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Abstract: A new direction of risk assessment research in grassland fire management is data-driven 3 

prediction, in which data are collected from particular regions. Since some regions have rich datasets 4 

that can easily generate knowledge for risk prediction, and some have no data available, this study 5 

addresses how we can leverage the knowledge learned from one grassland risk assessment to assist 6 

with a current assessment task. In this paper, we first introduce the transfer learning methodology to 7 

map and update risk maps in grassland fire management, and we propose a new grassland fire risk 8 

analysis method. In this study, two major grassland areas (Xilingol and Hulunbuir) in northern China 9 

are selected as the study areas, and five representative indicators (features) are extracted from grassland 10 

fuel, fire climate, accessibility, human and social economy. Taking Xilingol as the source domain 11 

(where sufficient labelled data are available) and Hulunbuir as the target domain (which contains 12 

insufficient data but requires risk assessment/prediction), we then establish the mapping relationship 13 

between grassland fire indicators and the degrees of grassland fire risk by using a transfer learning 14 

method. Finally, the fire risk in the Hulunbuir grassland is assessed using the transfer learning method. 15 

Experiments show that the prediction accuracy reached 87.5% by using the transfer learning method, 16 

representing a significant increase over existing methods. 17 

Keywords: Risk assessment; transfer learning; fire climate; grassland fire  18 

1. Introduction 19 

Fire, as a natural or a human-induced phenomenon, plays a major role in structuring ecosystems at 20 

local and regional and global scales (Gitas et al. 2014) and is helpful in maintaining the diversity and 21 

stability of ecosystems (Vogl 1974; Zhou and Liu 1994). However, fire usually spreads rapidly and is 22 



destructive; it is one of the most serious natural disasters occurring in grasslands (Cheney et al. 1998; 23 

Liu et al. 2015; Cao et al. 2015). Fire burns vegetation, livestock, and important species, destroying 24 

pastures and soil and causing dust storms and soil erosion (Kandya et al. 1998). In the context of global 25 

climate change, the impact of wildfires will increase with the increasing frequency of extreme climate 26 

events (Liu & Stanturf et al. 2010). Therefore, it is necessary to assess wildfire risk across an entire 27 

area to support grassland management. The assessment of fire risk, as defined by Bachmann and 28 

Allgower (2001), requires assessing the possibility of future occurrences of fires and potential losses. 29 

Fire risk assessment is the decision-making basis for fire managers. Therefore, many researchers have 30 

given attention to grassland fire risk in recent years (Zhang et al. 2006; Zhang et al. 2010; Ager et al. 31 

2011; Chuvieco et al. 2014; Thompson et al. 2015; Zhang et al. 2015). Risk analysis is the key point of 32 

research on grassland fire risk management. Because risk analysis involves several factors of grassland 33 

fire behaviour and the social environment and because the relationships between those factors are 34 

complex, the formation mechanism of grassland fire risk is not clear, which causes the evaluation 35 

accuracy of grassland fire risk to be low. In actual applications, the multiple factors used in the 36 

assessment are difficult to obtain; thus, grassland fire risk assessment is time-consuming and 37 

labour-intensive. Furthermore, in many remote areas, fire risk is often more difficult to assess because 38 

of a lack of grassland fire data. Therefore, grassland fire risk assessment is a difficult problem (Ager et 39 

al. 2011), and the question of how to carry out the rapid assessment and update of grassland fire risk 40 

has become a hot issue in grassland fire research.  41 

Grassland fire risk assessment methods include the grassland fire risk probability method and the 42 

grassland fire risk index method. Probabilistic risk assessment (PRA) is a systematic and 43 

comprehensive methodology to evaluate the risks associated with a complex engineered technological 44 



entity or the effects of stressors on the environment (Goussen et al., 2016). Generally, PRA is defined 45 

as the outcome of probability multiplying potential losses (Finney 2005). For grassland fires, there are 46 

two types of risk that need to be assessed: the risk of the occurrence of fire under various grassland 47 

management scenarios and the risk to the ecosystem as a result of the fire and/or as a consequence of 48 

the fire management practices (Fairbrother and Turnley 2005). The main issues of this kind of risk 49 

assessment are implemented by estimating the probability distributions based on a mass of statistical 50 

samples of historical data (Brillinger 2003; Liu et al. 2010, 2012；Cao et al. 2015). Fire probability 51 

index (Chuvieco 2003), fire occurrence (Martínez-Fernández et al. 2005), burn probability (Ziesler et al. 52 

2013) and ignition risk (Yohay et al. 2009; Sow et al. 2013) have been typically used to describe 53 

grassland fire risk. Because of the small sample sizes of grassland fire, fire probability is usually 54 

substituted with frequency. To address the problem of small sample sizes, several methods have been 55 

provided to calculate risk probability, such as the Monte Carlo, information diffusion, logistic 56 

regression, and weights of evidence models (Yohay et al. 2009; Cui et al. 2010; Liu et al. 2010; Zhang 57 

et al. 2010; Shen et al. 2012). 58 

Grassland fire risk index methods include the single index method and the composite index method. 59 

The single index method uses one important factor that affects the occurrence of grassland fires, such 60 

as the moisture of grassland fuel or the drought index, to predict the occurrence of grassland fires. 61 

Several studies have developed the fuel dryness index, the fine fuel moisture index, and the fire 62 

weather index to analyse grassland fire danger (Keetch and Byram 1968; Snyder et al. 2006; Van 63 

Wagner 1987). The grassland risk comprehensive index predicts the possibility of a grassland fire by 64 

integrating various factors that affect the occurrence of grassland fires. These composite indices 65 

include the meteorological fire danger index, the fuel moisture index and the composite index, which 66 



include human activities and meteorological, topographical and fuel characteristics. These assessment 67 

results could help determine which aspects influence grassland fire risk. In the last few decades, 68 

because of the ease, convenience and rapid acquisition of data, remote sensing and geographic 69 

information system technology has been widely used in risk indices to improve the forecasting and 70 

monitoring of fire (Paltridge and Barber 1988; Jaiswal et al. 2002; Castro et al. 2003; Mbow et al. 2004; 71 

Hernandez-Leal et al. 2006; Gitas et al. 2014).  72 

In the study of grassland fire, several methods and models have been applied to risk research, e.g., 73 

the information diffusion method, the fuzzy inference model and the machine learning model. Such 74 

methods and models are effective for analysis and evaluation within one region. However, when they 75 

are applied in different regions, due to the different distribution characteristics of vegetation, climate 76 

and human activities data in different regions, it will result in the deviation of assessment results. In 77 

traditional machine learning, two basic assumptions are needed in order to ensure the classification 78 

accuracy and reliability of training. (1) The training samples used for learning and the new test samples 79 

satisfy the independent and identically distributed conditions. (2) There must be sufficient available 80 

training samples to learn to develop a good model. In natural disaster studies, for areas lacking data, 81 

these two conditions are often difficult to satisfy. Therefore, a trained model in one region cannot be 82 

directly used in another region, and a parameter adjustment is always required (for remote areas, the 83 

parameter adjustment is often limited because of the lack of data).  84 

At present, grassland fire risk has been widely studied around the world, and much experiential 85 

knowledge has been summarized. How to transfer this experiential knowledge to specific areas is an 86 

important issue for grassland fire studies. Another problem is that risk maps often need to be updated 87 

over time for grassland fire risk management, and the production of risk maps often requires many 88 



material resources and is time-consuming and labour-intensive. For areas lacking data, grassland fire 89 

risk evaluation results often cannot be obtained. To solve this problem, in this study, a new grassland 90 

fire risk assessment method was proposed based on transfer learning. Two major grassland areas 91 

(Xilingol and Hulunbuir) in northern China are selected as the study areas, and five representative 92 

indicators (features) are extracted from grassland fuel, fire climate, accessibility, and human and social 93 

factors. Taking Xilingol as the source domain (where sufficient labelled data are available) and 94 

Hulunbuir as the target domain (which contains insufficient data but requires risk 95 

assessment/prediction), we then establish the mapping relationship between grassland fire indicators 96 

and grassland fire risk degrees by using a transfer learning method. The fire risk was assessed in the 97 

Hulunbuir grassland based on the transfer learning method. This method could conveniently be used 98 

for risk mapping and updating, especially for the risk assessment of grassland fire in remote areas. 99 

There are two major contributions of this study. 1) It proposes a new grassland fire risk mapping 100 

and updating method based on transfer learning. In this method, five representative indicators were 101 

extracted from fuel, fire climate, accessibility, and human and social factors. Considering the lack of 102 

data in remote areas, the remote-sensing data were used to obtain fuel and road networks in the study 103 

area. 2) The study addresses the issue of transferring grassland fire risk knowledge and experience 104 

from one region to another. As a result, this study will allow for the transfer of knowledge and 105 

experience from well-studied regions of grassland fire risk to poorly studied regions, which will reduce 106 

grassland fire risk management costs. This study can also be used to update grassland fire risk maps 107 

and perform grassland fire risk parameter optimization. 108 

2. Grassland fire risk analysis method based on transfer learning 109 

To analyse grassland fire risk using a transfer learning method, it is necessary to summarize the 110 



existing grassland fire risk research. According to grassland fire risk literature (Cardille et al. 2001; 111 

Castro et al. 2003; Hernandez-Leal et al. 2006; Marta et al. 2008; Cui et al. 2010; Chuvieco et al. 2014), 112 

grassland fire risk is affected by multiple factors. Grassland fire risk factors can be classified as ignition 113 

factors, fuel factors, meteorological factors, and fire impacts. Fuel is the basis of fire propagation. 114 

Weather conditions determine fuel moisture and further determine flammability. The sources of 115 

ignition can be divided into human-caused and lightning-caused fires. Several studies have shown that 116 

more than 90% of grassland fires were caused by humans (Liu et al. 2012; Zhang et al. 2015); therefore, 117 

this study uses accessibility to describe fires caused by humans. The impacts of fire include both 118 

ecological and economic losses. This study uses population density and economic density to describe 119 

fire impacts. The combination of the four considered factors (five indicators) has caused different fire 120 

risks in grasslands. In this study, the factors in the study area were obtained and processed as input 121 

factors to predict grassland fire risk based on the transfer learning method. 122 

2.1. Fuel 123 

Fuel is a critical element for the formation and spread of grassland fires. In a combustion science 124 

context, fuels are any combustible material (NWCG 2006). In a grassland, these combustible materials 125 

are the live and dead grass that ecologists call biomass (Keane 2015). Grassland areas with abundant 126 

fuel tend to be prone to fire. Therefore, the knowledge of the spatial distribution of these fuels is 127 

essential to developing fire management strategies. For large-scale spatial grassland areas, grassland 128 

fuel characteristics can be obtained from remote sensing images. At present, several remote-sensing 129 

techniques have been developed to map fuels at different resolutions on the Earth’s surface (Arroyo et 130 

al. 2008). Several studies have proven the feasibility of assessing fire risk by using a vegetation index 131 

such as the NDVI (Mbow et al. 2004; Marta et al. 2008), but the limitations of the NDVI itself may 132 



affect the obtained grassland load estimates. Specifically, in low cover grassland areas, the estimated 133 

results exhibit high error rates because of the significant influences of the soil background and 134 

grassland vegetation types. Net primary productivity (NPP) is defined as the total photosynthetic gain, 135 

minus respiratory losses, of vegetation per unit ground area (Scurlock et al. 2002). NPP measures the 136 

cumulative amount of carbon elements in the plants per unit area per unit time interval. The mass of 137 

carbon per unit area per year (g C m−2 yr−1) is most often used as the unit of measurement. Therefore, it 138 

is very suitable for measuring the fuel load in a grassland. Several studies have proven that NPP could 139 

measure grass load in the grassland (Wang et al. 2012; Zhao et al. 2014; Ni 2004). Because fuel 140 

combustion is related to carbon elements, in this study, NPP is used to calculate the fuel load in the 141 

grassland. The MOD17 product is a land productivity product calculated using the BIOME-BGC 142 

model and a light use efficiency model, in combination with remote-sensing data. In this study, the 143 

yearly product MOD17A3 data from 2000 to 2014 were used to analyse the fuel load in the grassland. 144 

FI = 1
𝑛𝑛
∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛
𝑖𝑖=1                                 (1) 145 

where 𝐹𝐹𝐹𝐹 is the fuel load index (g C m−2), 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 is the net primary productivity in the 𝑖𝑖th year, and 146 

𝑛𝑛 is the total number of years.  147 

2.2. Fire climate 148 

The ignition and propagation of grassland fires are also influenced by local weather conditions 149 

(Bian et al. 2013). The fire climate affects the fuel moisture (Snyder et al. 2006) and then affects the 150 

intensity of the grassland fire. Such climate also influences the spread speed of a grassland fire. 151 

Well-known integrated indices of fire climate include the Canadian Forest Fire Weather Index (CFFWI) 152 

(Dowdy et al. 2009), the Keetch–Byram Drought Index (KBDI) (Keetch and Byram 1968) and the Fire 153 

Danger Index (FDI) (Pitman et al. 2007). The CFFWI is a numerical rating of fire intensity, which is 154 



based on a Canadian empirical model developed in and widely used since 1976. In this study, the fire 155 

weather danger index of China was used to describe the fire climate. 156 

Based on the database of historical severe forest and grassland fire, the China National 157 

Meteorological Center constructed the fire weather danger index method and applied it to the fire 158 

weather danger forecast (Niu et al. 2006); the calculation process is as follows: 159 

𝑈𝑈 = 𝐹𝐹𝑣𝑣(𝑣𝑣) + 𝐹𝐹𝑇𝑇(𝑇𝑇) + 𝐹𝐹𝐹𝐹(𝐹𝐹) + 𝐹𝐹𝑚𝑚(𝑚𝑚)                                (2) 160 

𝑈𝑈′ = 𝐹𝐹𝑣𝑣′ (𝑣𝑣) + 𝐹𝐹𝑇𝑇′ (𝑇𝑇) + 𝐹𝐹𝑟𝑟ℎ′ (𝑟𝑟ℎ) + 𝐹𝐹𝑚𝑚′ (𝑚𝑚)                                 (3) 161 

𝐹𝐹𝑛𝑛𝑚𝑚𝑛𝑛 = (𝐴𝐴𝑈𝑈 + 𝐵𝐵𝑈𝑈′) × 𝐶𝐶𝑠𝑠 × 𝐶𝐶𝑟𝑟                                       (4) 162 

where 𝐹𝐹𝑛𝑛𝑚𝑚𝑛𝑛  is the comprehensive fire weather danger index, 𝑈𝑈 is the fire weather danger index 163 

before adjustment, and 𝑈𝑈′  is the adjusted fire weather danger index. I(s) and 𝐹𝐹′(𝑠𝑠)  are the 164 

corresponding fire weather danger values for each single meteorological factor, and they could be 165 

obtained from the lookup tables (Tables 1 and 2). 𝑣𝑣 is the daily maximum wind speed (m s-1), 𝑇𝑇 is 166 

the maximum temperature (℃), 𝑟𝑟ℎ is the minimum relative humidity (%), and F is the sum of fuel 167 

moisture and relative humidity multiplied by 0.25. 𝑚𝑚 is continuous non-precipitation (NP) days. 168 

A=0.3 and B=0.7. 𝐶𝐶𝑠𝑠 is the surface correction coefficient [0,1]. 𝐶𝐶𝑟𝑟 is the correction coefficient of 169 

precipitation; 𝐶𝐶𝑟𝑟 = 0 when there is precipitation, and 𝐶𝐶𝑟𝑟 = 1 when there is no precipitation. 𝐹𝐹𝑛𝑛𝑚𝑚𝑛𝑛  is 170 

the comprehensive fire weather danger index. 171 

Table 1 Single meteorological factor lookup table 172 

𝒗𝒗 (m s-1) 𝑰𝑰𝒗𝒗 T (℃) 𝑰𝑰𝑻𝑻 F (%) 𝑰𝑰𝑭𝑭 NP (d) 𝑰𝑰𝒎𝒎 
0-0.9 5 15-19 0 >75 0 0 0 
1.0-2.9 15 20-23 3 40-75 5 1 5 
3.0-5.9 25 24-28 6 25-39 10 2 10 
6.0-10.9 30 29-32 9 15-24 15 3-5 15 
≥11.0 35 33-37 12 8-14 20 6-8 20 
- - >38 15 0-7 25 >8 25 

 173 



Table 2 Adjusted meteorological factor lookup table 174 

𝒗𝒗 (m s-1) 𝑰𝑰𝒗𝒗 T (℃) 𝑰𝑰𝑻𝑻 rh (%) 𝑰𝑰𝒓𝒓𝒓𝒓 NP (d) 𝑰𝑰𝒎𝒎 
0-1.5 3.846 ≤ 5 0 ≥70 0 0 0 

1.6-3.4 7.692 5-10 4.61 60-70 3.076 1 7.692 
3.5-5.5 11.538 11-15 6.1 50-59 6.153 2 11.538 
5.6-8.0 15.384 16-20 9.23 40-49 9.23 3 19.23 

8.1-10.8 19.236 21-25 12.5 30-40 12.307 4 23.076 
10.9-13.9 23.076 >25 15.384 < 30 15.384 5 26.923 
14.0-17.2 26.923 - - - - 6 30.7 

>17.2 30.9 - - - - 7 34.615 
- - - - - - >8 38 

In this study, 𝐶𝐶𝑠𝑠 is used to measure the influence of aspect, which is calculated by the DEM of the 175 

study area. Aspect has eight orientations that are assigned values as follows: north (0.6), northeast (0.7), 176 

east (0.8), southeast (0.9), south (1.0), southwest (0.9), west (0.8), and northwest (0.7). A semi-physical 177 

method proposed by Nelson (1984) was used to calculate the fuel moisture in the study area (Eq. 5). 178 

𝐸𝐸𝐸𝐸𝐶𝐶 = 1
𝑎𝑎1
�𝑎𝑎2 − ln ((273.15 + 𝑇𝑇𝐸𝐸𝐸𝐸𝑁𝑁)ln (100

𝑅𝑅𝑅𝑅
))�                  (5) 179 

where RH is the air relative humidity, TEMP is the air temperature, and 𝑎𝑎1and 𝑎𝑎2 are the quadratic 180 

functions of air temperature and relative humidity, respectively. 181 

𝑎𝑎1 = −0.5234 + 0.1592𝑥𝑥 − 0.0129𝑥𝑥2                                         (6) 182 

𝑎𝑎2 = 1.6551 + 0.6625𝑥𝑥 − 0.0510𝑥𝑥2                                           (7) 183 

where 𝑥𝑥 is the air temperature. 184 

Based on Eqs. 2-7, the daily fire weather danger index values were calculated in the research area. 185 

According to the standards for the grade classification of the fire weather danger index, a region 186 

belongs to a high-danger area if 𝐹𝐹𝑛𝑛𝑚𝑚𝑛𝑛 > 60. The frequency of the high fire weather danger index was 187 

used to describe the danger of grassland fire in each of the regions. 188 

𝐹𝐹𝐶𝐶𝐹𝐹 = 𝑁𝑁
𝑀𝑀

                                                               (8) 189 



where 𝐹𝐹𝐶𝐶𝐹𝐹 is the frequency of the high fire weather danger index in the region (%), 𝑁𝑁 is the 𝐹𝐹𝑛𝑛𝑚𝑚𝑛𝑛 >190 

60 days in the reported years, and 𝐸𝐸 is the total days in the reported years. 191 

2.3. Accessibility 192 

The vast majority of contemporary wildfire ignitions globally are of human origin, and several 193 

studies have examined the impact of socio-economic and human activities on grassland fire risk 194 

(Martínez et al. 2009; Cardille et al. 2001). Factors related to the social economy and human activities, 195 

such as agricultural area, density of roads, population, etc., were used to establish the grassland fire risk. 196 

Human-caused fires are closely related to the range of human activities. In this study, accessibility was 197 

used to express the scope and intensity of human activities. Human activities and habitats/settlements 198 

are always distributed along roads. Human, animal and vehicular movement and activities such as 199 

cooking, camping and smoking on roads provide ample opportunities for accidental/man-made fires. 200 

Studies have often found roads to be related to accidental or negligent fire occurrence (Cardille et al. 201 

2001). Therefore, grasslands near roads and habitats appear to be at high fire risk (Jaiswal et al. 2002). 202 

Since habitats/settlements are generally close to the road network, this study mainly considers the 203 

impact of road networks on the grassland fire risk. In this study, accessibility was used to express the 204 

degree of fire danger caused by human activities and was understood to be the distance from roads. 205 

Grassland areas near roads have high accessibility scores, and these areas are more prone to ignition via 206 

human activities or vehicle movement. As in previous studies (Jaiswal et al. 2003; Bian et al. 2013), the 207 

indicator ‘distance to roads’ was divided into five grades and assigned values as shown in Table 3.  208 

2.4. Human and social factors 209 

Grassland fire has a severe influence on local residents and the social economy. In China, grassland 210 

fire is regarded as a serious natural disaster that affects the development of grassland areas. It has 211 



burned out pastures and caused livestock to starve to death, or burned them directly, which can destroy 212 

the local economy. For residents, grassland fires can also burn down their houses and destroy living 213 

supplies and even affect their lives and safety. In this study, population density and animal husbandry 214 

output are used to measure the impact of grassland fire on population and society. Grassland areas with 215 

high population density and animal husbandry output have high risk of grassland fires. The two 216 

indicators ‘population density’ and ‘animal husbandry output’ were divided up into five grades and 217 

assigned values, as shown in the Table 3. 218 

Table 3 Rating values and classes assigned to factors for grassland fire risk. 219 

Primary factors Secondary factors Classes Rating values 

Accessibility Distance to roads (DTR, m) 

0-1000 
1000-2000 
2000-3000 
3000-4000 
>4000 

1.0 
0.8 
0.6 
0.4 
0.2 

Human and 
social factors 

Population density  
(PD, person/km2) 

0-10 
10-100 
100-1000 
1000-2000 
>2000 

0.2 
0.4 
0.6 
0.8 
1.0 

Animal husbandry output 
(AHO, 104 CNY/km2) 

0-10 
10-100 
100-500 
500-1000 
>1000 

0.2 
0.4 
0.6 
0.8 
1.0 

 220 

2.5. Transfer learning based on domain adaptation 221 

Transfer learning, as a new machine learning method, aims to provide a framework to utilize 222 

previously acquired knowledge to solve new but similar problems much more quickly and effectively. 223 

It has emerged in the computer science literature as a means of transferring knowledge from a source 224 

domain to a target domain (Lu et al. 2015). The definition of transfer learning was proposed by Pan et 225 



al. 2010. First, the domain was defined as 𝐷𝐷 = {𝜒𝜒,𝑁𝑁(𝑋𝑋), which consists of two components: feature 226 

space 𝜒𝜒 and marginal probability distribution 𝑁𝑁(𝑋𝑋), where 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3,⋯ , 𝑥𝑥𝑛𝑛} ∈ 𝜒𝜒. Next, the 227 

task was defined as 𝑇𝑇 = {𝑌𝑌, 𝑓𝑓(∙)}, which consists of a label space 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2,𝑦𝑦3 ,⋯ , 𝑦𝑦𝑚𝑚} and an 228 

objective predictive function 𝑓𝑓(∙), which is not observed and is to be learned by pairs {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}. Finally, 229 

by giving the source domain 𝐷𝐷𝑠𝑠, target domain 𝐷𝐷𝑡𝑡 , learning task 𝑇𝑇𝑠𝑠 and 𝑇𝑇𝑡𝑡, the purpose of transfer 230 

learning is to improve the learning of the target predictive function 𝑓𝑓𝑡𝑡(∙) in 𝐷𝐷𝑡𝑡  using the knowledge 231 

in 𝐷𝐷𝑠𝑠 and Ts (𝐷𝐷𝑠𝑠 ≠ 𝐷𝐷𝑡𝑡  or 𝑇𝑇𝑠𝑠 ≠ 𝑇𝑇𝑡𝑡). Transfer learning uses the labelled source domain data to learn 232 

the calibration of the target domain data. The task of transfer learning is how to use labelled source 233 

domain data to establish a reliable model to predict the data in the target area (the source data and the 234 

target data have different probability distributions).  235 

Transfer learning can be used to transfer the research experience of one natural disaster to another, 236 

and it is also possible to transfer the knowledge and experience of natural disaster research within one 237 

region to another. In general, source domains can differ in some combination of (often unknown) 238 

factors, including fire climate, fuel characteristics, and human and societal factors. To address this 239 

problem, domain adaptation algorithms are used to transfer knowledge from source domain trained on 240 

some available labelled data to the target domain. Therefore, domain adaptation solves a learning 241 

problem in a target domain by utilizing the training data in a different but related source domain (Pan et 242 

al. 2010). In grassland fire risk analysis, we do not know whether the selected sample in the target 243 

domain is representative; therefore, in this study, a feature-based domain adaptation method, transfer 244 

component analysis (TCA), which was proposed by Pan et al. (2011), was used to analyse the grassland 245 

fire risk. This method assumes that some labelled data are available in the source domain and that only 246 

unlabelled data are available in the target domain. The calculation steps are as follows: 247 



(1) Input unlabelled dataset in the target domain, 𝐷𝐷𝑡𝑡𝑡𝑡 = {𝑥𝑥𝑡𝑡𝑎𝑎𝑟𝑟1𝑡𝑡 , 𝑥𝑥𝑡𝑡𝑎𝑎𝑟𝑟2𝑡𝑡 ,⋯ ,𝑥𝑥𝑡𝑡𝑎𝑎𝑟𝑟𝑚𝑚𝑡𝑡 },  unlabelled 248 

dataset in the source domain, 𝐷𝐷𝑠𝑠𝑡𝑡 = {𝑥𝑥𝑠𝑠𝑟𝑟𝑛𝑛1𝑡𝑡 , 𝑥𝑥𝑠𝑠𝑟𝑟𝑛𝑛2𝑡𝑡 ,⋯ , 𝑥𝑥𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑡𝑡 }, and selecting the labelled dataset in the 249 

source domain, 𝐷𝐷𝑠𝑠𝑠𝑠 = {𝑥𝑥𝑠𝑠𝑟𝑟𝑛𝑛1𝑠𝑠 , 𝑥𝑥𝑠𝑠𝑟𝑟𝑛𝑛2𝑠𝑠 ,⋯ , 𝑥𝑥𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑠𝑠 }. 250 

(2) Calculate the distance between the two domains. The maximum mean discrepancy (Borgwardt 251 

et al. 2006) was used to calculate the distance between the source domain and the target domain. 252 

𝑑𝑑𝑖𝑖𝑠𝑠(𝑋𝑋𝑠𝑠𝑟𝑟𝑛𝑛′ ,𝑋𝑋𝑡𝑡𝑎𝑎𝑟𝑟′ ) = � 1
𝑛𝑛1
∑ ∅�𝑥𝑥𝑠𝑠𝑟𝑟𝑛𝑛𝑖𝑖� −
𝑛𝑛1
𝑖𝑖=1

1
𝑛𝑛2
∑ ∅�𝑥𝑥𝑡𝑡𝑎𝑎𝑟𝑟𝑖𝑖�
𝑛𝑛2
𝑖𝑖=1 �

ℋ

2
                  (9) 253 

where ℋ is a reproducing kernel Hilbert space (Steinwart, 2001), and ∅:𝑥𝑥𝑥𝑥𝜒𝜒 → ℋ. According to a 254 

literature reference (Pan et al. 2011), ∅ could be calculated by transforming to the kernel learning 255 

problem. By using the kernel trick, let 256 

𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = ∅(𝑥𝑥𝑖𝑖)′∅(𝑥𝑥𝑗𝑗)                                             (10) 257 

where k is the corresponding kernel. Therefore, the distance between the source domain and the target 258 

domain can be written in terms of the kernel matrices defined by 𝑘𝑘: 259 

𝑑𝑑𝑖𝑖𝑠𝑠(𝑋𝑋𝑠𝑠𝑟𝑟𝑛𝑛′ ,𝑋𝑋𝑡𝑡𝑎𝑎𝑟𝑟′ ) = 𝑡𝑡𝑟𝑟(𝐾𝐾𝐾𝐾)                                           (11) 260 

where 261 

𝐾𝐾 = �
𝐾𝐾𝑆𝑆,𝑆𝑆 𝐾𝐾𝑆𝑆,𝑇𝑇
𝐾𝐾𝑇𝑇,𝑆𝑆 𝐾𝐾𝑇𝑇,𝑇𝑇

�                                                 (12) 262 

where 𝐾𝐾  is a (𝑛𝑛1 + 𝑛𝑛2) × (𝑛𝑛1 + 𝑛𝑛2)  kernel matrix. 𝐾𝐾𝑆𝑆,𝑆𝑆 , 𝐾𝐾𝑇𝑇,𝑇𝑇  and 𝐾𝐾𝑆𝑆,𝑇𝑇  (𝐾𝐾𝑇𝑇,𝑆𝑆 ) are the kernel 263 

matrices defined by 𝑘𝑘 on the data in the source, target, and cross domains, respectively. 𝐾𝐾𝑖𝑖𝑗𝑗  is 264 

calculated as follows. 265 

𝐾𝐾𝑖𝑖𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧

1
𝑛𝑛1
2 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋𝑠𝑠𝑟𝑟𝑛𝑛,

1
𝑛𝑛2
2 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋𝑡𝑡𝑎𝑎𝑟𝑟,

− 1
𝑛𝑛1𝑛𝑛2

𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                                      (13) 266 

According to the empirical kernel map, 𝐾𝐾 can also be decomposed as follows. 267 

𝐾𝐾 = �𝐾𝐾𝐾𝐾−1/2��𝐾𝐾−1/2𝐾𝐾�                                           (14) 268 



To reduce the computational complexity, a dimensionality reduction was used for the data analysis 269 

(Wang et al. 2008). Principal component analysis (PCA) was then applied to the learned kernel matrix 270 

to find a low-dimensional latent space across domains. 𝑊𝑊�  is a low-dimensional matrix calculated by 271 

PCA. Therefore, the distance between two domains could be transformed as follows: 272 

𝐾𝐾� = �𝐾𝐾𝐾𝐾−1/2𝑊𝑊� ��𝑊𝑊� 𝑇𝑇𝐾𝐾−1/2𝐾𝐾� = 𝐾𝐾𝑊𝑊𝑊𝑊𝑇𝑇𝐾𝐾                           (15) 273 

𝑊𝑊 = 𝐾𝐾−1/2𝑊𝑊�                                                    (16) 274 

𝑑𝑑𝑖𝑖𝑠𝑠(𝑋𝑋𝑠𝑠𝑟𝑟𝑛𝑛′ ,𝑋𝑋𝑡𝑡𝑎𝑎𝑟𝑟′ ) = 𝑡𝑡𝑟𝑟�(𝐾𝐾𝑊𝑊𝑊𝑊𝑇𝑇𝐾𝐾)𝐾𝐾� = 𝑡𝑡𝑟𝑟(𝑊𝑊𝑇𝑇𝐾𝐾𝐾𝐾𝐾𝐾𝑊𝑊)                   (17) 275 

The kernel learning problem for domain adaptation then reduces to: 276 

min
𝑊𝑊

𝑡𝑡𝑟𝑟(𝑊𝑊𝑇𝑇𝐾𝐾𝐾𝐾𝐾𝐾𝑊𝑊) + 𝜇𝜇𝑡𝑡𝑟𝑟(𝑊𝑊𝑇𝑇𝑊𝑊)                                 (18) 277 

𝑠𝑠. 𝑡𝑡.𝑊𝑊𝑇𝑇𝐾𝐾𝐾𝐾𝐾𝐾𝑊𝑊 = 𝐹𝐹𝑚𝑚                                            (19) 278 

where 𝜇𝜇 is a trade-off parameter, 𝐹𝐹 is the identity matrix, and 279 

𝐾𝐾 = 𝐹𝐹𝑛𝑛1+𝑛𝑛2 −
1

𝑛𝑛1+𝑛𝑛2
11𝑇𝑇                                          (20) 280 

where 𝐾𝐾 is the centering matrix, and 1 is a column vector with all ones. 281 

(3) By calculating the distance between two domains, the features of the two domains are 282 

transformed into a new space. In this space, the data distributions in the two domains are close to each 283 

other. Therefore, after step 2, the source domain and target domain have the same feature space. The 284 

prediction model trained for the source domain can also be used to solve the tasks in the target domain. 285 

The standard machine learning method could be applied to train classifiers or regression models in the 286 

source domain for use in the target domain. In this study, a logistic regression classifier (Zadrozny 287 

2004) was used to classify the degree of grassland fire risk. 288 

𝑁𝑁(𝑦𝑦� = 1,2,3|𝑥𝑥) = 1
1+𝑒𝑒𝑔𝑔(𝑥𝑥)                                   (21) 289 

𝑔𝑔(𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛                       (22) 290 



where 𝑁𝑁 is the probability that an input (𝑥𝑥) belongs to the default class (𝑦𝑦� = 1,2,3), and βi is a 291 

coefficient. To improve classification accuracy, the predicted classification is calculated to minimize 292 

the expected classification loss: 293 

𝑦𝑦� = arg min
𝑦𝑦=1,…,𝐷𝐷

∑ 𝑁𝑁�(𝑑𝑑|𝑥𝑥)𝐷𝐷
𝑑𝑑=1 𝐶𝐶(𝑦𝑦|𝑑𝑑)                           (23) 294 

where 𝑦𝑦� is the predicted classification. D is the number of classes. 𝑁𝑁�(𝑑𝑑|𝑥𝑥) is the posterior probability 295 

of class 𝑑𝑑 for observation 𝑥𝑥. 𝐶𝐶(𝑦𝑦|𝑑𝑑) is the loss of classifying an observation as 𝑦𝑦 when its true 296 

class is. arg min stands for the argument of the minimum, that is to say, the set of points of the given 297 

argument for which the value of the given expression attains its minimum value. The analysis flowchart 298 

is shown below (Fig. 1). 299 

 300 

Fig. 1. Analysis flowchart of grassland risk based on transfer learning 301 
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Transfer learning addresses the problem of how to leverage previously acquired knowledge to 302 

improve the efficiency and accuracy of learning in another domain that in some way and to some extent 303 

relates to the original domain (Pan and Yang 2010). Such learning represents the ability of a system to 304 

apply the knowledge of previous tasks to a new domain or new tasks. Traditional machine learning 305 

algorithms operate under the hypothesis that training data (source domain) and the test data (target 306 

domain) have identical feature spaces with the same underlying distribution. Unlike traditional 307 

algorithms, transfer learning considers that the domains of the training data and the test data may be 308 

different (Daume and Marcu 2006, Fung et al. 2006). The transfer learning model is more feasible than 309 

the traditional mathematical model, and the analysis results are more reliable. There is a more effective 310 

use of available data to improve the generalization of the model to make the model more robust, and it 311 

is a good tool for model parameter adjustment. Therefore, in this study, feature-based transfer learning 312 

methods were used to analyse the grassland fire risk in different regions. 313 

Although transfer learning methods can transfer and incorporate knowledge and experience from 314 

different regions, we need to select robust features to reduce the difference between the source and 315 

target domains and to reduce fire risk assessment errors. Because some indicators have conflicting 316 

knowledge and experience of grassland fires in different regions (e.g., the composition of fuels and the 317 

month of fire occurrence vary greatly in Asia, Africa and Australia), the selection of such indicators 318 

may lead to negative transfer. If we want to assess the grassland fire risk in one grassland using the 319 

knowledge and experience of another grassland based on transfer learning, it is better to select a 320 

grassland with similar knowledge and experience or select robust indicators (e.g., indicators that are 321 

similar between regions) in order to reduce the assessment error. 322 

3. Real-world applications and result analysis  323 



In this study, two grassland regions, Xilingol and Hulunbuir, were selected to evaluate the 324 

properties of our framework. These study areas are two major grasslands in northern China that are 325 

seriously affected by grassland fires. To adapt to the needs of fire protection work, it is necessary to 326 

map and update the grassland fire risk. With traditional methods, it is very expensive to map and 327 

update the fire risk map; thus, it is very important to find a reliable method to map and update the risk 328 

map. However, due to the spatial differences or changes of vegetation growth, fire climate, human 329 

activities and natural conditions, the characteristic distributions of grassland fire risk are significantly 330 

different in the two grassland regions. According to the annual mean NPP from 2000 to 2014 of the 331 

two study areas, the spatial distribution of fuel load is shown in Fig. 2 (a). Fig. 2 (a) shows that the 332 

trend of fuel load increases from the southwest to the northeast of the two study areas. The annual 333 

mean NPP is 25.36 g C m-2, and the variance is 10.76 g C m-2. According to the meteorological data, 334 

the frequencies of 𝐹𝐹𝑛𝑛𝑚𝑚𝑛𝑛 > 60 in two areas are shown in Fig. 2 (b). Fig. 2 (b) shows that the frequency 335 

of high fire weather danger index increases from the northeast to the southwest. The minimum value is 336 

0.5%, the maximum value is 32.7%, the variance is 6.5%, and the average value is 16.0%.  337 

  338 

Fig. 2. The spatial distribution of NPP (a) and the frequency of high grassland fire danger weather 339 
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index (𝐹𝐹𝑛𝑛𝑚𝑚𝑛𝑛 > 60) (b) in the study areas. 340 

The comparison of the fuel load index and the fire weather danger index of the two grassland areas 341 

shows that they are very different (Fig. 3). The Hulunbuir grassland has better vegetation and less 342 

severe fire weather than the Xilingol grassland. The grassland fire risk situation in Xilingol is worse 343 

than that in Hulunbuir. There are abundant grassland fire data and fire management experience in 344 

Xilingol. Therefore, the transfer learning method was applied to these two grassland areas to verify the 345 

effectiveness of the method in drawing the risk map of grassland fire by using the knowledge and 346 

experience of grassland fire risk and small labelled samples.  347 

  348 

Fig. 3. The frequency distributions of Inmc>60 (a) and NPP (b) in two grassland areas. 349 

In this study, the fire risk map of the Xilingol grassland is regarded as the source domain. The 350 

grassland fire risk was divided into three grades: high risk, medium risk, and low risk. The spatial 351 

distributions of grassland fire risk are shown in Fig. 4, and the ratio and area of risk degrees in Xilingol 352 

are shown in Fig. 5. In this risk map, 500 random selected samples were sampled on the source domain 353 

risk maps, which were used to train samples (Fig. 4(a)), and the percentages of high-, medium- and 354 

low-risk samples were 40%, 38% and 22%, respectively. The Hulunbuir grassland was selected as the 355 

target domain, and the transfer learning algorithm was used to draw the risk map in the target domain.  356 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

the probability of I
n m c

 >60

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Hulunbuir

Xilingol

0 10 20 30 40 50 60

NPP

0

5

10

15

20

25

30

35

40

45

Fr
eq

ue
nc

y

Hulunbuir

Xilingol

a

 

 

 

 

 

b

 

 

 

 

 



 357 

Fig. 4. The spatial distribution of grassland fire risk and selected samples in Xilingol (a), and the 358 

grassland area and selected samples in Hulunbuir (b). 1, 2, and 3 represent low, medium, and high risk, 359 

respectively. 360 

 361 

 362 

Fig. 5. The ratio and area of risk degrees in Xilingol 363 

In this study, the traditional dimensionality reduction method of principal component analysis 364 

(PCA) was used to project the original data to a low-dimensional latent space while preserving some of 365 

the properties of the original data (Fig. 6). Analysing the labelled samples revealed that the contribution 366 

rate of the first two principal components reached 89.9%, and the contributions of the first three 367 

principal components reached 94.76%. Therefore, this study uses the first three principal components 368 

to analyse the risk of grassland fire. 369 
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 370 

Fig. 6. The principal components of grassland fire risk 371 

Based on the selected factors and transfer learning method proposed in this study, the spatial 372 

distribution of grassland fire risk in the Hulunbuir grassland is shown in Fig. 7. Fig. 7 shows that the 373 

high grassland fire risk is mainly distributed on the edge of the Hulunbuir grassland. The high-risk 374 

areas in the middle areas are dispersed. The risk of grassland fire in the northern part of the Hulunbuir 375 

grassland is higher than that in the southern region (Fig. 7).  376 

 377 

Fig. 7. The results of grassland fire risk assessment of Hulunbuir based on transfer learning 378 

Natural fire rotation (NFR) (Heinselman, 1973) was used to verify the risk results of the Hulunbuir 379 

grassland fire in this study. Assuming that the landscape is uniform, and the burning conditions are 380 

constant over time (i.e., ignition frequency, and climatology), the NFR reflects the time required to 381 

burn an area equal in size to the study area. The NFR is calculated as: 382 

𝑁𝑁𝐹𝐹𝑁𝑁 = 𝐴𝐴𝑡𝑡(𝐴𝐴𝑓𝑓/𝑁𝑁𝑦𝑦)                                                (24) 383 
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where 𝐴𝐴𝑡𝑡 is the total area of the land, 𝐴𝐴𝑓𝑓 is the total area burned by all fires (including re-burned 384 

areas) and 𝑁𝑁𝑦𝑦 is the number of years in the record. Accuracy, sensitivity, specificity, precision, recall, 385 

F-measure, and G-mean (Kubat et al. 1997) were selected as metrics to evaluate the goodness of 386 

assessment results. The comparison between the Hulunbuir grassland fire risk and NFR shows that 387 

transfer learning has high prediction accuracy for medium-risk areas and low-risk areas (91% and 95%, 388 

respectively) (Fig. 8 and Table 4), while the prediction accuracy rate for high-risk areas is low (67%). 389 

Some high-risk areas have been predicted to be middle-risk areas.  390 

From Fig. 8, it can be seen that the accuracy of low grassland fire risk assessment and middle 391 

grassland fire risk assessment is high, while the misreporting rate of high grassland fire is high (33%). 392 

This is due to the real grassland fire risk being based on the occurrence of fire, while the grassland fire 393 

risk in this study was assessed based on five selected indicators. The ‘distance to roads’ indicator was 394 

chosen to describe the human activity in this study. For some isolated areas with medium fire risk, such 395 

as areas with high fuel load and far from roads and where human activities are primarily tourism, herbs 396 

collecting, etc., grassland fire risk is high due to natural fires and human activities.  397 

 398 

Fig. 8. The accuracy of grassland fire risk assessment based on transfer learning 399 
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Table 4 Reliability of predicted results based on transfer learning in the Hulunbuir grassland (for 400 

P<0.05) 401 

accuracy sensitivity specificity precision recall F-measure G-mean 

0.8746 0.9302 0.8662 0.9128 0.9302 0.6612 0.8976 

Using the transfer learning method to analyse the source domain, the accuracy rate can be found to 402 

reach 91.3%. If the source domain prediction model is used directly in the target domain, the accuracy 403 

rate is only 40.22%. For the study area, the Cohen's kappa coefficient (𝑘𝑘) was used to measure 404 

classification accuracy (Cohen 1960). By calculating the observed agreement and chance agreement of 405 

the actual and predicted values of grassland fire risk in Hulunbuir, the coefficient 𝑘𝑘 = 0.732 means 406 

that the predicted reliability was satisfactory. 407 

Because the number of samples has an important impact on the expression of features, this study 408 

analyses the impact of samples on the evaluation results (Fig. 9). In this study, we set the number of 409 

labelled samples from between 10 and 100, calculated the grassland fire risk 50 times on each point, 410 

and then analysed the impact of the number of labelled samples on the accuracy of the assessment 411 

results. The results show that the accuracy of the assessment is reduced when there are fewer labelled 412 

samples because the features of grassland fire are easily affected by negative samples with fewer 413 

labelled samples. The accuracy rate with 60 labelled samples is 87.5% (Fig. 9). In the application, if 414 

typical labelled samples of every grassland fire risk degree are selected in the study area, the required 415 

labelled samples for calculating will be reduced.  416 



 417 

Fig. 9. The impact of the number of labelled samples on the evaluation results 418 

Fig. 9 shows that the grassland fire risk was affected by the number of labelled samples and that the 419 

accuracy of assessment results increased with the number of labelled samples. The reason for this result 420 

is because when the number of labelled samples reaches a certain amount, the knowledge and 421 

experience embodied in the labelled samples will overlap, and their impact on the prediction accuracy 422 

will be stabilized.  423 

4. Conclusions and further study 424 

This study selected five indicators from grassland fuel, fire climate, accessibility, and human and 425 

social factors. By constructing the source domain and the target domain samples, the transfer learning 426 

method was used to construct the relationship between grassland fire risk factors and fire risk grades. 427 

This method verified the reliability of mapping grassland fire risk in different regions based on existing 428 

knowledge and experience. 429 

The causes of grassland fire risk are quite different in different spatial regions. Therefore, the 430 

contribution rates of fire risk factors are quite different, which lead to great differences in grassland fire 431 

risk assessment parameters. Through transfer learning, we can transform the grassland fire risk 432 
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characteristics in different areas and then evaluate the grassland fire risk in different areas. In future 433 

studies, the grassland fire risk in unequal feature spaces (two study areas with fewer of the same factors) 434 

will be studied based on the transfer learning method. 435 

This research revealed that the five selected indicators and the designed framework are reliable in 436 

grassland fire risk assessment, and they can be used for grassland fire risk assessment. The number of 437 

labelled samples has an impact on the accuracy of grassland fire risk mapping. Because randomly 438 

selected labelled samples were used in this study, the feature of grassland fire risk is easily affected by 439 

negative samples. In this study, 60 selected labelled samples were found to be the minimum required to 440 

meet the requirements. Because of the importance of information in samples, to ensure the accuracy of 441 

assessment results, we suggest that fire managers select independently labelled samples to increase 442 

learning knowledge and experience as much as possible. 443 
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