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research and industry. A major challenge in quantum programming is dealing with errors (quantum noise)
during execution. Because quantum resources (e.g., qubits) are scarce, classical error correction techniques
applied at the level of the architecture are currently cost-prohibitive. But while this reality means that quantum
programs are almost certain to have errors, there as yet exists no principled means to reason about erroneous
behavior. This paper attempts to fill this gap by developing a semantics for erroneous quantum while programs,
as well as a logic for reasoning about them. This logic permits proving a property we have identified, called
ϵ-robustness, which characterizes possible łdistancež between an ideal program and an erroneous one. We have
proved the logic sound, and showed its utility on several case studies, notably: (1) analyzing the robustness
of noisy versions of the quantum Bernoulli factory (QBF) and quantum walk (QW); (2) demonstrating the
(in)effectiveness of different error correction schemes on single-qubit errors; and (3) analyzing the robustness
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1 INTRODUCTION

Quantum programming has been actively investigated for the past two decades. Early work on
semantics and language design [Grattage 2005; Ömer 2003; Sabry 2003; Sanders and Zuliani 2000;
Selinger 2004b] has been followed up, in the last few years, by the development of a number of
mature languages, including Quipper [Green et al. 2013], Scaffold [Abhari et al. 2012], LIQUi|⟩
[Wecker and Svore 2014], Q# [Svore et al. 2018], and QWIRE [Paykin et al. 2017]. Various program
logics have also been extended for verification of quantum programs [Baltag and Smets 2011;
Brunet and Jorrand 2004; Chadha et al. 2006; Feng et al. 2007; Kakutani 2009; Ying 2011; Ying et al.
2017]. For detailed surveys, see Selinger [2004a], Gay [2006], and Ying [2016].
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A major practical challenge in implementing quantum programs is dealing with errors (aka
quantum noise) during execution. Most existing work on algorithms and programming languages
assumes this problemwill be solved by the hardware, as in classical computers, or with fault-tolerant
protocols that are designed independently of any particular application [Chong et al. 2017]. As
such, the semantics of programs is defined in a manner that ignores the possibility of errors [Green
et al. 2013; Paykin et al. 2017; Wecker and Svore 2014].

Unfortunately, providing such a general-purpose, fault-tolerant quantum computing abstraction
appears to be impractical for near-term quantum devices, for which precisely controllable qubits
are expensive, error-prone, and scarce. Existing error correction techniques consume a substantial
number of qubits, severely limiting the range of possible computations. For example, one logical
qubit may require 103 − 104 physical qubits [Fowler et al. 2012]. Furthermore, fault-tolerant opera-
tions on these logical qubits require many more physical operations than their non-fault-tolerant
counterparts.
As such, research on practical quantum computation must focus on Noisy Intermediate-Scale

Quantum (NISQ) computers (as phrased by Preskill [2018]), which will lack general-purpose fault
tolerance. While some particular algorithms have been developed to reflect this reality [Moll et al.
2018; Peruzzo et al. 2014], there is as yet no principled method to reason about the error-affected
performance of quantum applications. Such methods are needed to help guide the design of practical
applications for near-term devices.

Contributions. This paper extends the quantum while-language [Ying 2011] with a semantics
that accounts for the possibility of error, and defines an accompanying logic for reasoning about
erroneous executions. Our work constitutes an alternative to the common, but impractical, one-
size-fits-all approach to fault tolerance and instead elevates the question of errors to the level of the
programming language. Our approach is inspired by the work of Carbin et al. [2013], which reasons
about classical programs running on unreliable hardware. We make four main contributions.

First, we present the syntax and semantics (both operational and denotational) of the quantum
while-language extended to include noisy operations. In particular, we modify unitary application
to allow the noisy operation Φ (a superoperator) to occur with probability p. This approach permits
modeling any local noise occurring during the execution of a quantum program, which is the
standard noise model considered in the study of quantum error correction and fault-tolerant
quantum computation [Gottesman 2010]. This error model is also used by experimental physicists
for building and benchmarking quantum devices in both academia and industry.

Second, we define a notion of quantum robustness. In particular, we say that a noisy program P̃

is ϵ-robust under (Q, λ) if it computes a quantum state at most ϵ distance away from that of that of
its ideal equivalent P when starting both from states satisfying quantum predicate Q [D’Hondt and
Panangaden 2006] to degree λ. Our definition makes use of the so-called diamond norm [Gilchrist
et al. 2005] to account for the potential enlarging effect of entanglement on the distance. We
generalize the diamond norm to what we call the (Q, λ)-diamond norm, which allows us to consider
only input states that satisfy a quantum predicate Q to degree λ. Doing so obtains more accurate
bounds when considering specific quantum devices and/or knowledge of states owing to the
use of classical control operators. We show that the (Q, λ)-diamond norm can be computed by a
semidefinite program (SDP) by extending the algorithm of Watrous [2009].

Third, we define a logic for reasoning about quantum robustness, with the following judgment1

(Q, λ) ⊢ P̃ ≤ ϵ . (1.1)

1Our notation draws an analogy with the typing judgment Γ ⊢ P : t . In particular, Q and λ are łassumptionsž about inputs

just as Γ represents assumptions about input (their types); P̃ is the program we are reasoning about; and ϵ is the proved

robustness of this program, just as t is the proved type of the program. Our rules are compositional like those of typing.
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This judgment states that for any input state that satisfies a quantum predicate Q to degree λ, the

distance between [[P̃]] and [[P]] is then bounded by ϵ .
We prove our logic is sound. A particular challenge is the rule for loops, owing to the termination

problem first studied by Li and Ying [2018]. In particular, if the loop body generates some error and
the loop does not terminate, it is hard to prove any non-trivial bound on the final accumulated error.
To avoid this difficulty in the setting of approximate computing, Carbin et al. [2013] simply assume
that the loop will terminate within a bounded number of iterations or a trivial upper bound will be
applied. To capture more complicated cases, we introduce a concept called the (a,n)-boundedness
of the loop. Intuitively, a loop is (a,n)-bounded if, for every input state, after n iterations it is
guaranteed that with probability at least 1 − a it has exited the loop. The probability is due to
the quantum measurement in the loop guard. It is easy to see that (a,n)-boundedness implies the
termination of the loop. Pleasantly, (a,n) bounding the ideal loop is sufficient to reason about a
noisy loop with any error model Φ in the loop body.

Our fourth and final contribution is to develop several case studies that demonstrate the utility
of reasoning about errors at the program level.

• We start with important examples in the quantumwhile-language, the quantum Bernoulli factory

(QBF) and the quantum walk (QW), and directly analyze the robustness of noisy versions Q̃BF

and Q̃W using our logic. In the process, we prove the (a,n)-boundedness of the loops in Q̃BF

and Q̃W using both analytical and numerical methods.
• We also demonstrate the use of our semantics to show the efficiency of different error correction
schemes. Consider the error correction of a single qubit in the environment where a single bit
flip error happens with probability 0 < p < 1/2. We consider three schemes: (1) P1 without
any error correction; (2) P2 with error correction for bit flips; (3) P3 with error correction for
phase flips. We prove that their corresponding robustnesses ϵ1, ϵ2, ϵ3 (under trivial precondition
Q = I , λ = 0) satisfy ϵ2 < ϵ1 < ϵ3. In other words, we conclude that an error correction scheme
that is appropriate for the error model can reduce noise in a program, while an inappropriate
error correction scheme may do the opposite.
• Combining these ideas, we further analyze the robustness of a fault-tolerant version of QBF and
demonstrate that the use of appropriate fault-tolerant gadgets makes QBF more robust.

Organization.We introduce preliminaries about quantum information and the quantum while-
language in Section 3 and Section 4 respectively. We present the noisy quantum while-language
(syntax, semantics) in Section 5 and define quantum robustness and a logic for bounding it in
Section 6. We conclude the paper with case studies in Section 7. We discuss related work, next.

2 RELATED WORK

2.1 Reasoning about Errors in Classical Programs

There has been significant work on reasoning about errors in classical software, which we describe
here. We believe that reasoning about errors is even more important in a quantum setting, where
we can expect that errors will be prevalent and that the nature of errors will change rapidly as
hardware progresses.

2.1.1 Faulty Hardware. One example of an error that a classical computer may experience is a
transient hardware fault. Previous work has demonstrated that programming language techniques
can help give safety guarantees even in the presence of such errors. For example, Walker et al.
[2006] present a type-theoretic framework for analyzing fault-tolerant lambda calculus in the
presence of transient faults. Their type system guarantees that well-typed programs can tolerate
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any single data fault. Perry et al. [2007] extend those ideas to typed assembly language. Similar to
this work, we present a semantics that tracks errors during computation.

2.1.2 Program Continuity. Our work is also similar to existing work on verifying program continu-
ity and robustness [Chaudhuri et al. 2010, 2011]. In order to prove that a program is continuous or
robust, it is necessary to show that the output of that program will not change significantly given
small changes to the program’s inputs. We are interested in bounding the distance between the
output of a noisy program and its corresponding ideal program given the same input.

2.1.3 Approximate and Probabilistic Computing. In recent years, there have been many advances
in programming language support for approximate [Baek and Chilimbi 2010; Boston et al. 2015;
Carbin et al. 2012; Park et al. 2015; Sampson et al. 2011] and probabilistic [Bornholt et al. 2014;
Sampson et al. 2014] computing. Both of these styles of computing rely on uncertainty during
computation, either due to hardware errors or randomness, but still require that programs satisfy
some correctness properties. Programming language tools in this area have aimed to provide these
correctness guarantees.

Carbin et al. [2013] present a tool for verifying reliability conditions, which indicate the probability
that a computation produces the correct result. Given a hardware specification, which lists the
probability with which an operation executes correctly, their analysis computes a conservative
probability that a program value is computed correctly. We extend this notion to a quantum setting
by computing the robustness of a quantum program, which relates to the probability that the state
of the system after executing the program is correct. Also, our hardware specification records
not only the probability of error, but also the nature of the errors that may occur (operator Φ).
Doing so is more computationally expensive, but necessary to be able to reason about the effects
of error correction schemes in quantum programs. Carbin et al. [2013] does not consider error
correction; instead, errors are considered permanent and only probabilities of errors are used for
characterizations.

2.2 Characterizing Error in Quantum Programs

To our knowledge, we are presenting the first semantics and logic for quantum computation that
considers errors. Existing work on characterizing error in quantum programs has focused primarily
on dynamic approaches such as simulation [Gutiérrez et al. 2013] or physical experimentation
[Chuang and Nielsen 1997; Emerson et al. 2005; Knill et al. 2008; Magesan et al. 2011]. Resource
estimation tools like QuRE can statically produce error estimates for algorithms given hardware
specifications [Suchara et al. 2013]. However, these tools are targeted at quantum circuits (i.e.
quantum programs without conditionals or loops) and typically assume that a single error model
and single type of error correction will be used throughout the circuit.

3 QUANTUM INFORMATION: PRELIMINARIES AND NOTATIONS

This section presents background and notation on quantum information and quantum computation.
For an extended background, we recommend notes by Watrous [2006] and the textbook by Nielsen
and Chuang [2000]. A summary of notation we use appears in Table 1.

3.1 Preliminaries

For any finite integer n, an n-dimensional Hilbert spaceH is essentially the space Cn of complex
vectors. We use Dirac’s notation, |ψ ⟩, to denote a complex vector in Cn . The inner product of two
vectors |ψ ⟩ and |ϕ⟩ is denoted by ⟨ψ |ϕ⟩, which is the product of the Hermitian conjugate of |ψ ⟩,
denoted by ⟨ψ |, and vector |ϕ⟩. The norm of a vector |ψ ⟩ is denoted by ∥|ψ ⟩∥ =

√
⟨ψ |ψ ⟩.
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Table 1. A brief summary of notation used in this paper

Hilbert Spaces: H , A
States: (pure states) |ψ ⟩, |ϕ⟩ (metavariables); |0⟩, |1⟩, |+⟩, |−⟩ (notable states)

(density operators) ρ,σ (metavariables); |ψ ⟩⟨ψ | (as outer product)
Operations: (unitaries) U ,V (metavariables); H ,X ,Z (notable operations)

(superoperators) E,F (general); Φ (used to represent noise)
Measurements: M {Mm }m (general); {M0 = |0⟩⟨0|,M1 = |1⟩⟨1|} (example)

We define (linear) operators as linear mappings between Hilbert spaces. Operators between
n-dimensional Hilbert spaces are represented by n × n matrices. For example, the identity operator
IH can be identified by the identity matrix onH . The Hermitian conjugate of operatorA is denoted
by A†. Operator A is Hermitian if A = A†. The trace of an operator A is the sum of the entries on
the main diagonal, i.e., tr(A) =

∑
i Aii . We write ⟨ψ |A|ψ ⟩ to mean the inner product between |ψ ⟩

and A|ψ ⟩. A Hermitian operator A is positive semidefinite (resp., positive definite) if for all vectors
|ψ ⟩ ∈ H , ⟨ψ |A|ψ ⟩ ≥ 0 (resp., > 0). This gives rise to the Löwner order ⊑ among operators:

A ⊑ B if B −A is positive semidefinite, A ⊏ B if B −A is positive definite. (3.1)

3.2 Quantum States

The state space of a quantum system is a Hilbert space. The state space of a qubit, or quantum
bit, is a 2-dimensional Hilbert space. One important orthonormal basis of a qubit system is the
computational basis with |0⟩ = (1, 0)† and |1⟩ = (0, 1)†, which encode the classical bits 0 and
1 respectively. Another important basis, called the ± basis, consists of |+⟩ = 1√

2
( |0⟩ + |1⟩) and

|−⟩ = 1√
2
( |0⟩ − |1⟩). The state space of multiple qubits is the tensor product of single qubit state

spaces. For example, classical 00 can be encoded by |0⟩ ⊗ |0⟩ (written |0⟩|0⟩ or even |00⟩ for short)
in the Hilbert space C2 ⊗ C2. The Hilbert space for anm-qubit system is (C2)⊗m � C2

m
.

A pure quantum state is represented by a unit vector, i.e., a vector |ψ ⟩ with ∥|ψ ⟩∥ = 1. A mixed
state can be represented by a classical distribution over an ensemble of pure states {(pi , |ψi ⟩)}i , i.e.,
the system is in state |ψi ⟩ with probability pi . One can also use density operators to represent both
pure and mixed quantum states. A density operator ρ for a mixed state representing the ensemble
{(pi , |ψi ⟩)}i is a positive semidefinite operator ρ =

∑
i pi |ψi ⟩⟨ψi |, where |ψi ⟩⟨ψi | is the outer-product

of |ψi ⟩; in particular, a pure state |ψ ⟩ can be identified with the density operator ρ = |ψ ⟩⟨ψ |. Note
that tr(ρ) = 1 holds for all density operators. A positive semidefinite operator ρ onH is said to be
a partial density operator if tr(ρ) ≤ 1. The set of partial density operators is denoted by D (H ).

3.3 Quantum Operations

Operations on quantum systems can be characterized by unitary operators. An operatorU is unitary
if its Hermitian conjugate is its own inverse, i.e., U †U = UU † = I . For a pure state |ψ ⟩, a unitary
operator describes an evolution from |ψ ⟩ to U |ψ ⟩. For a density operator ρ, the corresponding
evolution is ρ 7→ UρU †. Common single-qubit unitary operators include

H =
1
√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
. (3.2)

The Hadamard operator H transforms between the computational and the ± basis. For example,
H |0⟩ = |+⟩ and H |1⟩ = |−⟩. The Pauli X operator is a bit flip, i.e., X |0⟩ = |1⟩ and X |1⟩ = |0⟩. The
Pauli Z operator is a phase flip, i.e., Z |0⟩ = |0⟩ and Z |1⟩ = −|1⟩.
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More generally, the evolution of a quantum system can be characterized by an admissible
superoperator E, which is a completely-positive and trace-non-increasing linear map from D (H )

to D (H ′) for Hilbert spacesH ,H ′. A superoperator is positive if it maps from D (H ) to D (H ′)
for Hilbert spacesH ,H ′. A superoperator E is k-positive if for any k-dimensional Hilbert space
A, the superoperator E ⊗ IA is a positive map on D (H ⊗ A). A superoperator is said to be
completely positive if it is k-positive for any positive integer k . A superoperator E is trace-non-
increasing if for any initial state ρ ∈ D (H ), the final state E (ρ) ∈ D (H ′) after applying E satisfies
tr(E (ρ)) ≤ tr(ρ).
For every superoperator E : D (H ) → D (H ′), there exists a set of Kraus operators {Ek }k such

that E (ρ) = ∑k EkρE†k for any input ρ ∈ D (H ). Note that the set of Kraus operators is finite

if the Hilbert space is finite-dimensional. The Kraus form of E is written as E = ∑k Ek ◦ E†k . A
unitary evolution can be represented by the superoperator E = U ◦ U †. An identity operation
refers to the superoperator IH = IH ◦ IH . The Schrödinger-Heisenberg dual of a superoperator
E = ∑k Ek ◦ E†k , denoted by E∗, is defined as follows: for every state ρ ∈ D (H ) and any operator

A, tr(AE (ρ)) = tr(E∗ (A)ρ). The Kraus form of E∗ is ∑k E†k ◦ Ek .

3.4 Quantum Measurements

The way to extract information about a quantum system is called a quantum measurement. A
quantum measurement on a system over Hilbert space H can be described by a set of linear

operators {Mm }m with
∑
m M†mMm = IH . If we perform a measurement {Mm } on a state ρ, the

outcomem is observed with probability pm = tr(MmρM
†
m ) for eachm. A major difference between

classical and quantum computation is that a quantum measurement changes the state. In particular,

after a measurement yielding outcome m, the state collapses to MmρM
†
m/pm . For example, a

measurement in the computational basis is described by M = {M0 = |0⟩⟨0|,M1 = |1⟩⟨1|}. If we
perform the computational basis measurementM on state ρ = |+⟩⟨+|, then with probability 1

2 the

outcome is 0 and ρ becomes |0⟩⟨0|. With probability 1
2 the outcome is 1 and ρ becomes |1⟩⟨1|.

4 QUANTUM PROGRAMS

Our work builds on top of the quantum while-language developed by Ying [2011, 2016]. Here we
review the syntax and semantics of this language.

4.1 Syntax

Define Var as the set of quantum variables. We use the symbol q as a metavariable ranging over
quantum variables and define a quantum register q to be a finite set of distinct variables. For each
q ∈ Var , its state space is denoted by Hq . The quantum register q is associated with the Hilbert
spaceHq =

⊗
q∈q Hq . If type (q) = Bool thenHq is the two-dimensional Hilbert space with basis

{|0⟩, |1⟩}. If type (q) = Int then Hq is the Hilbert space with basis {|n⟩ : n ∈ Z}. The syntax of a
quantum while program P is defined as follows.

P ::= skip | q := |0⟩ | q := U [q] | P1; P2 |
caseM[q] =m → Pm end | whileM[q] = 1 do P1 done (4.1)

The language constructs above are similar to their classical counterparts. (1) skip does nothing. (2)
q := |0⟩ sets quantum variableq to the basis state |0⟩. (3)q := U [q] applies the unitaryU to the qubits

in q. (4) Sequencing has the same behavior as its classical counterpart. (5) caseM[q] =m → Pm end

performs the measurementM = {Mm } on the qubits in q, and executes program Pm if the outcome

of the measurement ism. The bar overm → Pm indicates that there may be one or more repetitions
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of this expression. 2 (6) whileM[q] = 1 do P1 done performs the measurementM = {M0,M1} on
the qubits in q, and executes P1 if measurement produces the outcome corresponding to M1 or
terminates if measurement produces the outcome corresponding toM0.
We highlight two differences between quantum and classical while languages: (1) Qubits may

only be initialized to the basis state |0⟩. There is no quantum analogue for initialization to any
expression (i.e. x := e) because of the no-cloning theorem of quantum states. Any state |ψ ⟩ ∈ Hq ,
however, can be constructed by applying some unitaryU to |0⟩. 3 (2) Evaluating the guard of a case
statement or loop, which performs a measurement, potentially disturbs the state of the system.
We now present an example program written in the quantum while-language syntax. The

quantum walk [Aharonov et al. 2001] is a widely considered example in quantum programming,
quantum algorithms, and quantum simulation literature [Georgescu et al. 2014; Ying et al. 2017].
Here we consider a quantum walk on a circle with n points. We let the initial position of the walker
be 0, and say that the program halts if and only if the walker arrives at position 1.

Example 4.1 (Quantum Walk). Define the coin (or "direction") spaceHc to be the 2-dimensional
Hilbert space with orthonormal basis states |L⟩ and |R⟩, for Left and Right respectively. Define the
position spaceHp to be then-dimensional Hilbert space with orthonormal basis states |0⟩, |1⟩, ..., |n−1⟩,
where vector |i⟩ represents position i for 0 ≤ i < n. Now the state space of the walk isH = Hc ⊗ Hp

and the initial state is |L⟩|0⟩. In each step of the walk:

(1) Measure the position of the system to determine whether the walker has reached position 1.
If the walker has reached position 1, the walk terminates. Otherwise, it continues. We use the
measurementM = {|1⟩⟨1|,∑i,1 |i⟩⟨i |}.

(2) Apply the łcoin-tossingž operator H to the coin spaceHc .
(3) Perform the shift operator S defined by S |L, i⟩ = |L, i − 1(mod n)⟩, S |R, i⟩ = |R, i + 1(mod n)⟩

for i = 0, 1, ...,n − 1 to the spaceH . The S operator can be written as

S =

n−1∑

i=0

|L⟩⟨L| ⊗ |i − 1(mod n)⟩⟨i | +
n−1∑

i=0

|R⟩⟨R | ⊗ |i + 1(mod n)⟩⟨i |.

In this algorithm, the walker takes one step left or one step right corresponding to the coin flip result
|L⟩ or |R⟩. However, unlike the classical case, the result of the coin flip may be a superposition of |L⟩
and |R⟩, allowing the walker to take a step to the left and right simultaneously. This quantum walk
can be described by the following program

QWn ≡ p := |0⟩; c := |L⟩;whileM[p] = 1 do c := H [c]; c,p := S[c,p] done. (4.2)

4.2 Operational Semantics

The operational semantics of the quantum while-language are presented in Figure 1a. ⟨P , ρ⟩ →
⟨P ′, ρ ′⟩, where ⟨P , ρ⟩ and ⟨P ′, ρ ′⟩ are quantum configurations. In configurations, P (or P ′) could be
a quantum program or the empty program E, and ρ and ρ ′ are partial density operators representing
the current state. Intuitively, in one step, we can evaluate program P on input state ρ to program
P ′ (or E) and output state ρ ′. In order to present the rules in a non-probabilistic manner, the
probabilities associated with each transition are encoded in the output partial density operator.4

2Our syntax for conditional/case statements differs from that presented by Ying [2016] to make it more clear that there are

multiple programs Pm .
3In our examples, we may write q := |ψ ⟩ for some fixed basis state |ψ ⟩. What we mean in this case is q := |0⟩;q := U [q]

where U is the unitary operation that transforms |0⟩ into |ψ ⟩.
4If we had instead considered a probabilistic transition system, then the transition rule for case statements could have been

written as ⟨case M[q] =m → Pm end, ρ⟩
pm−−−→ ⟨Pm, ρm ⟩ where pm = tr(MmρM

†
m ) and ρm = MmρM

†
m/pm .
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(Skip) ⟨skip, ρ⟩ → ⟨E, ρ⟩

(Initialization) ⟨q := |0⟩, ρ⟩ → ⟨E, ρq0 ⟩

where ρ
q
0 =



Eboolq→0 (ρ) if type (q) = Bool

E intq→0 (ρ) if type (q) = Int

(Unitary) ⟨q := U [q], ρ⟩ → ⟨E, UρU †⟩

(Sequence E) ⟨E; P2, ρ⟩ → ⟨P2, ρ⟩

(Sequence)

⟨P1, ρ⟩ → ⟨P ′1, ρ ′⟩
⟨P1; P2, ρ⟩ → ⟨P ′1; P2, ρ ′⟩

(Casem) ⟨caseM[q] =m → Pm end, ρ⟩ → ⟨Pm , MmρM
†
m⟩

for each outcomem of measurementM = {Mm }

(While 0) ⟨whileM[q] = 1 do P1 done, ρ⟩ → ⟨E, M0ρM
†
0 ⟩

(While 1) ⟨whileM[q] = 1 do P1 done, ρ⟩ → ⟨P1;whileM[q] = 1 do P1 done, M1ρM
†
1 ⟩

(a)

[[skip]]ρ = ρ

[[q := |0⟩]]ρ =



Eboolq→0 (ρ) if type (q) = Bool

E intq→0 (ρ) if type (q) = Int

[[q := U [q]]]ρ = UρU †

[[P1; P2]]ρ = [[P2]]([[P1]]ρ)

[[caseM[q] =m → Pm end]]ρ =

∑
m[[Pm]](MmρM

†
m )

[[whileM[q] = 1 do P1 done]]ρ =

⊔∞
k=0[[while(k )]]ρ

(b)

Fig. 1. quantum while programs: (a) operational semantics (b) denotational semantics.

In the Initialization rule, the superoperators Eboolq→0 (ρ) and E intq→0 (ρ), which initialize the vari-

able q in ρ to |0⟩⟨0|, are defined by Eboolq→0 (ρ) = |0⟩q⟨0|ρ |0⟩q⟨0| + |0⟩q⟨1|ρ |1⟩q⟨0| and E intq→0 (ρ) =∑∞
n=−∞ |0⟩q⟨n |ρ |n⟩q⟨0|. Here, |ψ ⟩q⟨ϕ | denotes the outer product of states |ψ ⟩ and |ϕ⟩ associated

with variable q; that is, |ψ ⟩ and |ϕ⟩ are inHq and |ψ ⟩q⟨ϕ | is a matrix overHq . It is a convention in
the quantum information literature that when operations or measurements only apply to part of
the quantum system (e.g., a subset of quantum variables of the program), one should assume that
an identity operation is applied to the rest of quantum variables. For example, applying |ψ ⟩q⟨ϕ | to
ρ means applying |ψ ⟩q⟨ϕ | ⊗ IHq̄

to ρ, where q̄ denotes the set of all variables except q. The identity
operation is usually omitted for simplicity.

We do not explain the rules in detail, but hope their meaning is self-evident given the description
of the language in Section 4.1.

To illustrate the use of the operational semantics, we consider the classic beam splitter experiment,
which demonstrates the difference between quantum and classical mechanics. In this experiment,
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photon source

beam splitter full mirror

photon detector

0

0

1

1

Fig. 2. The beam splitter experiment. The ‘0’ path corresponds to the photon having been transmitted at the
first beam splitter, and the ‘1’ path corresponds to the photon having been reflected at the first beam splitter.

as shown in Figure 2, a photon source sends photons through two beam splitters. The final locations
of the photons are determined using photon detectors. A classical analysis would assume that,
for each photon, each beam splitter flips a fair coin to either reflect the photon or allow it to pass
through. The full mirrors reflect incoming photons with probability one. As a result, we might
expect half of the photons to reach one detector and half to reach the other. However, this is not
what is observed in experiments. On the contrary, all photons will reach one detector.

Example 4.2 (Beam Splitter Experiment). Model each beam splitter as a Hadamard gate and
say that the photon source produces photons on the ‘0’ path, which corresponds to the |0⟩ state. Then
the beam splitter experiment (BSE) corresponds to the program

BSE ≡ q1 := |0⟩;q1 := H [q1];q1 := H [q1] (4.3)

where type (q1) = Bool. Let ρ = |1⟩q1⟨1|. Then the evaluation of program BSE on input ρ proceeds as
follows.

⟨BSE, ρ⟩ = ⟨q1 := |0⟩;q1 := H [q1];q1 := H [q1], |1⟩q1⟨1|⟩
→ ⟨q1 := H [q1];q1 := H [q1], |0⟩q1⟨0|⟩
→ ⟨q1 := H [q1], |+⟩q1⟨+|⟩
→ ⟨E, |0⟩q1⟨0|⟩

At the first beam splitter, the photons may either continue on their current path (corresponding to |0⟩)
or be reflected to the ‘1’ path (corresponding to |1⟩). In quantum mechanics, both possibilities happen
simultaneously, resulting in each photon continuing on a superposition of both paths. The superposition
of both paths corresponds to the state |+⟩ = 1√

2
( |0⟩ + |1⟩). At the second beam splitter, the paths in

superposition interfere with each other, resulting in the ‘1’ path being cancelled.

4.3 Denotational Semantics

The denotational semantics of a quantum while program is given in Figure 1b. It defines [[P]] as a
superoperator that acts on ρ ∈ HVar [Ying 2016]. The semantics of each term is given composi-

tionally. We write while(k ) for the kth syntactic approximation (i.e., unrolling) of while and
⊔

for
the least upper bound operator in the complete partial order generated by Löwner comparison. For
more detail on the semantics of loops, we refer the reader to Ying [2011, 2016].
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We connect the denotational semantics to the operational semantics through the following
proposition.

Proposition 4.1 ([Ying 2016]). For any program P

[[P]]ρ ≡
∑
{|ρ ′ : ⟨P , ρ⟩ →∗ ⟨E, ρ ′⟩|}, (4.4)

where→∗ is the reflexive, transitive closure of→ and {| · |} denotes a multi-set.

In short, the meaning of running program P on input state ρ is the sum of all possible output
states, weighted by their probabilities.

The semantics presented so far assume that no noise will occur during computation. In Section 5,
we extend the semantics to include possible errors that may occur during unitary application.

4.4 Quantum Predicates and Hoare Logic

A quantum predicate is a Hermitian operator M such that 0 ⊑ M ⊑ I [D’Hondt and Panangaden
2006]. For a predicateM and state ρ, tr(Mρ) is the expectation of the truth value of predicateM in
state ρ. RestrictingM to be between 0 and I ensures that 0 ≤ tr(Mρ) ≤ 1 for any ρ ∈ D (H ).
The identity matrix corresponds to the true predicate because for any density operator ρ,

tr(I ρ) = 1. The zero matrix corresponds to the false predicate because for any density operator
ρ, tr(0ρ) = 0. |0⟩⟨0| is the predicate that says that a state is in the subspace spanned by |0⟩. As an
example, the density operator ρ0 corresponding to the state |0⟩ is such that tr( |0⟩⟨0|ρ0) = 1, and
the density operator ρ1 corresponding to the state

√
1/3|0⟩ +

√
2/3|1⟩ is such that tr( |0⟩⟨0|ρ1) = 1

3 .
Ying [2011, 2016] uses quantum predicates as the basis for defining quantum preconditions and

postconditions in his quantum Hoare logic. Let M and N be quantum predicates and let P be a
quantum while program. ThenM is a precondition of N with respect to P , written {M }P {N }, if

∀ρ. tr(Mρ) ≤ tr(N [[P]]ρ). (4.5)

This inequality can be seen as the probabilistic version of the following statement: if state ρ satisfies
predicateM , then after applying the program P the resulting state will satisfy predicate N . If we
include an auxiliary space A, then the equivalent statement is

∀ρ . tr((M ⊗ IA )ρ) ≤ tr((N ⊗ IA ) ([[P]] ⊗ IA ) (ρ)). (4.6)

5 NOISY QUANTUM PROGRAMS

In this section, we present the syntax and semantics for the quantum while-language with noise,
as an extension of the quantum while-language. Our syntax allows one to explicitly encode any
error model that describes local noise during the execution of a quantum program.

5.1 Noise in Quantum Computation

Here we briefly discuss how noise is modeled in the study of quantum error correction and fault-
tolerant quantum computation [Gottesman 2010], which in turn comes from the noise model
in quantum physical experiments. It is a convention to only consider łlocalž noise rather than
correlated noise, because benign white noise is more likely than ładversarialž noise in actual
quantum devices. A few types of natural local noise arise in realistic quantum systems, which
generalize classical bit-flip errors, including:

• The bit flip noise flips the state with probability p, and can be represented by

Φp,bit = (1 − p)I ◦ I + pX ◦ X . (5.1)

• The phase flip noise flips the phase with probability p, and can be represented by

Φp,phase = (1 − p)I ◦ I + pZ ◦ Z . (5.2)
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Other types of noise include depolarization, amplitude damping, and phase damping [Nielsen and
Chuang 2000].

This model of noise is used by experimental physicists for building and benchmarking quantum
devices in both academia and industry [Terhal 2015]. Noisy information of specific quantum devices
can also be publicly available (e.g., the IBM Q-experience5).

5.2 Syntax

The syntax of a noisy quantum program P̃ is defined as follows

P̃ ::= skip | q := |0⟩ | q :�p,Φ U [q] | P̃1; P̃2 |

caseM[q] =m → P̃m end | whileM[q] = 1 do P̃1 done (5.3)

This syntax is identical to that of the standard quantum while language described in Section 4,
except that we have annotated the unitary application construct with an error probability p and an
error model Φ, which is the superoperator of the noisy operation. The statement q :�p,Φ U [q] will
apply the correct operationU on q with probability 1 − p and will apply the noisy (or erroneous)
operation Φ on q with probability p. The nature of Φ will depend on the underlying hardware, and
is a parameter to our language.

For any noisy program P̃ , its corresponding ideal program can be obtained by simply replacing

any noisy unitary operations by their ideal versions (i.e., we ignore p and Φ). We write ideal(P̃ )
for this program, or simply P when there is no ambiguity.

We remark that noisy unitary operations are already expressive enough to capture many types of
noise. First, any noise can depend on the quantum state of the system by the nature of modeling it
as a quantum operation Φ. Second, noisy initialization can be modeled as initialization followed by
application of a noisy identity operation, and noisy measurement can be modeled as application of
a noisy identity operation followed by measurement. Third, errors that occur between applications
of subsequent unitaries can also be modeled by noisy identity operations.

5.3 Semantics

The operational and denotational semantics of noisy quantum while programs are also identical to
those of the standard quantum while programs, except that the rules related to unitary application
now include an error term, as shown in Figure 3a and Figure 3b. Note that we do not require p
and Φ to be the same in every instance of a unitary application. They may depend on the type
of unitary being applied, or on other features of the program such as the number of operations
performed so far. We use explicit characterizations of the noise given by Φ to enable us to argue
about the effect of error-correcting gadgets explicitly written in the program. If we only considered
error probability (like Carbin et al. [2013]) then we could only reason about error as accumulating
throughout the program, and we would not be able to show that error-correcting gadgets reduce
noise by cancelling previous errors.

Example 5.1 (Beam Splitter Experiment with Errors). Consider the following noisy version of
the beam splitter program.

B̃SE ≡ q1 := |0⟩;q1 :�p,Φ H [q1];q1 :�p,Φ H [q1].

5https://www.research.ibm.com/ibm-q/technology/devices/.
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(Unitary-Noisy) ⟨q :�p,Φ U [q], ρ⟩ → ⟨E, (1 − p)UρU † + p Φ(ρ)⟩

(a)

[[q :�p,Φ U [q]]]ρ = (1 − p)UρU † + p Φ(ρ)

(b)

Fig. 3. (a) Transition rule for noisy unitary application. (b) Denotation of noisy unitary application.

Note that the error probability p and error model Φ are the same in both applications of H . Let

ρ = |1⟩q1⟨1|. Then the evaluation of program P̃ on input ρ proceeds as follows.

⟨B̃SE, ρ⟩ = ⟨q1 := |0⟩;q1 :�p,Φ H [q1];q1 :�p,Φ H [q1], |1⟩q1⟨1|⟩
→ ⟨q1 :�p,Φ H [q1];q1 :�p,Φ H [q1], |0⟩q1⟨0|⟩
→ ⟨q1 :�p,Φ H [q1], (1 − p) |+⟩q1⟨+| + pΦ( |0⟩q1⟨0|)⟩
→ ⟨E, (1 − p)2 |0⟩q1⟨0| + p (1 − p)HΦ( |0⟩q1⟨0|)H + pΦ(ρ1)⟩

where ρ1 = (1 − p) |+⟩q1⟨+| + pΦ( |0⟩q1⟨0|). Here, the desired output state |0⟩q1⟨0| is in superposition
with error terms HΦ( |0⟩q1⟨0|)H and Φ(ρ1). This means that not all of the photons will necessarily
remain on the ‘0’ path. Some may end up on the ‘1’ path.

As an example, consider the case where the error probability p is 0.1 and the error model is defined
by Φ(ρ) = XρX . This means that with probability 0.1, an X gate is applied instead of an H gate. With
this model, the final state of the system will be 0.91|0⟩q1⟨0| + 0.09|1⟩q1⟨1|. So there is a 9% chance that
a photon will end up on the ‘1’ path.

6 QUANTUM ROBUSTNESS

This section defines a notion of quantum robustness, which bounds the distance between the output
of a noisy execution of a program and the ideal (noise-free) execution of the same program. We
first introduce distance measures in quantum information, and then present the semantic definition
of robustness and define a logic for reasoning about it, which we prove sound.

6.1 Distance Measures ofQuantum States and Superoperators

In the context of computation with noise, we wish to measure the distance between the ideal state
and the state influenced by noise. In classical probabilistic computation, the output can be described
as a probability distribution over all possible outputs. A common measure is the total variation
distance of two distributions p,q, defined by |p − q | = 1/2

∑
x |p (x ) − q(x ) |.

In quantum computation, we define the trace distance as the quantum generalization of the total
variation distance. For Hermitian operator A, let the trace norm ∥A∥1 be the summation of the
absolute value of all its eigenvalues. When A is positive semidefinite, one has ∥A∥1 = tr(A). It is
worth noting that for any operators A and B the following triangle inequality holds:

∥A + B∥1 ≤ ∥A∥1 + ∥B∥1. (6.1)

For two states ρ1, ρ2 ∈ D (H ), the trace distance between ρ1 and ρ2, denoted T(ρ1, ρ2), is defined
to be 1

2 ∥ρ1 − ρ2∥1. It can be shown that the trace distance satisfies

T(ρ1, ρ2) ≡
1

2
∥ρ1 − ρ2∥1 = max

0⊑P ⊑I
tr(P (ρ1 − ρ2)), (6.2)
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where the maximization is over all possible measurements P (i.e., 0 ⊑ P ⊑ I ). By definition,
0 ≤ T(ρ, σ ) ≤ 1 for any pair of states ρ,σ . One can also interpret the trace distance as the
advantage with which one can distinguish two states ρ and σ . For example, the states |0⟩⟨0| and
|1⟩⟨1| are perfectly distinguishable by measurement {|0⟩⟨0|, |1⟩⟨1|}, so T( |0⟩⟨0|, |1⟩⟨1|) = 1.
One can further define the distance between two different superoperators. For any two super-

operators E and E ′ overH , an intuitive way to define their distance is to find the input state to
both superoperators that maximizes the trace distance of their output states. However, it turns out
that this definition alone is insufficient to capture the distance between superoperators because of
a unique quantum feature called entanglement. The distinguishability between E and E ′ can be
significantly enlarged 6 when one introduces an auxiliary Hilbert space A and tries to distinguish
E ⊗ IA and E ′ ⊗ IA with some entangled input state overH ⊗ A [Gilchrist et al. 2005].
To account for this, we define the diamond norm between two superoperators E, E ′ as

∥E − E ′∥⋄ ≡ max
ρ ∈D (H ⊗A) : tr(ρ )=1

T(E ⊗ IA (ρ), E ′ ⊗ IA (ρ)) (6.3)

for any auxiliary space A. Without loss of generality, one can assume A is a copy of H , i.e.,
A = H [Watrous 2018]. Given the representations of E, E ′, one can efficiently calculate the
diamond norm ∥E − E ′∥⋄ by a semidefinite program (SDP) [Watrous 2009].
Imagine superoperators that represent different components of a (noisy or ideal) quantum

program, which may act on different parts of the quantum system. The diamond norm will allow
us to address potential entanglement between different parts of the state and ensure that we can
compose the distances computed from different components of the program.

6.2 Definition ofQuantum Robustness

To capture how noise (error) impacts the execution of quantum program P̃ , we want to compare

[[P̃]] and [[P]], which are superoperators representing the execution of quantum program P with
and without noise respectively. A natural candidate is to use the aforementioned diamond norm to

measure the distance between [[P̃]] and [[P]]. To account for prior knowledge of the input state, we
extend the definition of the diamond norm to consider only input states that satisfy predicate Q to
degree at least λ. More explicitly, we have

Definition 6.1 ((Q, λ)-diamond norm). Given superoperators E, E ′, quantum predicate Q over
H , and 0 ≤ λ ≤ 1, the (Q, λ)-diamond norm between E and E ′, denoted ∥E − E ′∥Q,λ , is defined by

∥E − E ′∥Q,λ ≡ max
ρ ∈D (H ⊗A) : tr(ρ )=1, tr(Qρ )≥λ

T(E ⊗ IA (ρ), E ′ ⊗ IA (ρ)), (6.4)

where A is any auxiliary space.

We remark thatA can be assumed to beH without loss of generality due to a similar reason for
the original diamond norm (see, for example, Watrous [2018, Chap 3]).

We argue that (Q, λ)-diamond norm is a seminorm in the appendix of the extended version [Hung
et al. 2018]. Intuitively, this is conceivable since we only restrict the input state from all density
operators to a convex subset satisfying tr(Qρ) ≥ λ. Note that, by definition, ∥·∥⋄ ≡ ∥·∥I,λ for any
0 ≤ λ ≤ 1.

6For example, consider a 2-dimensional Hilbert space H = C
2 and two superoperators E, E′ over H with E (ρ ) =

1
3 tr(ρ )IH +

1
3 ρ

T and E′(ρ ) = tr(ρ )IH − ρT , where ρT is the transpose of ρ . Without introducing an auxiliary space,

direct calculation gives T(E (ρ ), E′(ρ )) = 1
3 ∥I − 2ρ ∥1 ≤

2
3 for any single qubit state ρ . However, if we use an auxiliary

qubit and apply E to the maximally entangled state |ϕ+⟩ = 1√
2
( |00⟩ + |11⟩), we have T(E ( |ϕ+⟩⟨ϕ+ |), E′( |ϕ+⟩⟨ϕ+ |)) = 1.
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Let E and E ′ be superoperators overH . By extending Watrous [2009], we show that ∥E −E ′∥Q,λ
can be efficiently computed by the following semidefinite program (SDP):

max tr(J (Φ)W ) (6.5)

s.t. W ≤ IH ⊗ ρ, tr(Qρ) ≥ λ, (6.6)

ρ ∈ D (H ), W is a positive semidefinite operator overH ⊗ H , (6.7)

where Φ = E − E ′ and J (Φ) is the Choi-Jamiolkowski representation of Φ. Note that the above SDP
is identical to the SDP used in Watrous [2009, Section 4] to compute ∥E − E ′∥⋄, except that we
have added the additional constraint tr(Qρ) ≥ λ to capture the requirement on input states. The
correctness of the above SDP then basically follows from the analysis of Watrous [2009] and the
definition of (Q, λ)-diamond norm.

The standard diamond norm and (Q, λ)-diamond norm can be significantly different for the same
pair of superoperators E, E ′. For example, consider E = H ◦ H and E ′ = HZ ◦ ZH . We can show 7

that ∥E − E ′∥⋄ = 1, whereas ∥E − E ′∥ |0⟩⟨0 |, 34 =
√
3/2. Thus, the (Q, λ)-diamond norm can help us

leverage prior knowledge about input states to obtain more accurate bounds.
Using the (Q, λ)-diamond norm, we define a notion of quantum robustness as follows.

Definition 6.2 (Quantum Robustness). The noisy program P̃ (overH , having ideal program

P = ideal(P̃ )) is ϵ-robust under (Q, λ) if and only if

∥[[P̃]] − [[P]]∥Q,λ ≤ ϵ . (6.8)

Here, Q is a quantum predicate overH and 0 ≤ λ, ϵ ≤ 1.
By the definition of the (Q, λ)-diamond norm and the trace distance, (6.8) can be equivalently stated

as the following.

∀ρ ∈ D (H ⊗ H ), tr(Qρ) ≥ λtr(ρ) ⇒ 1

2
∥[[P̃]] ⊗ IH (ρ) − [[P]] ⊗ IH (ρ)∥1 ≤ ϵtr(ρ). (6.9)

Since ϵ measures the distance between [[P̃]] and [[P]], the smaller ϵ is, the closer the noisy program

P̃ is to the ideal program P . One could think of ϵ as measuring both the probability that noise can

happen and intensity of that noise. When the noise is strong, a noisy program P̃ being ϵ-robust
implies that the probability of noise is at most ϵ . When the noise is weak, it could occur with greater
probability, but its effect will be much smaller.

Intuitively, the use of preconditionQ can help us obtain more accurate bounds. For example, one
can use Q to characterize prior information about the input state due to the nature of underlying
physical systems. Even without any prior knowledge about the input state, preconditions can still
be leveraged for different branches of the program in case statements and loops.

6.3 Logic forQuantum Robustness

A program’s robustness can be proved by working out the (denotational) semantics of programs

P and P̃ and applying Definition 6.2 directly. However, this computation may be difficult. As an

7For the normal diamond norm, consider the input state to be ρ = |+⟩⟨+ | ⊗ σ for some ancilla state σ . It is easy to see

that E (ρ ) = |0⟩ and E′(ρ ) = |1⟩, which are perfectly distinguishable. For the ( |0⟩⟨0 |, 3
4 )-diamond norm, without loss of

generality, consider any input state |ψ ⟩ = cos θ |0⟩ |ψ0⟩ + sin θ |1⟩ |ψ1⟩ where θ ∈ [0, π2 ]. Requiring |ψ ⟩ to satisfy |0⟩⟨0 | to
degree at least 3

4 , we have cos
2 θ ≥ 3

4 and therefore θ ∈ [0,
π
6 ]. Simple calculation givesH |ψ ⟩ = cos θ |+⟩ |ψ0⟩+sin θ |−⟩ |ψ1⟩

and HZ |ψ ⟩ = cos θ |+⟩ |ψ0⟩ − sin θ |−⟩ |ψ1⟩. The projector that maximally distinguishes these states is |0⟩⟨0 | ⊗ I , so we have

∥E − E′ ∥|0⟩⟨0|,3/4 =
1

2

(
(cos θ + sin θ )2 − (cos θ − sin θ )2

)
= sin 2θ ≤

√
3

2
,

the equality of which holds when θ = π /6.
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(Q, λ) ⊢ skip ≤ 0
(Skip)

(Q, λ) ⊢ (q := |0⟩) ≤ 0
(Init)

∥U ◦U † − Φ∥Q,λ ≤ ϵ
(Q, λ) ⊢ (q :�p,Φ U [q]) ≤ pϵ (Unitary)

(Q ′, λ′) ⊢ P̃ ≤ ϵ ′ ϵ ′ ≤ ϵ Q ⊑ Q ′ λ′ ≤ λ
(Q, λ) ⊢ P̃ ≤ ϵ

(Weaken)

(Q/δ , λ/δ ) ⊢ P̃ ≤ ϵ 0 ⊑ Q,Q/δ ⊑ I 0 ≤ λ, λ/δ ≤ 1

(Q, λ) ⊢ P̃ ≤ ϵ
(Rescale)

(Q1, λ) ⊢ P̃1 ≤ ϵ1 (Q2, λ) ⊢ P̃2 ≤ ϵ2 {Q1}P1{Q2}
(Q1, λ) ⊢ (P̃1; P̃2) ≤ ϵ1 + ϵ2

(Sequence)

∀m, (Qm , 1 − δ ) ⊢ P̃m ≤ ϵ t ,δ ∈ [0, 1]

(
∑
m M†mQmMm , 1 − tδ ) ⊢ (caseM[q] =m → P̃m end) ≤ (1 − t )ϵ + t

(Case)

(Q, λ) ⊢ P̃1 ≤ ϵ {Q }P1{λM†0M0 +M
†
1QM1}

P̃ ≡ whileM[q̄] = 1 do P̃1 done P is (a,n)-bounded

(λM†0M0 +M
†
1QM1, λ) ⊢ P̃ ≤ nϵ/(1 − a)

(While-Bounded)

(Q, λ) ⊢ (whileM[q̄] = 1 do P̃1 done) ≤ 1
(While-Unbounded)

Fig. 4. Rules for logic of quantum robustness.

alternative, we present a logic for proving judgments of the form (Q, λ) ⊢ P̃ ≤ ϵ , meaning that

program P̃ is ϵ-robust under (Q, λ). In Section 6.4 we prove the logic is sound. In Section 7 we
demonstrate the use of the logic, alongside direct proofs of robustness for some cases (e.g., error
correction).
The rules for our logic are given in Figure 4.

6.3.1 Simple Rules. The Skip and Init rules say that the skip and initialization operations are always

error-free. These operations will not increase the distance between [[P]] and [[P̃]]. The Unitary rule
says that if we can bound the (Q, λ)-diamond norm between the intended operation U and the
noise operation Φ by ϵ , then we can bound the total distance by pϵ . The Weaken rule says that we
can always safely make the precondition more restrictive, increase the degree to which an input
state must satisfy the predicate, or increase the upper bound on the distance between the noisy
and ideal programs. The Rescale rule says that equivalent forms of our judgment can be obtained
by rescaling Q and λ. Note that the Rescale rule does not weaken the judgment, but rather provides
some flexibility in choosing Q, λ compatible with other rules; one can scale by δ so long as Q/δ
and λ/δ are still well defined. The Sequence rule allows us to compose two judgments by summing
their computed upper bounds. Note that in the Sequence and While-Bounded rules we define Hoare
triples as in Section 4.4.

6.3.2 The Case Rule. The Case rule says that, given appropriate bounds for every branch of a

case statement, we can bound the error of the entire case statement. Note that
∑
m M†mQmMm is

the weakest precondition of the case construct in quantum Hoare logic [Ying 2016]. In a logic for
classical programs, one might expect each branch of a case statement to satisfy the precondition
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perfectly. However, in a quantum logic, as we will discuss in the soundess proof (see Section 6.4),
this is not necessarily true. To see this, note that in our rule we start with the precondition∑
m M†mQmMm and λ = 1 − tδ on the input state to the case statement, but we can only guarantee

that a weighted fraction of 1 − t of the branches satisfy a weaker precondition Qm and λ′ = 1 − δ
for some choice of t ∈ [0, 1]. (Note that 1 − δ ≤ 1 − tδ for t ,δ ∈ [0, 1].)

When applying this rule, one can make 1−δ and ϵ the same for every P̃m by applying theWeaken
and/or Rescale rules. The choice of t will represent a tradeoff between a lower error bound and a
more restrictive requirement on the satisfaction of the predicate (see Example 6.2).

Example 6.1 (Simple case statement). Consider the following program.

P̃ ≡ caseM[q] = 0→ q :�p,Φ H [q]

1→ skip

end

This program performs measurement in the {|0⟩, |1⟩} basis and either applies a noisy Hadamard H
gate or does nothing depending on the measurement outcome. In order to apply the Case rule, we
must bound the error of both branches. By the Skip rule, the second branch will have zero error, i.e.,
(Q, λ) ⊢ skip ≤ 0 for any Q and λ. We will choose Q = I and λ = 1. By the Unitary rule, the error of
the first branch will depend on Φ.

Consider an error model given by Φ(ρ) = HZρZH . This means that with probability 1 − p, q :�p,Φ
H [q] applies an H gate, and with probability p it applies a Z gate followed by an H gate. Recall that
Z |0⟩⟨0|Z = |0⟩⟨0|. This means that a Z error will not affect the state in the first branch (because the
first branch corresponds to having measured a 0). So we have that ( |0⟩⟨0|, 1) ⊢ (q :�p,Φ H [q]) ≤ 0,
which says that if the input state is the |0⟩ state, then with the error model defined, there will be no
error during an application of H (i.e. ϵ = 0). Note that without the precondition |0⟩⟨0|, we would have
ϵ > 0.

Given ( |0⟩⟨0|, 1) ⊢ (q :�p,Φ H [q]) ≤ 0 and (I , 1) ⊢ skip ≤ 0, we can conclude that (I , 1) ⊢ P̃ ≤ t by
the Case rule with the following simplification,

M†0Q0M0 +M
†
1Q1M1 = |0⟩⟨0| |0⟩⟨0| |0⟩⟨0| + |1⟩⟨1|I |1⟩⟨1| = |0⟩⟨0| + |1⟩⟨1| = I .

Because δ = 0, we can choose t = 0 to get an overall error bound of zero. However, in general, the
choice of t will represent a tradeoff between a lower error bound and a more restrictive requirement on
the satisfaction of the predicate (i.e. a larger λ value).

Note that the precondition for each branch does not need to directly relate to the measurement
basis. For example, consider instead the following program.

caseM[q] = +→ q :�p,Φ H [q]

− → skip

end

This program performs measurement in the {|+⟩, |−⟩} basis. For this program, we can still use the
judgments ( |0⟩⟨0|, 1) ⊢ (q :�p,Φ H [q]) ≤ 0 and (I , 1) ⊢ skip ≤ 0 described in the previous example,

but now our conclusion will be ( 12 |+⟩⟨+| + |−⟩⟨−|, 1) ⊢ P̃ ≤ t , by the following simplification,

M†0Q0M0 +M
†
1Q1M1 = |+⟩⟨+| |0⟩⟨0| |+⟩⟨+| + |−⟩⟨−|I |−⟩⟨−| =

1

2
|+⟩⟨+| + |−⟩⟨−|.

Note that 1
2 |+⟩⟨+| + |−⟩⟨−| ⊑ I , so we have restricted the set of states for which this error bound

will hold. This may be useful in situations where it is difficult to compute an error bound given
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certain preconditions. For example, it may be difficult to show that ( |+⟩⟨+|, 1) ⊢ (q :�p,Φ H [q]) ≤ ϵ
for a sufficiently low ϵ , but it is easy to show that ( |0⟩⟨0|, 1) ⊢ (q :�p,Φ H [q]) ≤ 0.

Example 6.2 (t-value tradeoffs). Consider the following program.

P̃ ≡ caseM[q] = 0→ P̃0

1→ P̃1

end

Say that we have that (Q0, 1 − 0.05) ⊢ P̃0 ≤ 0.01 and (Q1, 1 − 0.25) ⊢ P̃1 ≤ 0.1 for programs P̃0 and

P̃1. Now we can use the Case rule to conclude that (M†0Q0M0 +M
†
1Q1M1, 1 − tδ ) ⊢ P̃ ≤ (1 − t )ϵ + t

for δ = min(0.05, 0.25) = 0.05, ϵ = max(0.01, 0.1) = 0.1, and t ∈ [0, 1].
If we choose t = 0 then we have the lowest possible error bound, but 1− tδ = 1, so the produced error

bound will only apply to states that completely satisfy the predicateM†0Q0M0 +M
†
1Q1M1.

8 If we choose
t = 1 then we have the least restrictive condition on input states, but (1 − t )ϵ + t = 1, which is the
trivial error bound. By choosing t to be between 0 and 1 we can trade between a low error bound and a
less restrictive constraint on the input state. For example, for t = 0.25 we have that 1 − tδ = 0.9875
and (1 − t )ϵ + t = 0.325. For t = 0.5 we have that 1 − tδ = 0.975 and (1 − t )ϵ + t = 0.55.

6.3.3 The Loop Rule. Finally, the While-Bounded and While-Unbounded rules allow us to compute
an upper bound for the distance between the noisy and ideal versions of a while loop. TheWhile-
Unbounded rule is a trivial bound on the distance. The While-Bounded rule, however, demonstrates
a non-trivial upper bound with an assumption called (a,n)-boundedness. Such an assumption is
necessary for us to get around the potential issue of termination and to be able to reason about
interesting programs in our case study.

Intuitively, (a,n)-boundedness is a condition on how fast the ideal loop will converge, which is
inherent to the control flow of the program and does not depend on any specific error model. We
view this as an advantage as we do not need a new analysis for every possible noise model.

Definition 6.3 ((a,n)-boundedness). A while loop P ≡ whileM[q] = 1 do P1 done is said to be
(a,n)-bounded for 0 ≤ a < 1 and integer n ≥ 1 if

(E∗)n (M†1M1) ⊑ aM†1M1 (6.10)

where the linear map E (ρ) is defined as [[P1]](M1ρM
†
1 ) and E∗ is the dual map of E.9

Intuitively speaking, a loop is (a,n)-bounded if, for every state ρ, aftern iterations it is guaranteed
that at least a (1 − a)-fraction of the state has exited the loop. A while loop with this nice property
is guaranteed to terminate with probability 1 on all input states, which helps avoid the termination
issue. As we will show in the examples that follow and in Section 7, specific (a,n) can be derived
analytically or numerically for concrete programs.10 We also remark that by assuming (a,n)-
boundedness, we avoid weakening λ like in the Case rule.
In Carbin et al. [2013], loops are assumed to have a bounded number of iterations or a trivial

upper bound will be used (i.e, our ruleWhile-Unbounded). Because of the use of (a,n)-boundedness,
we can handle more complicated loops. One also has the freedom to choose appropriate values
of Q for different purposes. A simple choice is Q = λI . A less trivial choice of Q is shown in the
following example.

8This might even be impossible when M†0Q0M0 +M
†
1Q1M1 ⊏ I . In that case, the choice t = 0 becomes useless.

9If [[P1]] can be written as
∑
k Fk ◦ F †k for some set of Kraus operators {Fk }k , the Kraus form of E∗ is ∑k M†1 F

†
k
◦ FkM1.

10The rough idea is to guess (or enumerate) n and prove a either analytically or numerically (with a simple SDP).
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Example 6.3 (Slow state preparation). In this example, we consider the following program
which prepares the standard basis state |1⟩:

SSP ≡ q := |0⟩;whileM[q] = 0 do q := H [q];q := I [q] done, (6.11)

whereM is the standard basis measurement {|0⟩⟨0|, |1⟩⟨1|}. We consider the case where there is a bit
flip error with probability 0.01 when applying the I gate, i.e., the ideal and the noisy loop bodies are

P1 ≡ q := H [q];q := I [q]; and P̃1 ≡ q := H [q];q :�0.01,X I [q]. Then [[P1]] = H ◦ H and [[P̃1]] =

0.99H ◦H +0.01XH ◦HX . ConsiderQ = |0⟩⟨0| and λ = 1. Since [[P1]]( |0⟩⟨0|) = [[P̃1]]( |0⟩⟨0|) = |+⟩⟨+|,
we have that ∥[[P1]] − [[P̃1]]∥ |0⟩⟨0 |,1 = 0, and by the Unitary rule, ( |0⟩⟨0|, 1) ⊢ P̃1 ≤ 0.
We can use this choice of Q and λ when applying the While-Bounded rule. First, note that the

statement {Q }P1{λM†0M0+M1QM
†
1 } holds because λM

†
0M0+M1QM

†
1 = I for our choice ofM0,M1,Q, λ.

Next, we need to show (a,n)-boundedness of the loop. This requires us to consider the behavior of E∗
where E∗ is the dual of E = HM1 ◦M1H . We claim that the while loop is (1/2, 1)-bounded because

E∗ (M†1M1) = |0⟩⟨0|H |0⟩⟨0|H |0⟩⟨0| =
1

2
|0⟩⟨0| = 1

2
M†1M1.

Now by the While-Bounded rule, we have that (I , 1) ⊢ S̃SP ≤ 0, i.e., the program is perfectly robust.

In Example 6.3, if we use the precondition I in our judgment of the robustness of the loop

body, the best upper bound we can argue is ϵ = 0.01, i.e., (I , 1) ⊢ P̃1 ≤ 0.01. Then, applying the

While-Bounded rule yields (I , 1) ⊢ S̃SP ≤ 0.02 since nϵ
1−a = 2ϵ = 0.02. Therefore, restricting the

state space with the predicateQ = |0⟩⟨0|, as we did in Example 6.3, was a better choice, as it yielded
a better bound. Moreover, this choice of Q is natural since the post-measurement state entering
the loop satisfies Q perfectly. We note that the program SSP might look contrived for preparing
|1⟩ when compared to the more straightforward program SP ≡ q := |0⟩;q := X [q]. We argue that
SSP might be preferred over SP in the presence of noise. Consider the same noise model as above.

Namely, let S̃P ≡ q := |0⟩;q := X [q];q :�0.01,X I [q].We have shown that (I , 1) ⊢ S̃SP ≤ 0 given this

noise model, which says that S̃SP is perfectly robust. By directly applying Definition 6.2, we can

show that S̃P is 0.01-robust given the same noise model,11 which suggests that S̃P is less desirable
in this situation.

6.4 Soundness

In this section, we show that logic given in Figure 4 is sound.

Theorem 6.4 (Soundness). If (Q, λ) ⊢ P̃ ≤ ϵ then P̃ is ϵ-robust under (Q, λ).

Proof. The proof proceeds by induction on the derivation (Q, λ) ⊢ P̃ ≤ ϵ . We will work primarily

from definition of robustness given in (6.9). We note that superoperators [[P̃]] and [[P]] apply on

the same space. By the definition of the (Q, λ)-diamond norm, we need to consider [[P̃]] ⊗ I and
[[P]] ⊗ I . However, to simplify the presentation, we will omit ł⊗Iž in the following proof whenever
there is no ambiguity.
Now we consider each possible rule used in the final step of the derivation.

(1) Skip: This rule holds by observing [[s̃kip]] = [[skip]], i.e., they refer to the same superoperator.
Thus, any (Q, λ)-diamond norm between them is 0. We choose Q = I and λ = 0.

(2) Init: for the same reason as the proof for Skip.

11 Note that [[S̃P ]] = 0.99X ◦ X + 0.01I ◦ I , and hence we have ∥[[SP ]] − [[S̃P ]]∥I ,1 = 0.01∥X ◦ X − I ◦ I ∥I ,1 = 0.01.
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(3) Unitary: For every state ρ satisfying tr(Qρ) ≥ λ,
1

2
∥[[q̄ :�p,Φ U [q̄]]]ρ − [[q̄ := U [q̄]]]ρ∥1 =

1

2
∥
(
(1 − p)UρU † + pΦ(ρ)

)
−UρU †∥1

=

p

2
∥UρU † − Φ(ρ)∥1 ≤ p∥U ·U † − Φ∥Q,λ ≤ pϵ .

The second from last inequality holds by the definition of the (Q, λ)-diamond norm and the
last inequality follows from the premise.

(4) Weaken: By induction, the premise (Q ′, λ′) ⊢ P̃ ≤ ϵ ′ implies

∀ρ, tr(Q ′ρ) ≥ λ′tr(ρ) ⇒ 1

2
∥[[P̃]]ρ − [[P]]ρ∥1 ≤ ϵ ′tr(ρ).

For any density matrix ρ, constants 0 ≤ λ′ ≤ λ ≤ 1, and predicates Q ⊑ Q ′, tr(Qρ) ≥ λtr(ρ)
implies that tr(Q ′ρ) ≥ λ′tr(ρ). And for 0 ≤ ϵ ′ ≤ ϵ ≤ 1, 1

2 ∥[[P̃]]ρ − [[P]]ρ∥1 ≤ ϵ ′tr(ρ) implies

that 1
2 ∥[[P̃]]ρ − [[P]]ρ∥1 ≤ ϵtr(ρ). Therefore, we have that

∀ρ, tr(Qρ) ≥ λtr(ρ) ⇒ 1

2
∥[[P̃]]ρ − [[P]]ρ∥1 ≤ ϵtr(ρ).

So P̃ is ϵ-robust under (Q, λ).
(5) Rescale: This rule follows by observing that the condition tr(ρQ ) ≥ λ is equivalent to the

condition tr(ρQ/δ ) ≥ λ/δ for δ > 0. We only require that Q,Q/δ and λ, λ/δ are well defined,
namely, 0 ⊑ Q,Q/δ ⊑ I and 0 ≤ λ, λ/δ ≤ 1.

(6) Sequence: For every state ρ,

∥[[P̃1; P̃2]]ρ − [[P1; P2]]ρ∥1 = ∥[[P̃2]][[P̃1]]ρ − [[P2]][[P1]]ρ∥1
≤ ∥[[P̃2]][[P̃1]]ρ − [[P̃2]][[P1]]ρ∥1 + ∥[[P̃2]][[P1]]ρ − [[P2]][[P1]]ρ∥1
≤ ∥[[P̃1]]ρ − [[P1]]ρ∥1 + ∥[[P̃2]][[P1]]ρ − [[P2]][[P1]]ρ∥1.

The inequality ∥[[P̃2]][[P̃1]]ρ − [[P̃2]][[P1]]ρ∥1 ≤ ∥[[P̃1]]ρ − [[P1]]ρ∥1 follows because quantum
superoperators are contractive.

Now assume that tr(Q1ρ) ≥ λtr(ρ). By induction, the premise (Q1, λ) ⊢ P̃1 ≤ ϵ1 implies that
1
2 ∥[[P̃1]]ρ − [[P1]]ρ∥1 ≤ ϵ1tr(ρ). Also, by the premise {Q1}P1{Q2}, we have that tr(Q2[[P1]]ρ) ≥
tr(Q1ρ) ≥ λtr(ρ) ≥ λtr([[P1]]ρ). Now we can use our induction hypothesis and the premise

(Q2, λ) ⊢ P̃2 ≤ ϵ2 to conclude 1
2 ∥[[P̃2]][[P1]]ρ − [[P2]][[P1]]ρ∥1 ≤ ϵ2tr([[P1]]ρ). So, finally, we

have that
1

2
∥[[P̃1; P̃2]]ρ − [[P1; P2]]ρ∥1 ≤ ϵ1tr(ρ) + ϵ2tr([[P1]]ρ) ≤ (ϵ1 + ϵ2)tr(ρ).

(7) Case: Let P̃ = case M[q] = m → P̃m end. Assume the input state ρ to the case statement

satisfies
∑
m M†mQmMm to degree λ′, i.e.,

∑
m tr(M†mQmMmρ) ≥ λ′tr(ρ). To leverage the

premise (Qm , λ) ⊢ P̃m ≤ ϵ and the induction hypothesis to conclude that 1
2 ∥[[P̃m]]ρ −

[[Pm]]ρ∥1 ≤ ϵtr(ρ), one must show the precondition (Qm , λ) holds for state ρ entering branch

m. A naive approach is to show that tr(M†mQmMmρ) ≥ λtr(M†mMmρ) holds for every branchm,

which implies that tr(QmMmρM
†
m ) ≥ λtr(MmρM

†
m ) whereMmρM

†
m is the (sub-normalized)

post-measurement state entering branchm. We argue that this is in general impossible when
λ′ = λ. For instance, consider a collection of projective measurement operators {Mm }m . If
there exists a branch i and a state ρ supported on Mi such that tr(M†i QiMiρ) ≥ λtr(ρ) for
some λ > 0, obviously

∑
m M†mQmMmρ ≥ λtr(ρ), but none of the preconditions is satisfied

except for the one for branch i since tr(M†jQ jMjρ) = 0 for each j , i .
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Instead, we show that for a majority of the clauses tr(M†mQmMmρ) ≥ λtr(M†mMmρ) holds

for some λ strictly less than λ′. To that end, let pm = tr(M†mMmρ) and qm = tr(M†mQmMmρ).
Define δm to be such that qm = (1 − δm )pm . Note that 0 ≤ δm ≤ 1 because 0 ≤ qm ≤ pm
for everym. Without loss of generality we assume tr(ρ) = 1. Let S (ρ) denote the collection
of branches such that the precondition (Qm , λ) holds, i.e., S (ρ) = {m : qm ≥ λpm , i.e., δm ≤
1− λ}. We will determine a lower bound for

∑
m∈S (ρ ) pm for each state ρ using a probabilistic

argument.
First, note that {pm } is a probability distribution since

∑
m pm = 1 and pm ≥ 0 for eachm.

Also, since (by our assumption)
∑
m qm ≥ λ′

∑
m pm = λ

′, we have that
∑
m δmpm ≤ (1 − λ′).

Now we can define a random variable ∆ to be such that Pr[∆ = δm] = pm for eachm. The
expected value of ∆ is E[∆] ≤ (1 − λ′), and Markov’s inequality yields

∑

m<S (ρ )

pm = Pr[∆ ≥ 1 − λ] ≤ E[∆]
1 − λ ≤

1 − λ′
1 − λ =: t . (6.12)

This says that a weighted fraction t of the branches will not satisfy the precondition (Qm , λ).
Note that t ∈ [0, 1] since λ ≤ λ′. For m < S (ρ), only the trivial upper bound ϵm = 1 is
guaranteed. Therefore, for each state ρ,

1

2
∥[[P̃]]ρ − [[P]]ρ∥1 =

1

2
∥
∑

m

(
[[P̃m]](MmρM

†
m ) − [[Pm]](MmρM

†
m )
)
∥1 (6.13)

≤ 1

2

∑

m

∥[[P̃m]](MmρM
†
m ) − [[Pm]](MmρM

†
m )∥1 (6.14)

≤
∑

m∈S (ρ )
tr(MmρM

†
m )ϵ +

∑

m<S (ρ )

tr(MmρM
†
m ) (6.15)

≤ (1 − t )ϵ + t = ((1 − t )ϵ + t )tr(ρ). (6.16)

Rewriting λ = 1 − δ for ease of notation, we have λ′ = 1 − tδ . Finally, we note that the
case t = 0 implies that the precondition of each branch is satisfied, and the error of the case
statement can be bounded by ϵ .

(8) While-Bounded: Let P ≡ whileM[q] = 1 do P1 done. Let Sk be the bounded while loop of k

iterations. Define the linear maps E (ρ) := [[P1]](M1ρM
†
1 ) and Ẽ (ρ) := [[P̃1]](M1ρM

†
1 ) and let

[[Sk ]]ρ = M0ρM
†
0 + [[Sk−1]](E (ρ)) for k ≥ 1 (with [[S0]]ρ = ρ). In order to bound the distance

between [[P]] and [[P̃]], we first upper bound the distance between [[Sk ]] and [[S̃k ]] and then
take the limit as k → ∞. We then have

1

2
∥[[S̃k ]]ρ − [[Sk ]]ρ∥1 ≤

1

2
∥[[S̃k−1]](Ẽ (ρ)) − [[Sk−1]](E (ρ))∥1 (6.17)

≤ 1

2
∥Ẽ (ρ) − E (ρ)∥1 +

1

2
∥[[S̃k−1]](E (ρ)) − [[Sk−1]](E (ρ))∥1 (6.18)

≤ 1

2

k−1∑

i=0

∥Ẽ (Ei (ρ)) − Ei+1 (ρ)∥ (6.19)

≤ ϵ
k−1∑

i=0

tr(M†1M1Ei (ρ)) (6.20)

≤ nϵtr(M†1M1ρ)
1 − a ⌈k/n ⌉

1 − a . (6.21)
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The second inequality (6.18) follows from a technique similar to the one used in the proof of

the Sequence rule. We bound the first term in (6.18) by ϵtr(M1ρM
†
1 ) by applying the premise

(Q, λ) ⊢ P1 ≤ ϵ and the induction hypothesis. We will prove the post-measurement state

M1ρM
†
1 indeed satisfies the precondition (Q, λ) later. Similarly, each term in (6.19) is bounded

above by ϵtr(M†1M1Ei (ρ)) and thus the inequality in (6.20) holds.

To establish the inequality in (6.21), let bi := tr(M†1M1Ei (ρ)). Then the sequence {bk }k is
non-negative and non-increasing. We now prove an upper bound of the series. Since P is
(a,n)-bounded, we know that

tr(M†1M1En (σ )) = tr((E∗)n (M†1M1)σ ) ≤ atr(M†1M1σ ), where a < 1 (6.22)

for every state σ , and therefore bi+n ≤ abi for every i . Since bk is non-increasing, we know
that

k−1∑

i=0

bi =

⌈k/n ⌉−1∑

m=0

(bnm + . . . + bnm+n−1) (6.23)

≤ n
⌈k/n ⌉−1∑

m=0

bnm ≤ n
⌈k/n ⌉−1∑

m=0

amb0 =
n(1 − a ⌈k/n ⌉ )b0

1 − a . (6.24)

Thus the inequality in (6.21) holds. Since b0 = tr(M†1M1ρ) ≤ tr(ρ), we have

1

2
∥[[S̃k ]]ρ − [[Sk ]]ρ∥1 ≤

nϵ (1 − a ⌈k/n ⌉ )
1 − a tr(ρ). (6.25)

Taking the limit as k → ∞, we have that a ⌈k/n ⌉ → 0, which shows that 1
2 ∥[[S̃k ]]ρ− [[Sk ]]ρ∥1 ≤

nϵ
1−a tr(ρ), as desired.

In order to apply the premise (Q, λ) ⊢ P1 ≤ ϵ to states of the form M1Ei (ρ)M†1 , we need to

show that tr(QM1Ei (ρ)M†1 ) ≥ λtr(M1Ei (ρ)M†1 ) for each i . We can prove this by induction.

For the base case i = 0, by the precondition (λM†0M0+M
†
1QM1, λ) on the input state to the loop,

we have tr(M†1QM1ρ) ≥ λtr(ρ)−λtr(M†0M0ρ) = λtr(M
†
1M1ρ). Therefore, tr(QM1E0 (ρ)M†1 ) ≥

λtr(M1E0 (ρ)M†1 )
For the inductive step, observe that the Hoare triple {Q }P1{R} yields tr(R[[P1]]σ ) ≥ tr(Qσ )

for R ≡ λM†0M0 +M
†
1QM1 and all states σ . By the induction hypothesis, we have

tr(R[[P1]](M1Ei (ρ)M†1 )) ≥ tr(QM1Ei (ρ)M†1 ) ≥ λtr(M1Ei (ρ)M†1 ) ≥ λtr(E
i+1 (ρ)),

where the last inequality holds because quantum operations are trace-non-increasing (applied

to [[P1]]). Note that [[P1]](M1EiM†1 ) = Ei+1. Now by substituting R, we have

tr(M†1QM1Ei+1 (ρ)) ≥ λtr(Ei+1 (ρ)) − λtr(M†0M0Ei+1 (ρ)) = λtr(M†1M1Ei+1 (ρ)). (6.26)

Or equivalently, tr(QM1Ei+1 (ρ)M†1 ) ≥ λtr(M1Ei+1 (ρ)M†1 ), which concludes the proof.
(9) While-Unbounded: the proof is trivial as we use the trivial upper bound 1.

□

7 CASE STUDIES

In this section, we apply our robustness definition and logic to two example quantum programs:
the quantum Bernoulli factory and the quantum walk. We also demonstrate the (in)effectiveness
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of different error correction schemes on single-qubit errors and analyze the robustness of a fault-
tolerant version of QBF. Some computational details are deferred to appendices in the supplemental
material.

7.1 Quantum Bernoulli Factory

The quantum Bernoulli factory (QBF) [Dale et al. 2015] is the quantum equivalent of the classical
Bernoulli factory problem [Keane and O’Brien 1994]. In the classical Bernoulli factory problem,
given a function f : [0, 1] 7→ [0, 1] and a coin that returns heads with unknown probability p,
the goal is to simulate a new coin that returns head with probability f (p). In QBF, the goal is to
generate the state | f (p)⟩ given a description of f and a quantum coin described by the state

|p⟩ := √p |0⟩ +
√
1 − p |1⟩. (7.1)

QBF is interesting because it can simulate a strictly larger class of functions f than can be
simulated by its classical counterpart. One example of a function that can be simulated by QBF, but
not by the classical Bernoulli factory, is the probability amplification function. The key to simulating

the probability amplification function is producing the state | f (p)⟩ = (2p − 1) |0⟩ + 2
√
p (1 − p) |1⟩.

This state can be prepared by (the ideal version of) the following program [Li and Ying 2018]:

Q̃BF ≡ q1 := |1⟩; q2 := |1⟩;
whileM[q2] = 1 do

q1 := |0⟩; q2 := |0⟩;
q1 :�pV ,ΦV V [q1]; q2 :�pV ,ΦV V [q2];

q1,q2 :�pU ,ΦU U [q1,q2] done,

whereM is the standard basis measurement {|0⟩⟨0|, |1⟩⟨1|}. The unitaryU is defined by

U = |01⟩⟨ϕ+ | + |00⟩⟨ϕ− | + |10⟩⟨ψ+ | + |11⟩⟨ψ− | (7.2)

where |ϕ±⟩ = 1√
2
( |00⟩ ± |11⟩) and |ψ±⟩ = 1√

2
( |01⟩ ± |10⟩). The unitary V :=

[ √
p −√1 − p√

1 − p √
p

]

acting on |0⟩ generates the state |p⟩. We denote the error due to noisy unitary application of V and
U by ϵV = pV ∥ΦV −V ◦V †∥⋄ and ϵU = pU ∥ΦU −U ◦U †∥⋄ respectively. Note that to simplify our
discussion we compute ϵV and ϵU using the trivial precondition (I , 0). Recall that ∥·∥I,0 = ∥·∥⋄.

Now we prove that (I , 0) ⊢ Q̃BF ≤ 4ϵV + 2ϵU . First, by the Sequence and Unitary rules, we bound
the error in the loop body by 2ϵV + ϵU . To show (a,n)-boundedness of the loop, we must consider
the behavior of E∗ where

E∗ = (M1 ◦M†1 )
∗ ◦ [[q1 := |p⟩;q2 := |p⟩]]∗ ◦ [[U [q1,q2]]]

∗. (7.3)

We evaluate E∗ (M†1M1) as follows. Recall thatM1 = I ⊗ |1⟩⟨1|.

M†1M1 = I ⊗ |1⟩⟨1|
[[U [q1,q2]]]

∗

7−−−−−−−−−→ |ϕ+⟩⟨ϕ+ | + |ψ−⟩⟨ψ− |
[[q1:= |p⟩;q2:= |p⟩]]∗7−−−−−−−−−−−−−−→ 1

2
I ⊗ I (7.4)

(M1◦M†1 )∗7−−−−−−−−→ 1

2
M†1M1. (7.5)

This shows that E∗ (M†1M1) =
1
2M
†
1M1. Therefore, the while loop is ( 12 , 1)-bounded. Now we can

use theWhile-Bounded rule to conclude that the error bound for the loop is 2ϵV +ϵU
1− 1

2

= 4ϵV + 2ϵU ,
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and therefore (I , 0) ⊢ (whileM[q2] = 1 do P̃1 done) ≤ 4ϵV + 2ϵU where P̃1 is the body of the loop.
Two additional applications of the Sequence rule conclude the proof.

We can compute ϵV and ϵU by identifying the error probabilities pV ,pU and error models
ΦV ,ΦU , and numerically calculating the diamond norm. For example, consider the case where
the state preparation is ideal, i.e., pV = 0, and noise in the application of U is characterized by
pU = 10−5 and ΦU = (X ◦X+Y ◦Y+Z◦Z+I◦I4 )⊗2, the 4-dimensional depolarizing channel. Then ϵV = 0

and ϵU = pU ∥ΦU − U ◦ U †∥⋄. Applying an SDP solver [da Silva 2015; Watrous 2009] for the
calculation of the diamond norm, we find that ϵU = 1 × 10−5 × 0.9375 = 9.375 × 10−6, and therefore
the error bound of Q̃BF is 1.875 × 10−5. More details can be found in the appendix of the extended
version [Hung et al. 2018].

7.2 Quantum Walk on a Circle

Here we analyze the error of the quantum walk algorithm introduced in Section 4. The noisy
quantum walk on a circle with n points can be written as the following program:

Q̃W n ≡ p := |0⟩; c := |L⟩;whileM[p] = 1 do c :�pH ,ΦH H [c]; c,p :�pS ,ΦS S[c,p] done. (7.6)

Nowwe show that (I , 0) ⊢ Q̃W 6 ≤ 30(ϵH+ϵS ) where ϵH = pH ∥ΦH−H◦H †∥⋄ and ϵS = pS ∥ΦS−S◦
S†∥⋄ are the errors due to noisy application ofH and S respectively. First, by the Sequence andUnitary
rules, we bound the error in the loop body by ϵH +ϵS . Next, we numerically test increasing values of
(a,n) until we find a pair that satisfies (6.10). For this program, we find that the pair ( 56 , 5) satisfies

the inequality, i.e., (E∗)5 (M†1M1) ⊑ 5
6M
†
1M1 where E∗ = (M†1 ◦M1)◦[[c,p := S[c,p]]]∗◦[[c := H [c]]]∗.

This implies that the loop is ( 56 , 5)-bounded. Note that here, unlike in the previous example, we
have computed the (a,n) values numerically. This may be useful in cases where direct deduction of
a and n is difficult. Now we can use theWhile-Bounded rule to conclude that the error bound for the
loop is 5(ϵH+ϵS )

1− 5
6

= 30(ϵH + ϵS ), and therefore (I , 0) ⊢ (while M[p] = 1 do P̃1 done) ≤ 30(ϵH + ϵS )

where P̃1 is the body of the loop. Two additional applications of the Sequence rule conclude the
proof.

As an example, consider the program Q̃W 6 where only the Hadamard gate may be faulty, i.e.,
pS = 0. Say that noisy Hadamard application is characterized by pH = 5 × 10−5 and ΦH (ρ) =
X ◦X+Y ◦Y+Z◦Z+I◦I

4 , the 2-dimensional depolarizing channel. Applying an SDP solver [da Silva 2015;

Watrous 2009, 2013] for the calculation of the diamond norm, we find that ϵH = 5 × 10−5 × 0.75 =
3.75 × 10−5. Therefore the error of Q̃W 6 is 30ϵH = 1.125 × 10−3. More details can be found in the
appendix of the extended version [Hung et al. 2018].

7.3 Error Correction

In this section we use our semantics to show that an error correction scheme that is appropriate for
the error model can reduce noise in a program, while an inappropriate error correction scheme may
do the opposite. We consider three programs: P1, P2, and P3. P1 performs the identity operation, i.e.,

P1 ≡ q := I [q]. The noisy version of P1, P̃1, allows error during the application of I . P2 and P3 are
semantically equivalent to P1 (in the sense that they correspond to the same superoperator12), but
both employ error correction. P2 uses a three-qubit repetition code that can correct a bit flip (X
error) on a single qubit and P3 uses a three-qubit repetition code that can correct a phase flip (Z

12To make this mathematically rigorous, one needs to distinguish between variables and ancillas in the program. The

semantics refers to the superoperator that traces out the ancilla part.
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error) on a single qubit. P2 and P3 both have the following form:

q := ENCODE[q];

q := I [q];

q := CORRECT [q];

q := DECODE[q]

where we use ENCODE as a stand-in for the operations associated with turning the qubit q into
its encoded counterpart q, CORRECT as a stand-in for the operations associated with syndrome
detection and error correction, and DECODE as a stand-in for the operations associated with

converting the encoded qubit q back into q. We use I to represent a fault-tolerant version of the

identity operation. In the noisy programs P̃2 and P̃3, we only allow error during application of I . To
simplify the calculation, we will assume that encoding, decoding, and error correction are all ideal
(i.e. they have an error probability of 0). For a description of ENCODE, CORRECT , and DECODE
see the appendix of the extended version [Hung et al. 2018].

For all three programs, we define the error model acting on a single qubit by Φ(ρ) = XρX . With
this error model, application of an I gate to a qubit will succeed with probability 1 − p, and will
instead become an application of a X gate with probability p. Now we can use our definition of the

denotational semantics from Section 5 to directly compute [[P̃1]], [[P̃2]], and [[P̃3]]. We find that:

[[P̃1]]ρ = (1 − p)I ρI + pXρX (7.7)

[[P̃2]]ρ = ((1 − p)3 + 3p (1 − p)2)I ρI + (3p2 (1 − p) + p3)XρX (7.8)

[[P̃3]]ρ = ((1 − p)3 + 3p2 (1 − p)2)I ρI + (3p (1 − p) + p3)ZρZ (7.9)

Now we can directly compute ∥[[P1]] − [[P̃1]]∥⋄, ∥[[P2]] − [[P̃2]]∥⋄, and ∥[[P3]] − [[P̃3]]∥⋄ to determine
error rates for these programs. We find that:

∥[[P1]] − [[P̃1]]∥⋄ = p (7.10)

∥[[P2]] − [[P̃2]]∥⋄ = 3p2 − 2p3 (7.11)

∥[[P3]] − [[P̃3]]∥⋄ = 3p (1 − p)2 + p3 (7.12)

This allows us to conclude that, under Q = I and λ = 0,

P̃1 is p robust P̃2 is 3p
2 − 2p3 robust P̃3 is 3p (1 − p)2 + p3 robust

Note that for 0 < p < 1
2 , we have that 3p

2 − 2p3 < p and p < 3p (1 − p)2 + p3, which tells us that,
in the presence of X errors, correcting for bit flips will improve the error rate while correcting
for phase flips will make the error rate worse. For computational details see the appendix of the
extended version [Hung et al. 2018].
Here we invoke the semantics of the program to prove quantum robustness by definition. This

is an expensive calculation. However, it is necessary to account for the effect of error correction.
Ideally, we imagine a combination of uses of the semantics and the rules to trade off between the
cost of the calculation and the accuracy of the bounds.
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7.4 Fault-tolerant Quantum Bernoulli Factory

In this section, we consider a fault-tolerant implementation of the quantum Bernoulli factory. The

fault-tolerant QBF , denoted by QBF , can be written as follows.

Q̃BF ≡q1 := |1⟩; q2 := |1⟩;
whileM[q2] = 1 do

q1 := |0⟩; q2 := |0⟩;
q1 := ENCODE[q1]; q2 := ENCODE[q2];

q1 :�1,ΦV V [q1];

q1 := CORRECT [q1];

q2 :�1,ΦV V [q2];

q2 := CORRECT [q2];

q1;q2 :�1,ΦU U [q1,q2];

q1 := CORRECT [q1]; q2 := CORRECT [q2];

q1 := DECODE[q1]; q2 := DECODE[q2]

done

where ENCODE, CORRECT , and DECODE have the same meanings as in the previous section. As

before, we assume that encoding, decoding, and error correction are not affected by noise.V andU
are the fault-tolerant operators that correspond to V andU respectively. We define the error model

associated withV byΦV (ρ) = Φ⊗3
V

(V ρV
†
) whereΦV (ρ) = (1−pV )I ρI+pVXρX . Similarly, we define

the error model associated withU by ΦU (ρ) = Φ⊗6
U

(UρU
†
) where ΦU (ρ) = (1 − pU )I ρI + pUXρX .

Note that because we are using a three-qubit repetition code, V and U will be 3-qubit and 6-qubit
unitaries respectively. These noise models are applied with probability one.
Using the definitions from Section 5 we can show that for i ∈ {1, 2},

[[qi :�1,ΦV V [qi ]; qi := CORRECT [qi ]]]ρ = (1 − qV )V ρV
†
+ qVX

⊗3V ρV
†
X ⊗3, (7.13)

where qV = 3p2V (1 − pV ) + p3V . Note that (7.13) is obtained through a calculation similar to the

one used to compute [[P2]] in Section 7.3. This says applying V followed by error correction is

equivalent to applyingV with probability 1 − qV , and applyingV followed by X ⊗3 with probability

qV . Thus we can use the Unitary rule to compute the error of the noisy application of V followed
by error correction:

ϵV = qV ∥ (X
⊗3 ◦ X ⊗3) ◦ (V ◦V †) − (V ◦V †)∥⋄ = qV ∥ (X ⊗3 ◦ X ⊗3) − (I ◦ I )∥⋄ = qV . (7.14)

The final equality holds because the unitaries are perfectly distinguishable. Note that ∥Φ(U ◦U †) −
U ◦U †∥⋄ = ∥Φ − I ◦ I ∥⋄ holds for any superoperator Φ and unitaryU . Similarly,

[[q1,q2 :�1,ΦU U [q1,q2]; q1 := CORRECT [q1]; q2 := CORRECT [q2]]]ρ (7.15)

= ((1 − qU )I ◦ I + qUX ⊗3 ◦ X ⊗3)⊗2 (UρU
†
), (7.16)
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where qU = 3p2U (1 − pU ) + p3U . Thus, by the Unitary rule, the error of the noisy application of U
followed by error correction is

ϵU = ∥ ((1 − qU )I ◦ I + qUX
⊗3 ◦ X ⊗3)⊗2 − I ◦ I ∥⋄ (7.17)

= ∥q2U (X ⊗6 ◦ X ⊗6) + qU (1 − qU ) (I ⊗3 ⊗ X ⊗3) ◦ (I ⊗3 ⊗ X ⊗3) (7.18)

+ qU (1 − qU ) (X ⊗3 ⊗ I ⊗3) ◦ (X ⊗3 ⊗ I ⊗3) − (2qU − q2U )I ◦ I ∥⋄ (7.19)

= 2qU − q2U . (7.20)

The last equality above can be proved as follows. For ease of notation, we define the superoperator

E (ρ) := 1

2qU − q2U
(q2U (X

⊗6ρX ⊗6) + qU (1 − qU ) (I ⊗3 ⊗ X ⊗3)ρ (I ⊗3 ⊗ X ⊗3) (7.21)

+ qU (1 − qU ) (X ⊗3 ⊗ I ⊗3)ρ (X ⊗3 ⊗ I ⊗3)). (7.22)

The superoperator E is trace-preserving, so ϵU = (2qU −q2U )∥E−I ◦I ∥⋄ ≤ (2qU −q2U ). To show ϵU is

also lower bounded by 2qU −q2U , it suffices to consider the input state ρ = ( |0⟩⟨0|)⊗6 and the projector
Π = I−( |0⟩⟨0|)⊗6. By definition, ϵU = (2qU −q2U )∥E−I◦I ∥⋄ ≥ (2qU −q2U )tr(Π(E (ρ)−ρ)) = 2qU −q2U .

Now using the argument given in Section 7.1, we can show that (I , 0) ⊢ Q̃BF ≤ 4ϵV + 2ϵU . Note
that ENCODE and DECODE do not impact the robustness. Without error correction, as shown in

Section 7.1, (I , 0) ⊢ Q̃BF ≤ 4ϵV + 2ϵU where ϵV = ∥ΦV − I ◦ I ∥⋄ = pV and ϵU = ∥Φ⊗2U − I ◦ I ∥⋄ =
2pU − p2U . In the case where the error rate is constant, i.e., pV = pU = p for some probability p,

(I , 0) ⊢ Q̃BF ≤ O (p) and (I , 0) ⊢ Q̃BF ≤ O (p2). This shows that the error of Q̃BF is suppressed by
a factor of p with a fault-tolerant implementation of the loop body.

Remark 7.1. Throughout our example, we make the assumption that operations like ENCODE,
CORRECT and DECODE are noise-free. In the actual setting of fault-tolerant quantum computation,
they can also contain noise. In order to suppress the error rate, one may need to use the construction of
fault-tolerant gadgets in the proof of the threshold theorem [Aharonov and Ben-Or 1997]. We remark
that the assumption we made is just to simplify the example and ease presentation. It would in fact
be possible to prove a threshold theorem in our formalism without this assumption, although the
calculation could be much more complicated. It is an interesting open question to see whether one can
simplify this calculation by adding more rules to our logic.

8 CONCLUSIONS AND FUTURE WORK

We have presented a semantics for describing quantum computation with errors and an analysis
that bounds the distance between the result of a noisy program and its corresponding ideal program
on the same input. We used our analysis to compute error bounds for noisy versions of the quantum
Bernoulli factory and quantum walk programs. We also showed how our analysis can be used to
compute the error bounds for small circuits with and without error correction, showing examples
of when using error correction is beneficial and when there are tradeoffs between the efficiency of
error corrections and related costs.

A natural next step for our work is to encode the rules from Section 6.3 in a proof assistant so that
they can be applied in an automated fashion. We have shown that the (Q, λ)-diamond norm can be
computed by an SDP, and the (a,n) values for loop boundedness can be computed analytically or
numerically, so implementing our rules is feasible. Given an implementation, we are interested how
our analysis may be used to construct circuits with lower error rates. This application is inspired
by work by Misailovic et al. [2014], which uses classical reliability analysis to determine which
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operations can be replaced by their noisy counterparts. It could hence be used to inform decisions
about which implementations of quantum algorithms are practical for near-term use.
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