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Abstract— Network virtualization is an inherent component 
of future internets. Network resources are virtualized and 
provisioned to users on demand. The virtual network 
embedding entails two processes: node mapping and link 
mapping. However, efficient and practical solutions to the link 
mapping problem in software-defined networks (SDN) and data 
centers are still lacking. This paper proposes a solution to the 
link mapping process that can dynamically interact with the 
routing protocols of the substrate network to allocate virtual 
link requests to the underlying substrate links and satisfies 
optimizing cost, minimizing energy consumption, and avoiding 
congestion (CEVNE LiM) concurrently. CEVNE LiM is 
realized as a composite application on top of the SDN controller 
running the Segment Routing (SR) application. The 
performance of the CEVNE LiM algorithm is compared with 
the k-shortest path (link mapping) algorithm and shows its 
superior performance in terms of the overall runtime, the 
average path length, the average node stress, the average link 
stress and the overall energy consumption. 

Keywords—virtual link embedding, SDN application, cost 
saving, energy saving, congestion avoidance, segment routing 

I. INTRODUCTION 
Network virtualization is considered the future of the 
Internet. Originally it was conceived for evaluating new 
network protocols in the research-lab testbeds such as G-Labs 
[1] or 4WARD [2]. Recently, it has become an integral part 
of cloud data centers and telecommunication infrastructures. 
The main challenge in the network virtualization is the 
optimal allocation of the substrate resources to the on-
demand virtual networks, and it is called the virtual network 
embedding (VNE) challenge. The VNE objectives are often 
to minimize the costs, maximize the revenues, optimize the 
network performance (delays, bandwidths, throughputs, 
QoS), and minimize the energy consumption. 
The VNE resource allocation problem necessitates two 
processes: node mapping and link mapping. The node 
mapping process maps virtual nodes onto substrate nodes that 
satisfy the virtual nodes’ resource demands. The link 
mapping process maps virtual links between virtual nodes 
onto substrate links connecting the embedded substrate 
nodes. In the traditional VNEs, the link mapping process is 
passive as it retrieves the shortest path between two end-
points [3]. Existing VNE, passive link mapping process are 
not satisfactory in the real production environments that 
require objectives such as network load balancing, overall 
energy consumption, or network congestion avoidance. This 
paper proposes the CEVNE LiM solution on the leaf-spine 
fabric of a cloud data center with three concurrent objectives 
optimizing the cost, minimizing the energy consumption, and 
avoiding network congestion over an SDN substrate running 
SR protocol. The evaluation shows that the CEVNE LiM 
algorithm prevails the k-shortest path algorithm in achieving 
all three objectives: the cost saving, the energy saving and the 
congestion avoidance. CEVNE LiM can be leveraged in the 
virtual network function provisioning and placement in 
network function virtualization (NFV), service function 

chaining (SFC). CEVNE LiM can be extended to be the 
functional component of the reusable function block (RFB) 
specialized in LiM. 
The paper is organized as follows. Section 1 is the 
introduction, section 2 presents the related work, section 3 
presents the CEVNE LiM problem statement, section 4 
presents the proposed architecture to realize CEVNE LiM 
process, section 5 presents the CEVNE LiM algorithm and 
realization, section 6 presents the evaluation, discussion and 
future works, and section 7 concludes the paper. 

II. RELATED WORK 
Zahavi, et al. [4] proposed Links as a Service (LaaS) in data 
centers as a mechanism to isolate tenants’ virtual networks. 
The LaaS architecture is built on top of the cloud architecture, 
which consists of a client front-end, a scheduler and a 
network controller. The evaluation showed that LaaS 
provides full tenant isolation at 10% reduced cost. However, 
the proposal did not consider the energy saving and 
congestion avoidance objectives. 
Marotta, et al. [5] proposed an energy efficient and robust 
Virtual Network Function (VNF) placement. The Green 
Robust VNF Placements (GRVP) is a heuristic solution with 
three separate steps: the VNF Chain (VNFC) placements, the 
robust heuristics, and the latency constraint flow routing. It 
was shown that the solution took less than 1 second to place 
a flow in a large mobile network. However, the proposal did 
not consider cost saving and congestion avoidance 
objectives. 
Chowdhury, et al. [6] proposed the Reallocation of Virtual 
Network Embedding (ReVINE) to eliminate the bottlenecks 
in the VNE. The proposal consists of the MIP formulation for 
the optimal ReVINE to balance between the bottleneck of 
substrate links and the total bandwidth consumption of the 
virtual networks, and a heuristic algorithm based on 
simulated annealing. The performance evaluation shows that 
ReVINE mitigates the substrate link bottlenecks. However, 
the proposal did not consider the cost saving and energy 
saving objectives. 
Li, et al. [7] proposed an energy aware management 
technique for the leaf-spine fabric in cloud data centers. The 
proposal keeps track of dynamic workload, especially on 
spine switches to enable switches that are necessary for the 
current workload. However, the proposal did not consider 
cost saving and congestion avoidance objectives.  
All the above link mapping algorithms are designed to work 
on a single objective, a multiple-objective virtual link 
mapping is required. 

III. CEVNE VIRUTAL LINK EMBEDDING PROBLEM STATEMENT 

A. Problem statement 
Given the SN with a set of 𝑁𝑁𝑆𝑆  substrate nodes and 𝐸𝐸𝑆𝑆  of 
substrate links, and the set of substrate paths 𝑃𝑃𝑆𝑆  with N 
substrate nodes and M substrate links: 

𝑆𝑆𝑁𝑁 = {𝑁𝑁𝑆𝑆,𝐸𝐸𝑆𝑆,  𝑃𝑃𝑆𝑆} 

mailto:zenon.chaczko@uts.edu.au
mailto:doan.hoang@uts.edu.au


Each substrate node 𝑚𝑚 ∈ 𝑁𝑁𝑆𝑆  has a CPU resource. Each 
substrate link (𝑚𝑚,𝑛𝑛) ∈ 𝐸𝐸𝑆𝑆 has a bandwidth resource. A given 
VNR demands 𝑁𝑁𝑉𝑉 virtual nodes and 𝐸𝐸𝑉𝑉 virtual links: 

𝑉𝑉𝑁𝑁 = {𝑁𝑁𝑉𝑉 ,𝐸𝐸𝑉𝑉} 
Each virtual node 𝑢𝑢 ∈ 𝑁𝑁𝑉𝑉 has a CPU demand. Each virtual 
link (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑉𝑉 has a bandwidth demand. 
Given the virtual network embedding process consisting of 
two separate processes: node embedding and link embedding 
processes. The node embedding process has been 
implemented successfully, and provided the results of 
substrate nodes that virtual nodes are embedded on. 

B. Objectives 
The VNE process needs to implement the mapping of 𝐸𝐸𝑉𝑉 
virtual links on top of substrate paths of the substrate network 
SN that satisfy the bandwidth demands, and three objectives 
concurrently: 
• minimizing the cost of bandwidth resources used in 

virtual link embedding 
• minimizing the network congestion in the substrate 

networks and virtual networks 
• minimizing the total energy consumption 
Additionally, these objectives are subject to 
• the bandwidth capacity of the substrate links 
• the topology of the substrate network, virtual network 
• the results of the node embedding process 

C. Problem formulation 
The objective function and constraints are modelled into a 
mathematical program (MP) as follows, ℎ𝑢𝑢,𝑣𝑣

𝑖𝑖  is the portion of 
the bandwidth of substrate link (𝑚𝑚,𝑛𝑛)  allocated to virtual 
link 𝑖𝑖: 

min��� � ℎ𝑢𝑢,𝑣𝑣
𝑖𝑖

(𝑢𝑢,𝑣𝑣)∈𝑝𝑝𝑚𝑚,𝑛𝑛𝑖𝑖𝑝𝑝𝑚𝑚,𝑛𝑛
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0 < 𝑟𝑟 ≤ 𝑅𝑅  (4) 
 
The objective function (1) attempts to minimize the 
bandwidth resources allocated to all virtual links in 𝐸𝐸𝑉𝑉 of the 
VNR, each virtual link is allocated the bandwidth resource 
ℎ𝑢𝑢,𝑣𝑣
𝑖𝑖  on all the substrate links (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑆𝑆 of the substrate path 
𝑝𝑝𝑚𝑚,𝑛𝑛 ∈ 𝒫𝒫𝑆𝑆 having two ends (𝑚𝑚,𝑛𝑛) where the virtual nodes of 
virtual link 𝑖𝑖 are embedded on. (1) is also used to minimize 
the total energy consumption, which is proportional to the 
length of the substrate path that the virtual link is embedded 
on, the shorter the path, the less number of active nodes. The 
constraint expressed in (2) ensures that the allocated 
bandwidth resource satisfying the virtual link bandwidth 
demand 𝑏𝑏𝑏𝑏𝑢𝑢,𝑣𝑣 of the virtual link 𝑖𝑖. The constraint expressed 
in (3) ensures that the total bandwidth resource allocated to 
virtual links on substrate link (𝑢𝑢, 𝑣𝑣) of substrate path 𝑝𝑝𝑚𝑚,𝑛𝑛 is 
limited to the value of substrate link bandwidth multiplied by 
the congestion ratio 𝑟𝑟. In the constraint expressed in (4), r is 
the congestion ratio to set a limit on the substrate link usage 
to minimize the maximum link utilization; r has an upper 

limit of R,  which is calculated in advance based on the hose 
traffic demand model [8]. 
D. Motivation for a heuristic  
The virtual link embedding is NP-Hard as it is reduced to the 
un-split-table flow problem [3], therefore, a heuristic 
algorithm is required to find a solution that satisfies all three 
objectives. The greedy approach could not provide the 
solution that can integrate with network monitoring in real-
time for the optimal operation requirement, nevertheless, 
applying SDN paradigm may allow the integration with any 
monitoring applications based on SDN attributes of 
programmability, central control. Additionally, SDN-based 
approach will allow the link embedding algorithm to select 
the appropriate substrate paths based on SDN ability to steer 
the network flows at fine-grained and coarse-grained levels, 
SDN central control and central view. Therefore, the link 
embedding algorithm will be realized as an SDN application 
on top of SDN controller. 

IV. PROPOSED ARCHITECTURE TO REALIZE CEVNE LIM 
CEVNE LiM heuristic algorithm will embed VNR’s virtual 
links on substrate paths satisfying three objectives 
concurrently for optimal network operation requirement. 
CEVNE LiM heuristic will be based on the micro-service 
architecture for extended SDN application [9], which 
facilitates new service creation, service composition in a 
three-tier architecture with UI tier, business tier and database 
tier. 
The architecture to realize CEVNE LiM process is depicted 
in Fig. 1. The three-tier architecture of CEVNE LiM stays in 
the application layer of the SDN controller, in which the UI 
tier consists of REST API and CLI, the business tier consists 
of new services for cost saving, energy saving and congestion 
avoidance; the database tier consists of link residual 
capacities. 
 

 
Fig. 1: The architecture to realize CEVNE LiM application 

A. Services to handle link embedding multiple objectives 
In this section, MSs are proposed for each CEVNE LiM 
objective cost saving, energy saving and congestion 
avoidance. The monitoring application provides real-time 
status to exclude substrate paths, which are alerted as 
congested. The path selection algorithm selects the substrate 
path based on objectives to embed the virtual link. 

1) Services implementing cost saving, energy saving, 
congestion avoidance 

a) Cost saving:  
The selected path satisfying the cost saving objective is the 
shortest path between two end-points. The shortest paths can 
be retrieved using path management API core service, or the 



function equal cost multi path (ECMP) shortest path graph 
(SPG) in SR application. Fig. 2 presents an example of the 
path satisfying the cost saving objective, in which the shortest 
paths between two end-points A and B are A-S1-B or A-S2-
B. The other paths between A and B are A-S1-C-S2-B, A-S2-
D-S1-A, which are not shortest paths. 

 
Fig. 2: the example of the cost saving between A and B. 

b) Energy saving 
The energy saving objective is implemented based on the 
resilience design of the leaf-spine fabric to steer traffic flows 
to the fall-back spine in case of network failure. There are 
links from reserved spines to leaf nodes. To save energy, the 
reserved spines and their links are put into sleep mode, they 
will be turned into active mode in case of emergency. Fig. 3 
presents an example of a lead-spine fabric with a resilience 
design, spine S3 is the reserved one, S3 and all its links S3-
A, S3-B, S3-C, S3-D, S3-E are put in sleep mode to save 
energy. 

 
Fig. 3: an example of energy saving of leaf-spine fabric. 

 
c) Congestion avoidance 

The congestion avoidance objective is implemented by 
spreading the traffic evenly to all active network devices. The 
dynamic resource allocation algorithm to minimize stress and 
to prevent fragmentation [10] is used to select the least usage 
substrate path. Initially, the fabric is symmetric. After 
provisioning some VNRs, the resources are allocated to 
virtual nodes and links, their residual resources are different 
for each device. The substrate links’ residual resources are 
stored in the database. The congestion-aware algorithm 
retrieves the fabric’s residual resources to select switches 
having the largest residual resource in the active spine list, 
which may not be the shortest paths. 

 
Fig. 4: an example of a congestion avoidance in leaf-spine fabric 

 
In Fig. 4, the leaf-spine fabric has 3 spine nodes and 5 leaf 
nodes, spine S3 is in sleep mode. The paths between C and D 
are C-S2-D and C-S1-D, to avoid congestion, path C-S2-D is 
selected because of highest residual capacity, path C-S3-D is 
not counted as it is in sleep mode. 

2) Monitoring application 
Applying one network monitoring method as specified in 
[11], OpenNetMon provided an end-to-end measurement of 
throughput, packet loss, latency and link utilization in the 
SDN network, or applying the In-band network telemetry 
[12] using P4 language to monitor real-time network 
operation. The monitor application is used to watch for 
highly-utilized substrate paths (nearly congestion), which 
will be excluded from future virtual link embedding. The 

results of congestion avoidance and the monitoring 
application will complement each other. 

3) Path selection strategy 
The path selection algorithm (PSA) receives the two end-
points as input, provokes the services to implement cost 
saving, energy saving and congestion avoidance to receive 
the results of each objective. The PSA selects the substrate 
path using the steps: (i) the energy saving result covers the 
cost saving result, (ii) the congestion control result and 
monitoring result should match, the lowest residual link will 
be alerted of potential congestion in the monitoring 
application, (iii) the PSA result should be the intersection 
between the cost, energy saving and the congestion control 
and monitoring results. (iv) If the PSA gives no result, the 
congestion control result will be selected. (v) If the PSA gives 
multiple results, one is selected randomly. The PSA is 
designed to be a simple decision algorithm as it needs to 
respond quickly in a high-speed fabric. With the PSA, the 
selected substrate path is ensured to satisfy all objectives. 
To illustrate how the PSA works, Fig. 5 presents an example 
of the leaf-spine fabric of four spine nodes and seven leaf 
nodes. The two end points are C and E, the cost saving 
objective results in substrate paths C-S1-E, C-S2-E, C-S3-E, 
and C-S4-E; the energy saving objective results in substrate 
paths C-S1-E, C-S2-E, C-S3-E; the congestion avoidance 
objective results in the descending order based on the residual 
link capacity C-S2-E, C-S3-E, and C-S1-E; as the substrate 
path C-S1-E is alerted as a congestion path by the monitoring 
application, the substrate path for the virtual link embedding 
between node C and E is C-S2-E. 

 
Fig. 5: example of PSA in the leaf-spine fabric 

V. CEVNE LINK EMBEDDING ALGORITHM AND REALIZATION 

A. CEVNE link embedding algorithm 
The input for CEVNE LiM algorithm are the virtual network 
request (VNR), the substrate node end-points that virtual 
nodes are embedded on, the bandwidth demands of virtual 
links. LiM algorithm will call the PSA to select the substrate 
paths for each virtual link, which satisfy three objectives and 
not in congestion state according to the monitoring 
application. LiM repeats the process until all virtual links are 
embedded, or an error occurs and the whole VNR is 
terminated. 

Algorithm: CEVNE LiM algorithm 
1 Input: 
2      virtual network request 
3      substrate node end-points that virtual nodes are 

embedded on 
4      Virtual link bandwidth demands 
5      reserved spine nodes 𝑠𝑠𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟   // from network operators 
6 Output:  
7      substrate path for each virtual link 
8 For each virtual link 𝑒𝑒𝑣𝑣 in 𝐸𝐸𝑉𝑉 
9     (m,n) = embedded end-points of 𝑒𝑒𝑣𝑣; 

10      𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟 = PSA(m,n); 
11      If 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟 is empty 
12            Return; 



13      End if 
14      IntentMgr.submit(new intent(𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟));   
15 End For 
16 Function PSA(m,n) 
17      {p1} = cost_saving(m,n) ∩ energy_saving(m,n); 
18      {p2} = congestion_avoidance(m,n); 
19       {𝑝𝑝𝑟𝑟} = ({p1} ∩ {p2}) 
20       If {𝑝𝑝𝑟𝑟} is empty 
21              Return 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟  ∈ {p2}; 
22       else 
23              Return 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {𝑝𝑝𝑟𝑟}; 
24       End if.  
25 End function 
26 Function cost_saving(m,n)  // applying the shortest path between 

(m,n) 
27       {𝑝𝑝𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐} = ∅; 
28      For each 𝑝𝑝 ∈ PathAPI.shortest_path(m,n); 
29           If p.residual ≥  𝑒𝑒𝑣𝑣. 𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑚𝑚𝑝𝑝𝑛𝑛𝑏𝑏 
30                  {𝑝𝑝𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐}.add(p); 
31           End if 
32      End for 
33      Return {𝑝𝑝𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐} 
34 End function 
35 Function energy_saving(m,n)   // applying on the cost 

saving results 
36      {𝑝𝑝𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒} = cost_saving(m,n).excludes(𝑠𝑠𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟); 
37      Return {𝑝𝑝𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒} 
38 End function 
39 Function congestion_avoidance(m,n)  // applying on all paths 

between (m,n) 
40      {𝑝𝑝𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝} = PathAPI.get_paths(m,n); 
41       𝑝𝑝𝑐𝑐1 = “”; 
42      For each 𝑝𝑝𝑐𝑐 ∈ {𝑝𝑝𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝}  
43            If (𝑝𝑝𝑐𝑐.residual  ≥   𝑒𝑒𝑣𝑣. 𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑚𝑚𝑝𝑝𝑛𝑛𝑏𝑏) 
44                   If (𝑝𝑝𝑐𝑐1 == “”) 
45                         𝑝𝑝𝑐𝑐1= 𝑝𝑝𝑐𝑐; 
46                   Else if (𝑝𝑝𝑐𝑐.residual  > 𝑝𝑝𝑐𝑐1.residual) 
47                          𝑝𝑝𝑐𝑐1= 𝑝𝑝𝑐𝑐; 
48                  End if 
49            End if 
50      End for 
51      Return 𝑝𝑝𝑐𝑐1 
52 End function 

B. CEVNE LiM application realization 
CEVNE LiM algorithm is developed into an SDN composite 
application [9] called CEVNE LiM application that is on top 
of the ONOS controller in a leaf-spine fabric SDN substrate 
network running SR application. The leaf-spine fabric is 
configured in ONOS controller and is presented in the ONOS 
UI as in Fig. 6. 

 
Fig. 6: Substrate network configured as leaf-spine fabric in ONOS UI 

VI. PERFORMANCE EVALUATION 
The CEVNE LiM performance evaluation includes test 
scenarios setup, running CEVNE application and analyzing 
results. The next subsection describes the test scenario setup. 

A. Test scenario setup 
The test scenario includes a substrate network and multiple 
virtual networks that are to be virtualized and provisioned 
over the substrate. The substrate network is a leaf-spine fabric 
with four leaf switches, four spine switches, eight hosts, and 
links connecting switches and hosts as in Fig. 7. The leaf, 

spine switches, which are white boxes running open-source 
software, are configured to run SR protocol on ONOS 
controller as specified in Atrium [13]. The substrate network 
and their capacities are specified in TABLE 1. 

TABLE 1: Substrate network capacities 

 Total number CPU capacity BW capacity  

Leaf switches 4 1  
Spine switches 4 1  
Hosts 8 100  
Link leaf-spine  16  10 
Link leaf-host 8  1 

In TABLE 1, hosts have large CPU capacities, they are ready 
to have virtual nodes embedded on. Links between leaf and 
spine switches have high bandwidth capacity, they are ready 
for virtual links to be embedded on. 
We design different test cases with various VNRs’ 
requirements to test the performance of CEVNE LiM in terms 
of runtime, average path length, average node stress, average 
link stress, energy consumption, acceptance ratio and total 
costs / revenue. VNRs in test cases are different in topologies 
and resource demands as specified in TABLE 2. 

TABLE 2: The design of test scenarios 
Test cases No of virtual 

nodes 
CPU 
demands  

No of virtual 
links 

BW 
demands  

1 3 10 2 3 
2 5 10 4 3 
3 4 10 3 3 
4 5 10 4 3 
5 4 10 3 3 

 
In TABLE 2, there are 5 different VNRs, with the number of 
requested virtual nodes ranges from 3 to 5, and the number of 
requested virtual links ranges from 2 to 4. 

B. CEVNE execution platform 
The CEVNE LiM application is compiled, deployed and 
activated on the ONOS controller as CEVNE virtual link 
service. CEVNE LiM application implements PSA energy-
saving algorithm, cost-saving algorithm and congestion-
aware algorithm. The CEVNE LiM is invoked via the CLI or 
the REST API. Each virtual link detail is input as a tuple of 
the source and destination host locations, and the bandwidth 
demand. The result of the CEVNE LiM application runs on 
the ONOS controller is shown in the Fig. 7. 

 
Fig. 7: CEVNE LiM application execution in ONOS UI 

In Fig. 7, the red-dashed lines are the selected substrate paths, 
where the virtual links are embedded on. On the substrate 
paths, the flow rules are installed on leaf and spine switches 
to establish the route. They are highlighted as the result of the 
flow rule creation for each substrate path. The CEVNE LiM 
execution in the ONOS CLI for the VNR in Fig. 7 is 
summarized in TABLE 3. 

TABLE 3: Results of CEVNE LiM when running a test case 

 Virtual 
links 

Node 
mapping 
results 

CEVNE LiM results 

1 AB host 1, 
host 2 

The hosts are connected to leaf 01. 

2 BC host 2, 
host 3 

onos:cevne-get-mapped-paths of: 001 of: 002 
5000000;DefaultPath{src=of: 192/2, dst=of: 192/1, 



type=INDIRECT, state=ACTIVE, expected=false, 
links=[DefaultLink{src=of: 192/2, dst=of: 002/3, 
type=DIRECT, state=ACTIVE, expected=false}, 
DefaultLink{src=of: 001/3, dst=of: 192/1, 
type=DIRECT, state=ACTIVE, expected=false}], 
cost=ScalarWeight{value=0.0}} 

3 AE host 1, 
host 5 

onos:cevne-get-mapped-paths of: 001 of: 003 
5000000;DefaultPath{src=of: 191/3, dst=of: 191/1, 
type=INDIRECT, state=ACTIVE, expected=false, 
links=[DefaultLink{src=of: 191/3, dst=of: 003/4, 
type=DIRECT, state=ACTIVE, expected=false}, 
DefaultLink{src=of: 001/4, dst=of: 191/1, 
type=DIRECT, state=ACTIVE, expected=false}], 
cost=ScalarWeight{value=0.0}} 

4 ED host 5, 
host 4 

onos:cevne-get-mapped-paths of: 003 of: 002 
5000000;DefaultPath{src=of: 193/2, dst=of: 193/3, 
type=INDIRECT, state=ACTIVE, expected=false, 
links=[DefaultLink{src=of: 193/2, dst=of: 002/2, 
type=DIRECT, state=ACTIVE, expected=false}, 
DefaultLink{src=of: 003/2, dst=of: 193/3, 
type=DIRECT, state=ACTIVE, expected=false}], 
cost=ScalarWeight{value=0.0}} 

 
In TABLE 3, the CLI command cevne-get-mapped-paths 
invokes the virtual link mapping for virtual links AB, BC, 
AE, and ED. 
Row 1: The virtual link AB is the link between host 1 and 
host 2, which is within the leaf 01, they are connected in the 
VXLAN connecting the ToR switch (leaf 1) and the hosts. 
Row 2: The virtual link BC is between host 2 and host 3, 
which is the path between leaf 01 (host 2 location) and leaf 
02 (host 3 location). The path between leaf 01, and spine 02 
(port 1), spine 03 (port 2) and leaf 02 is selected. Data in row 
3 and row 4 are explained similarly as in row 2. 

C. Evaluation results 
The CEVNE LiM performance is evaluated by analyzing its 
implementation results and comparing them with those of the 
k-shortest path link-mapping algorithm [14]. The metrics 
used to compare the behavior of the two algorithms are the 
total runtime, acceptance ratio, average path length, average 
node stress, average link stress, and energy consumption. 
These metrics are selected because they reflect the three 
CEVNE objectives: cost saving, energy saving and 
congestion awareness. The following subsections will 
examine each of the results. 

1) Runtime 
The runtime results show that CEVNE LiM converged faster 
than the k-shortest path algorithm. This explains the simple 
path selection algorithm of CEVNE LiM. In the Alevin 
framework, the runtime includes the configuration time for 
each test run. In ONOS controller, the configuration is run 
once, and its runtime is calculated separately. It takes the 
CEVNE LiM application about 3ms to embed each virtual 
link; and the total runtime is the multiplication of the number 
of virtual links in the VNR. Fig. 8 shows that k-shortest path 
runtime is in the range of 60–70ms for the five test cases, 
while CEVNE LiM runtime is in the range of 10–30ms; 30ms 
is when the CEVNE LiM application is first loaded. This 
shows that the CEVNE LiM achieves it cost saving objective 
with the quick response time. 

2) Average path length 
The average path length results show that the CEVNE LiM 
approach always have the shorter substrate path length 
compared to the k-shortest path algorithm. This is the result 
of the CEVNE LiM application searching for the shortest 
paths between two end-points. The k-shortest path approach 
configures the fabric as a normal bi-directed graph, and 

searches in the whole graph for each virtual link. This affects 
both the path length and the runtime.  
In Fig. 8, the CEVNE LiM algorithm has 2.0 as the average 
path length for any substrate paths that the virtual link is 
embedded on. The k-shortest path algorithm has the average 
path length in the range of 3.0–4.0. This shows that the 
CEVNE LiM achieves its cost saving objective, and its 
energy saving objective because the longer the path, the more 
active substrate nodes and more energy consumption. 
 

 
Fig. 8: Results of runtime and average path length 

 

 
Fig. 9: Results of average node stress, link stress, and energy consumption. 

 
3) Average node stress, average link stress 

In the Alevin framework, the average node stress is the ratio 
of total of all node stress over the total number of substrate 
nodes. Similarly, the average link stress is the ratio of total of 
all link stress over the total substrate links. These are similar 
to the average node utilization and average link utilization 
introduced in [15].  
In CEVNE, the average node stress and average link stress 
are calculated for leaf and spine switches on the fabric. If each 
virtual node of a virtual link is connected to a different leaf 
switch, the average node stress involves three nodes: two leaf 
switches and one spine switch. The average link stress 
involves two substrate links: links between each leaf and the 
spine switches. For congestion control purposes [16], the link 
mapping is spread out to different leaf and spine switches as 
implemented in the path selection algorithm. The average 
node stress and the average link stress results show that the 
CEVNE LiM algorithm distributes the link mapping onto 
more substrate nodes and links than the k-shortest path 
algorithm. 
In Fig. 9, the k-shortest path algorithm has the average node 
stress in the range of 0.2–0.3 while the CEVNE LiM’s 
average node stress is in the range 0.38–0.55. The k-shortest 
path algorithm has the average link stress in the range of 
0.18–0.3 while the CEVNE LiM’s average link stress is in the 
range 0.25–0.38. The CEVNE LiM has on average 0.2 (20%) 
more node stress than the k-shortest path approach. The 



CEVNE LiM has on average 0.1 (10%) more link stress than 
the k-shortest path approach. 

4) Energy consumption 
The energy consumption results show that CEVNE LiM 
algorithm achieves its energy saving objective as specified in 
2) average path length. As CEVNE LiM has shorter average 
path length than the k-shortest path algorithm, CEVNE LiM 
has less number of active nodes along the paths, resulting in 
less power consumption. In Fig. 9, the energy consumption 
of CEVNE LiM is 10 units lower on average compared to the 
k-shortest path algorithm. 

5) Acceptance ratio 
The acceptance ratios of both algorithms are the same, and at 
the 100% in all test cases. The results of runtime, average 
path length, average node stress, average link stress, and 
energy consumption show that CEVNE LiM algorithm 
achieves three objectives, and prevails the k-shortest path 
algorithm in these objectives. 

D. Discussion 
CEVNE LiM can be applied to NFVI, SFC, can be considered 
as the functional component of RFB specialized in LiM. The 
virtual link embedding process is a necessary step in the 
virtual network function provisioning, placement in NFV, 
SFC; NFVI is also SDN-based, hence, the CEVNE LiM can 
be leveraged in these processes, in which the bandwidth 
requirement is specified as a latency constraint, to offer cost 
saving, energy saving, congestion avoidance objectives. 
CEVNE LiM can be extended to be the functional component 
of the RFB specialized in LiM [17]. 
CEVNE LiM focuses on three objectives concurrently on the 
SDN network. The CEVNE LiM application realizes each 
objective as a micro-service and implements the path 
selection algorithm to search for the selected path based on 
each objective result. The evaluation shows that CEVNE LiM 
achieves its three objectives of cost saving, energy saving and 
congestion aware. 
The choice of SDN and SR technologies, and SDN-SR based 
leaf-spine fabric as the substrate network. The CEVNE LiM 
chooses the SN that is configured as a leaf-spine fabric using 
the SR application, which is the next generation fabric, where 
the automation is introduced via the programmability and 
service composition on top of the SDN controller. The 
CEVNE LiM approach is based on SDN paradigm that 
realizes it as SDN applications that are modular, composable, 
and extendable  [18]. 

VII. CONCLUSION 
CEVNE link mapping algorithm is proposed to minimize the 
cost, the energy and to avoid the network congestion in 
allocating substrate link resources to virtual links. Based on 
SDN and SR technologies, the CEVNE LiM is an active 
virtual link mapping process that can interact with the routing 
rules on switches to select substrate paths for the virtual link 
mapping. It is completely different from the passive link 
mapping algorithms in the traditional VNE. The CEVNE 
LiM receives the node mapping results from the CEVNE 
NoM algorithm and the VNR topology as inputs and searches 
the substrate paths that satisfy the virtual links’ bandwidth 
demands and objective constraints based on its path selection 

algorithm. In the evaluation, the CEVNE LiM algorithm is 
compared with the k-shortest path algorithm in the Alevin 
framework. The results of both approaches are analyzed 
according to the runtime, average path length, average node 
stress, average link stress, and energy consumption. The 
evaluation shows that the CEVNE LiM algorithm prevails the 
k-shortest path algorithm in achieving all three objectives: the 
cost saving, the energy saving and the congestion avoidance. 
CEVNE LiM can be applied to NFVI, SFC, can be considered 
as the functional component of the RFB specialized in LiM. 
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