ and Picasa). As

hown in Fig. 3 b, our DLGC outperforms all other detectors on PR

urves. 

.2.3. Results obtained on the DOTA dataset 

DOTA [13] contains 2806 aerial images, which are of the size

n the range from about 800 × 800 to 10,000 × 10,000 pixels

nd contains 188,282 instances exhibiting a wide variety of scales,

rientations, and shapes. Our experiments are conducted on four

ategories of objects in this dataset which contain mostly small,

rowded objects, i.e., plane, ship, large and small vehicle. 

We evaluate our model against the state-of-the-art object de-

ection method Faster R-CNN [49] , R-FCN 

2 [50] , YOLOv2 3 [51] , SSD 

4 

20] . The mAP and AP of each category on the validation set is

resented in Table 1 and our method exceeds the base model by

.75%. The mAP and AP of each category on the test set is pre-

ented in Table 2 and our method exceeds the base model by

.61%. The improvement in AP of the plane and small vehicle cat-

gory (more than 2%) is more than that of the ship and large ve-

icle category (less than 2%). This is because in crowded scenes,

sing the horizontal rectangle annotation, large vehicle and ships

end to introduce higher degree of overlapping compared to plane

nd small vehicles, as shown in Fig. 6 . 

Fig. 6 shows the effectiveness of our method. As it can be seen

rom the figure, it is difficult for the base model to detect small

argets, but we have nearly recalled all the small planes (shown as

lue boxes) and removed all false alarms (shown as red boxes). 

.3. Model analysis 

We further analyze the effectiveness of the Discriminative

earning and Graph-cut of the proposed method and conducted

ore experimental analysis on The WIDER FACE Dataset. 

.3.1. The effectiveness of discriminative learning 

We verify the effectiveness of estimating similarity of candi-

ate pairs using our Discriminative Learning approach. Because the

umber of features 8202-D is large, we do not need to map data

o a higher dimensional space. Therefore we utilize the LIBLINEAR

ibrary [56] with L2-regularized logistic regression and its parame-

er c 0.0625 to implement the Discriminative learning.The SVM for

inary pairwise relationship classification is trained by our build-

ng dataset. To be specific, the training set consists of 10,500 pairs

ampled from 50 images with crowded faces, 210 pairs generated

rom 15 faces and 6 background regions from those candidates by

he famous Tiny face detector [12] per image. The test set similar

o train set consists of 5,250 pairs. We use accuracy to evaluate the

lassification performance of trained SVMs. Its accuracy achieved

8.24% on the test set. Conclusion can be drawn that our discrim-

native learning method can effectively estimate the similarity be-

ween two candidates. The Average Precision achieved on WIDER

ACE validation set with different confidence values for selecting

andidate pairs is shown in Table 4 . Consistent with our analysis,

 confident value of 10% optimises the performance. So, we chose

0% in our experiments. 
2 https://github.com/daijifeng001/R-FCN . 
3 https://pjreddie.com/darknet/yolo/ . 
4 https://github.com/weiliu89/caffe/tree/ssd . 
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Table 3 

The accuracy of classification based on SVM. 

Number of training samples Accuracy on testing set 

1,0 0 0 63.14% 

2,0 0 0 69.70% 

2,500 71.65% 

5,0 0 0 75.66% 

10,500 78.24% 

20,0 0 0 78.60% 

Table 4 

The Average Precision of Face Detection on 

WIDER FACE validation set with difference con- 

fident values. 

confident values Easy Med Hard 

5% 89.5% 88.2% 77.4% 

10% 93.0% 91.2% 80.9% 

15% 91.5% 90.5% 78.4% 

20% 88.7% 88.4% 74.5% 

25% 86.9% 86.9% 72.9% 

30% 79.5% 81.7% 69.1% 

Table 5 

The accuracy of classification based on neural network. 

Number of hidden layer Accuracy on testing set 

100 65.16% 

500 66.41% 

1,0 0 0 64.98% 

2,0 0 0 67.34% 
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In addition, we also use neural network to estimate similarity

etween candidate pairs. The neural network is trained for 20 0 0

poches. The learning rate of network is set as 10 −2 . The loss goal

s set as 10 −3 . The number of nodes in the first layer is 8,202-D.

he number of nodes in hidden layer ranges from 100 to 2,0 0 0.

he test results are as shown in Fig. 5 . 

Results : It is obvious that, compared with the NN, our Discrimi-

ative learning approach based on SVM has improved the accuracy

y 10.90%. 

.3.2. The effectiveness of Graph-cut 

In order to verify the effectiveness of spectral clustering, we

valuate the performance of face candidate clustering results with

ifferent number of clusters. We select about 50 images with

rowded faces from the dataset. Table 3 . To reduce the noise arose

rom similarity matrix, we regenerate a new one with ground truth

nd candidates as the input. Nearly all of faces are clustered into

ne group, as shown in Fig. 5 . Note that intuitively all the back-

round regions seem to have been clustered into one group, but

ssentially they are dissimilar with each other. So they will be

lustered into several groups. We set the number of cluster as 4

nd clustering results of candidates in one images is in a line. It

hows that our spectral clustering can divide candidates into dif-

erent groups, where candidates in the same group are similar and

issimilar when they are in different groups. All of the candidates

n cluster 1 are faces. Note that there are several faces are grouped

nto groups which background regions lie in, because low reso-

ution and background clutter lead that they are more similar to

ackground regions. 

The choice of the number of clusters is a general problem. We

se the eigengap heuristic to choose the number k of clusters such

hat all eigenvalues λ1 , . . . , λk are very small, but λk +1 is relatively

arge. According to perturbation theory, the eigenvalue 0 has mul-

iplicity k, and there is a gap to the (k + 1)th eigenvalue λk +1 > 0 .

or the cases in the first row of Fig. 5 , the first six eigenvalues

re approximately 0. Then, there is a gap between the 6th and 7th,
Please cite this article as: Y. Xi, J. Zheng and X. He et al., Beyond con

crowded scenes, Pattern Recognition Letters, https://doi.org/10.1016/j.pa
hich is | λ7 − λ6 | and is relatively large. According to the eigengap

euristic, this gap indicates that the data set contains six clusters.

he same also applies to the results of the other two images (plot-

ed in Fig. 5 ). 

. Conclusion 

In this paper, aiming to improve the performance for SCS,

e have proposed a novel idea to exploit the semantic similar-

ty between targeting objects’ neighbors and create a pairwise

onstraints to depict such semantic similarity. Then, a framework

hich adopts the discriminative learning and graph-cut techniques

s formulated to boost the accuracy of existing object detectors.

xperiments conducted on four widely-used benchmark datasets

or target detection have demonstrated the improvement over the

tate-of-the-art by applying this idea. We have also verified the

ffectiveness of discriminative learning for estimating candidates’

imilarity and visualize graph-cut’s result for clustering candidates.

he mechanism of our proposed framework is generic indicating

hat it has a great potential being applied on other small and

eneric object detectors. 
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