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ABSTRACT With the improvement of mobile device performance, the requirement of equivalent dose
description in intensity-modulated radiation therapy is increasing in mobile multimedia for healthcare.
The emergence of mobile cloud computing will provide cloud servers and storage for intensity-modulated
radiotherapy (IMRT) mobile applications, thus realizing visualized radiotherapy in a real sense. Equivalent
uniform dose (EUD) is a biomedical indicator based on the dose measure. In this paper, the dose volume
histogram is used to describe the dose distribution of different tissues in target and nontarget regions.
The traditional definition of EUD, such as the exponential form and the linear form, has only a few
parameters in the model for fast calculation. However, there is no close relationship between this traditional
definition and the dose volume histogram. In order to establish the consistency between the EUD and the
dose volume histogram, this paper proposes a novel definition of EUD based on the volume dose curve,
called VD-EUD. By using a unique organic volume weight curve, it is easy to calculate VD-EUD for
different dose distributions. In definition, different weight curves are used to represent the biological effects
of different organs. For the target area, we should be more careful about those voxels with a low dose
(cold point); thus, the weight curve is monotonically decreasing. While for the nontarget area, the curve
is monotonically increasing. Furthermore, we present the curves for parallel, serial, and mixed organs of
nontarget areas separately, and we define the weight curve form with only two parameters. Medical doctors
can adjust the curve interactively according to different patients and organs. We also propose a fluence map
optimization model with the VD-EUD constraint, which means that the proposed EUD constraint will lead
to a large feasible solution space. We compare the generalized EUD (gEUD) and the proposed VD-EUD
by experiments, which show that the VD-EUD has a closer relationship with the dose volume histogram.
If the biological survival probability is equivalent to the VD-EUD, the feasible solution space would be large,
and the target areas can be covered. By establishing a personalized organic weight curve, medical doctors
can have a unique VD-EUD for each patient. By using the flexible and adjustable EUD definition, we can
establish the VD-EUD-based fluence map optimization model, which will lead to a larger solution space
than the traditional dose volume constraint-based model. The VD-EUD is a new definition; thus, we need
more clinical testing and verification.

INDEX TERMS Intensity modulated radiotherapy, multimedia communication, equivalent uniform dose,
dose volume histogram, volume dose curve, mobile applications for health-care, mobile computing.

I. INTRODUCTION
The main difference between intensity modulated radiother-
apy (IMRT) and three-dimensional conformal radiotherapy

The associate editor coordinating the review of this manuscript and
approving it for publication was M. Shamim Hossain.

(3DCRT) is that the multileaf collimator in IMRT can mod-
ulate fluctuating intensity maps for IMRT. IMRT will radiate
on the target area as much as possible as well as avoid the
important nontarget tissues, which will ensure the given dose
to kill cancer cells in the target area and simultaneously
take care of important regions to greatly reduce radiation
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FIGURE 1. Intensity-modulated radiation field in IMRT. Five radiation
fields are shown with arrows with different shapes marked with dark
color. There are two types of nontarget areas, named femur and rectum,
and one target.

dose [1]–[4]. Fig. 1 shows an example of intensity modu-
lated radiation field in IMRT. As shown in Fig. 1, there are
five radiation fields, and each field has different intensity-
modulated radiation (represented as a different shape with
dark area in five arrows). There are two types of nontarget
areas, named femur and rectum, and one target outlined
in Fig. 1.

Medical doctors have been trying to replace the dose sat-
isfaction model with biomedical satisfaction models, such
as the tumor control probability (TCP) and normal tissue
complication probability (NTCP) models. This replace-
ment needs an indicator for evaluation of the therapeu-
tic effects, which is a great challenge for radiotherapy
researchers [5], [6]. The equivalent uniform dose (EUD)
is a kind of dose-based biomedical indicator [7], which is
frequently used in the clinical system. Another kind of use-
ful clinical evaluation system is the dose volume histogram
(DVH) [8].Although the DVH can describe the clinical sig-
nificance, it is not a bio-medical indicator, but physical dose
indicator.

With the improvement of mobile device performance,
the requirement of equivalent dose description in intensity-
modulated radiation therapy is increasing in mobile multi-
media for health-care [9]–[12]. The emergence of mobile
cloud computing will provide cloud servers and storage for
IMRTmobile applications [13]–[16].As a doctor requires that
the target region dose distribution closes to the prescription
dose, a minimum dose limit is often given to the target
area. For the nontarget region, some of the important organ
biological behavior is serial,which is called Organ at Risk
(OAR). If there is any damage in any part of the organ, it will
cause the entire organ to lose biological activity. Therefore,
for maximumprotection, doctors will give themaximumdose
limit. On the contrary, in some organs, the biological behavior
is parallel. Partial organ damage will not affect the normal
working of the entire organ. In such a case, a doctor often
gives dose volume constraints or average dose constraints.

FIGURE 2. Dose volume constraints for the nontarget area. This
constraint means that the dose volume curve is expected to
be under the constrained point (λ, η).

Of course, there are organs that are neither serial nor parallel;
consequently, the doctor will give the maximum dose limit
as well as the average dose and dose volume constraints. The
brain stem and spinal cord are typical serial organs. The lungs
and liver are typical parallel organs. The parotid gland and
rectum are neither serial nor parallel organs.

In the following sections, we will present a novel definition
of equivalent uniform dose based on the volume dose curve
to establish a bridge between uniform dose expression and
the dose volume histogram for any kind of organ, no matter
whether it is a target or nontarget region.

II. DOSE VOLUME HISTOGRAM (DVH)
A radiation oncologist often uses the dose volume histogram
to describe the dose distribution in different tissues for
patients in target regions and nontarget regions. For an organ
at risk, the DVHplays a very important role,which can protect
them. For some given tissues of an organ, the definition
of DVH, H (d), can be described as follows:

H (d)=
the voxel number with receiving dose no less than d

the sum number of voxels
×100% (1)

The function of the DVH is also known as the dose volume
curve (DVC). Furthermore, dose volume constraints are used
to control the shape characteristics of the DVC. Clinical expe-
rience shows that controlling the DVC of nontarget tissues
can often play an important role in protecting organs at risk.

The dose volume constraints for a nontarget region are
typically defined as no more than η%portion of organ voxels,
which will receive λ Gy dose (or less), where Gy is an
abbreviation for Gray, the international unit of radiation dose.
Ideally, the dose volume constraint wants the DVC to lie
below the constraint point, as shown in Fig. 2.

Similarly, dose volume constraints for the target region can
be defined as no less than η%portion of organ voxels that will
receive λGy dose ormore. Ideally, the dose volume constraint
should enforce the DVC to lie above the constrained point as
shown in Fig. 3.
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FIGURE 3. Dose volume constraints for the target area. This constraint
means that the dose volume curve is expected to be above on the
constrained point (λ, η).

The dose volume constraint is very important for charac-
terizing tissue dose distribution. However, it also has higher
computational complexity for inverse planning than the tra-
ditional model.

The corresponding mathematical model of the inverse
planning is briefly expressed below.

Minimize quadratic functions for the penalty of target dose
nonconformance Where the fluence map is variables.

S.t. Fluence map is nonnegative;
The hard constraints for target and nontarget region; and
Dose volume constraints.

III. THE TRADITIONAL EQUIVALENT UNIFORM
DOSE (EUD)
The traditional equivalent uniform dose is obtained according
to the Poisson distribution form [17], [18]. Assume that for
a given dose D, the survival probability of a voxel can be
described by an exponential function, exp

(
−

D
D0

)
, where D0

is the a priori value. If a prescription dose D = 0, it means
that the voxel is not given an irradiation; i.e., exp

(
−

D
D0

)
=

exp
(
−

0
D0

)
=1, showing that the survival probability of a

voxel is 100%. If a prescription dose D = ∞, it means that
the irradiation is with a very large dose; i.e., exp

(
−

D
D0

)
= 0,

showing that the survival probability of a voxel is 0%.
Assuming that there are N voxels in an organ and that each

voxel is given a dose Di as an independent event, i is in the
interval of [1, N]. We can use the following Eq. 2 to express
the average survival ratio (SR) of a voxel for the event.

SR ({Di}) =
1
N

N∑
i=1

exp
(
−
Di
D0

)
(2)

If we assume that all of these voxels are irradiated by
the same dose (i.e., EUD), the average survival ratio can be
expressed as in Eq. 3.

SR (EUD) = exp
(
−
EUD
D0

)
(3)

If the survival probability of voxels receiving different
dosage amounts is the same as that of the same amount
of doses received, it will be called equivalent uniform
dose (EUD). That means SR ({Di}) = SR (EUD), and we
have Eq. (4).

EUD = −D0 ln
1
N

∑
i

exp
(
−
Di
D0

)
(4)

The generalized equivalent uniform dose (gEUD) for the
target region as well as the nontarget region is obtained
according to the power function as defined in Eq. (5).

N · (gEUD)a =
∑
i

N · wi(Di)a (5)

where wi is the weighting parameter for voxel Di,which rep-
resents the importance of different regions,a is a given priori
value, and

∑
i
wi = 1. Hence, by rearranging Eq. (5), gEUD =(∑

i
wi(Di)a

) 1
a

, which can be rewritten as in Eq. (6).

gEUD =

(
1
N

∑
i

Dai

) 1
a

(6)

Both the equivalent uniform dose definitions discussed
above have only one presetting parameter (i.e., D0), which
is straightforward to determine. Thus, according to the for-
mulae defined in Eqs. (4), (5) and (6), the fluence map
optimization model and inverse solution methods can be
used [19], [20]. In general, the EUD-basedmodel can obtain a
much larger solution space than the traditional physical dose
model [21], [22]. However, the problem is that the solution
obtained using a EUD-based model is often unsatisfied in the
dose volume constraints [8], [23].

Although the EUD shows some useful biological meaning,
the dose volume histogram (DVH) is superior in explaining
the clinical significance of the dose distribution [24], [25].
On the other hand, the EUD is perfect and concise in themath-
ematical form, but its practical application is not necessarily
related to the overall dose distributions.

Thieke proposed a linear form for the EUD [26](Eq.(7)).

EUD = αDmean + βDmax (7)

where parameters α and β must satisfy α + β = 1,and non-
negative. Dmean and Dmax are the average dose and max
dose of D (i), respectively. This definition has some consis-
tency with the power law definition to some extent. Obvi-
ously, the linear definition of the EUD provides convenient
inverse fluence map modeling. However, due to its simple
mathematical expression, it cannot fully meet the biomedical
requirements.

IV. THE NOVEL DEFINITION
In order to maintain consistency between the EUD and DVH,
we propose a novel definition of the EUD based on the
volume dose curve.
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To describe the volume dose curve D (η%) with a thresh-
old η percentage, we sort all voxels for an organ in descending
order. In contrast with the VDH, D (η%) represents the lower
dose bound for η% of voxels after descending sorting, where
the interval of the curve is (0, 1]. Hence, we can see that
lim
η→0

D (η%) = Dmax and D (100%) = Dmin.

Then, we define the corresponding weight curve w (η%)
(increasing or decreasing) in the interval of (0, 1]. This
weight curve is nonnegative in the interval with the integral∫ 1
0 w (t) = 1.
The new EUD based on the volume dose curve (called

DV_EUD) is defined as in Eq. (8).

DV_EUD =
∫ 1

0
D (t) ·W (t) dt (8)

In the definition, a different weight curve represents the
biological effect of a different organ. For the target area,
we focus on the voxels with low dose (cold voxels), and
the weight curve will be monotonically increasing, as shown
in Fig. 4(a). For the nontarget area, we pay more attention
to the voxels with high dose (hot voxels), and the weight
curve will be monotonically decreasing (Fig. 4(b)). Further-
more, for some parallel organs in the nontarget area, there
is little difference in their weight for each voxel. Therefore,
the weight curve can be represented by the shape of a linear
curve (Fig. 4(c)). For some serial organs in the nontarget area,
the hot voxels are strictly limited to protect the biological
activity; thus, the curve is a steep line, which changes abruptly
(Fig. 4(d)). For other mixed organs in the nontarget area,
the shape of the weight curve is between the steep line and the
linear line (Fig. 4(e)). The doctor can adjust the curve accord-
ing to a patient’s condition and type of organs. Therefore, this
new definition is more flexible and adjustable.

Below, we present a weight curve definition with two
parameters, b and k, where b controls the inflection point
position and k controls the slope. The independent variable, t,
is the volume percentage.

W (t) =
1∫ 1

0

(
arctan (k (t − b))+ π

2

)
dt

·

(
(±) arctan (k (t − b))+

π

2

)
(9)

The sign (±) in Eq. (9) shows that the representation is
selectable for the target or nontarget region; if the sign is
positive, the weighting curve is monotonically increasing,
which is applicable for the target region. On the contrary,
if the sign is negative, the curve is monotonically decreasing,
which is applicable for the nontarget region.

In the following, we give three examples to visualize and
analyze the weighting function defined in Eq. (9). Exam-
ple 1 is shown in Fig. 5; b is set to 0.5 with different k values.
In example 2 (Fig. 6), k is fixed to 100 with different b values;
in example 3 (Fig. 7), k is fixed to 0.01 with different b values.

Based on the results shown in Figs. 5, 6 and 7, when
k is small, the change in b value has little impact on the
shape of curves; this result shows that if k is close to zero

(i.e., k → 0), the curve represents the tissue of parallel
organs. That is, the EUD of this kind organ is approaching
the average dose.

When k is large, parameter b dominantly determines how
many dose percentages of hot voxels were taken care of
by doctors. Especially, if b is very small, the weight curve
represents the tissue of serial organs. The EUD of the organs
is approaching the max dose.

When k is neither very large nor small, the weight curve
represents the tissue of mixed organs. The EUD corresponds
to a variety of dose volume histogram, which means the pro-
posed EUD constraint will lead to a larger feasible solution
space.

A discrete version of VD_EUD defined in Eq. (8) is for-
mulated in Eq. (10), where D (i) is the voxel dose value and
W (i) is the weight of D (i).

VD_EUD =
∑
i

D (i) ·W (i) (10)

V. THE FLUENCE MAP OPTIMIZATION MODEL
BASED ON THE VD-EUD
If the fluence map optimization model considers the
EUD constraints, then we can formulate themodel as follows:
pi is the target weight coefficient, STi is the sum of the
weights, DTPi is the prescription dose, DTi is the planning
dose, EUDj is the upper bound value for VD-EUD, and
X is the fluence map variable. u represent the number of
target, and v represent the number of the EUD constraints.

min

{
u∑
i=1

pi
STi

(
DTi − DTPi

)2}

S.t.

{
VD_EUDj ≤ EUDj, for j = 1, 2, · · · , v
0 ≤ X

(11)

Its discrete version is written as shown in Eq. (12), where
Dvcj (•) is the dose volume value, and Dj (•) is the dose
volume constrained upper bound, which is a nonconvex
programming problem and can be solved using a heuristic
algorithm [27]:

min

{
u∑
i=1

pi
STi

(
DTi − DTPi

)2}

S.t.



1∑
i=0

Dj (i) ·Wj (i) ≤ EUDj

Dvcj (0) ≤ Dj (0)
Dvcj (0.1) ≤ Dj (0.1)
...

Dvcj (1.0) ≤ Dj (1.0) , for j = 1, 2, · · · , v
0 ≤ X

(12)

VI. COMPARISON AND DISCUSSION
Weproduce two dose distributions as the testing data in Fig. 8.
These testing data will be used for the comparison of
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FIGURE 4. Different weight curves.

the gEUD and our proposedVD-EUD. The first dose distribu-
tion (i.e., distribution 1) is the uniform distribution from 0 Gy
to 70 Gy, and the other dose distribution (i.e., distribution 2)
is 2% of 70 Gy, 58% of 35 Gy, and 40% of 10 Gy. The average
dose is shown in Table 1.

We compare the gEUD and the proposed VD-EUD to
prove the feasibility of VD-EUD. Table 2 shows the results

of gEUD based on two distributions given in Fig. 8. When
parameter a is very large, gEUD represents the hot voxels.
There is no significant difference between two distributions
in terms of gEUD.When parameter a is equal to 1, gEUD rep-
resents the average dose of all voxels, and the difference is the
largest. Overall, when parameter a is set between 1 and 100,
it does not show any correlation between gEUD and the dose
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FIGURE 5. Weight curves of different combinations of k and b
parameters. Parameter b is set to 0.5 with different k values.

FIGURE 6. Weight curves of different combinations of k and b
parameters. Parameter k is set to 100 with different b values.

FIGURE 7. Weight curves of different parameters. Parameter k is fixed
with different b values.

volume curve. In other words, it does not show that the gEUD
is closely related with the dose volume curve. The change
in the gEUD cannot bring about the related change in the
dose volume curve. Therefore, the gEUD cannot express the
difference in the dose volume curve.

In Table 3, we fix k to be 1000 and give a variety of b values
from 0.02 to 1.0 to explore the relationship betweenVD-EUD
and dose volume curve. When b is very small, the weight

FIGURE 8. Two volume dose curves for testing dose distributions.

TABLE 1. The average dose of distributions in Fig. 8.

TABLE 2. The gEUD values of each distribution and their difference.

curve focuses on the hot voxels; therefore, the difference in
VD-EUD between two distributions is small. If we set b to
be 1.0, the result of VD-EUD shows the average dose of all
voxels; if b = 0.2, the result of weight curve shows that it
is more focused on the top 20% of voxels. In this case, the
VD-EUD value of distribution 1 is 63.3919, and the VD-EUD
value of distribution 2 is 38.5473, which are basically the
average dose of the top 20% voxels. Therefore, the VD-EUD
can concentrate on any voxels and provide the most intuitive
expression of dose volume histogram to doctors.Through
the experiments, we can find that, the effect of b mainly
represents that on which organ area the dose performance
is more concerned, and the effect of k mainly represents
how strict the requirement of the dose volume in a certain
tissue is.

In fact, when the biological behavior of the organ is
strictly serial, the VD-EUD approaches the maximum value,
while the biological behavior is strictly parallel, and the
VD-EUD has the mean value. Therefore, if the biological
behavior of the organ is between serial and parallel, the

VOLUME 7, 2019 45855
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TABLE 3. The gEUD values of each distribution and their difference.

FIGURE 9. Weight curves of k = 1 and b = 0.2.

FIGURE 10. The volume dose curve of two testing dose distributions.

definition of VD-EUD will lead to a larger feasible space of
dose distributions. This result shows that the uniqueVD-EUD
can correspond to multiple dose distributions with different
dose volume histograms. For example, if we set k = 1 and
b = 0.2, the weight curve is suitable for the organs between
serial and parallel, as shown in Fig. 9. However, the dose

FIGURE 11. Schematic diagram of feasible space with the same VD-EUD.

volume histogram is very different, as shown in Fig. 10,
and the VD-EUD of distribution 1 and distribution 2 are
very similar with 39.3526 and 39.0557, respectively. From
Fig. 11, for the survival probability of biological behavior
to equal the uniform distribution form, the feasible space is
very large. That is to say, as long as the curve is controlled
within the feasible area, the dose distribution obtained can
meet the clinical needs. Thus, the fluence map can consider
better coverage of the target area. In the process of solving
the problem, we can first give a group of dose combination
vectorsD (i), and then select the optimal solution according to
the previous quadratic programmingmodel with dose volume
constraints.

VII. CONCLUSION
The traditional definition of the equivalent uniform dose has
little relationship with the dose volume histogram, and this
paper proposed a novel volume dose curve-based equivalent
uniform dose (VD-EUD). Through the establishment of per-
sonalized organic weight curve, doctors can provide patients
with the equivalent uniform dose more precisely using the
proposed VD-EUD. With VD-EUD, we can establish a new
EUD-based fluence map optimization model, which leads to
a larger solution space than the traditional DVC-based model
and still maintain the significance of biological behavior. The
next step of research will be to apply it to clinical practice.
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