
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Realization of congestion-aware energy-aware virtual link embedding

Minh Pham
University of Technology Sydney

Sydney, Australia
minh.pham@student.uts.edu.au

Zenon Chaczko
University of Technology Sydney

Sydney, Australia
zenon.chaczko@uts.edu.au

Doan B. Hoang
University of Technology Sydney

Sydney, Australia
doan.hoang@uts.edu.au

Abstract— Network virtualization is an inherent component
of future internets. Network resources are virtualized and
provisioned to users on demand. The virtual network
embedding entails two processes: node mapping and link
mapping. However, efficient and practical solutions to the link
mapping problem in software-defined networks (SDN) and data
centers are still lacking. This paper proposes a solution to the
link mapping process that can dynamically interact with the
routing protocols of the substrate network to allocate virtual
link requests to the underlying substrate links and satisfies
optimizing cost, minimizing energy consumption, and avoiding
congestion (CEVNE LiM) concurrently. CEVNE LiM is
realized as a composite application on top of the SDN controller
running the Segment Routing (SR) application. The
performance of the CEVNE LiM algorithm is compared with
the k-shortest path (link mapping) algorithm and shows its
superior performance in terms of the overall runtime, the
average path length, the average node stress, the average link
stress and the overall energy consumption.

Keywords—virtual link embedding, SDN application, cost
saving, energy saving, congestion avoidance, segment routing

I. INTRODUCTION
Network virtualization is considered the future of the
Internet. Originally it was conceived for evaluating new
network protocols in the research-lab testbeds such as G-Labs
[1] or 4WARD [2]. Recently, it has become an integral part
of cloud data centers and telecommunication infrastructures.
The main challenge in the network virtualization is the
optimal allocation of the substrate resources to the on-
demand virtual networks, and it is called the virtual network
embedding (VNE) challenge. The VNE objectives are often
to minimize the costs, maximize the revenues, optimize the
network performance (delays, bandwidths, throughputs,
QoS), and minimize the energy consumption.
The VNE resource allocation problem necessitates two
processes: node mapping and link mapping. The node
mapping process maps virtual nodes onto substrate nodes that
satisfy the virtual nodes’ resource demands. The link
mapping process maps virtual links between virtual nodes
onto substrate links connecting the embedded substrate
nodes. In the traditional VNEs, the link mapping process is
passive as it retrieves the shortest path between two end-
points [3]. Existing VNE, passive link mapping process are
not satisfactory in the real production environments that
require objectives such as network load balancing, overall
energy consumption, or network congestion avoidance. This
paper proposes the CEVNE LiM solution on the leaf-spine
fabric of a cloud data center with three concurrent objectives
optimizing the cost, minimizing the energy consumption, and
avoiding network congestion over an SDN substrate running
SR protocol. The evaluation shows that the CEVNE LiM
algorithm prevails the k-shortest path algorithm in achieving
all three objectives: the cost saving, the energy saving and the
congestion avoidance. CEVNE LiM can be leveraged in the
virtual network function provisioning and placement in
network function virtualization (NFV), service function

chaining (SFC). CEVNE LiM can be extended to be the
functional component of the reusable function block (RFB)
specialized in LiM.
The paper is organized as follows. Section 1 is the
introduction, section 2 presents the related work, section 3
presents the CEVNE LiM problem statement, section 4
presents the proposed architecture to realize CEVNE LiM
process, section 5 presents the CEVNE LiM algorithm and
realization, section 6 presents the evaluation, discussion and
future works, and section 7 concludes the paper.

II. RELATED WORK
Zahavi, et al. [4] proposed Links as a Service (LaaS) in data
centers as a mechanism to isolate tenants’ virtual networks.
The LaaS architecture is built on top of the cloud architecture,
which consists of a client front-end, a scheduler and a
network controller. The evaluation showed that LaaS
provides full tenant isolation at 10% reduced cost. However,
the proposal did not consider the energy saving and
congestion avoidance objectives.
Marotta, et al. [5] proposed an energy efficient and robust
Virtual Network Function (VNF) placement. The Green
Robust VNF Placements (GRVP) is a heuristic solution with
three separate steps: the VNF Chain (VNFC) placements, the
robust heuristics, and the latency constraint flow routing. It
was shown that the solution took less than 1 second to place
a flow in a large mobile network. However, the proposal did
not consider cost saving and congestion avoidance
objectives.
Chowdhury, et al. [6] proposed the Reallocation of Virtual
Network Embedding (ReVINE) to eliminate the bottlenecks
in the VNE. The proposal consists of the MIP formulation for
the optimal ReVINE to balance between the bottleneck of
substrate links and the total bandwidth consumption of the
virtual networks, and a heuristic algorithm based on
simulated annealing. The performance evaluation shows that
ReVINE mitigates the substrate link bottlenecks. However,
the proposal did not consider the cost saving and energy
saving objectives.
Li, et al. [7] proposed an energy aware management
technique for the leaf-spine fabric in cloud data centers. The
proposal keeps track of dynamic workload, especially on
spine switches to enable switches that are necessary for the
current workload. However, the proposal did not consider
cost saving and congestion avoidance objectives.
All the above link mapping algorithms are designed to work
on a single objective, a multiple-objective virtual link
mapping is required.

III. CEVNE VIRUTAL LINK EMBEDDING PROBLEM STATEMENT

A. Problem statement
Given the SN with a set of 𝑁𝑁𝑆𝑆 substrate nodes and 𝐸𝐸𝑆𝑆 of
substrate links, and the set of substrate paths 𝑃𝑃𝑆𝑆 with N
substrate nodes and M substrate links:

𝑆𝑆𝑁𝑁 = {𝑁𝑁𝑆𝑆,𝐸𝐸𝑆𝑆, 𝑃𝑃𝑆𝑆}

mailto:zenon.chaczko@uts.edu.au
mailto:doan.hoang@uts.edu.au

Each substrate node 𝑚𝑚 ∈ 𝑁𝑁𝑆𝑆 has a CPU resource. Each
substrate link (𝑚𝑚,𝑛𝑛) ∈ 𝐸𝐸𝑆𝑆 has a bandwidth resource. A given
VNR demands 𝑁𝑁𝑉𝑉 virtual nodes and 𝐸𝐸𝑉𝑉 virtual links:

𝑉𝑉𝑁𝑁 = {𝑁𝑁𝑉𝑉 ,𝐸𝐸𝑉𝑉}
Each virtual node 𝑢𝑢 ∈ 𝑁𝑁𝑉𝑉 has a CPU demand. Each virtual
link (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑉𝑉 has a bandwidth demand.
Given the virtual network embedding process consisting of
two separate processes: node embedding and link embedding
processes. The node embedding process has been
implemented successfully, and provided the results of
substrate nodes that virtual nodes are embedded on.

B. Objectives
The VNE process needs to implement the mapping of 𝐸𝐸𝑉𝑉
virtual links on top of substrate paths of the substrate network
SN that satisfy the bandwidth demands, and three objectives
concurrently:
• minimizing the cost of bandwidth resources used in

virtual link embedding
• minimizing the network congestion in the substrate

networks and virtual networks
• minimizing the total energy consumption
Additionally, these objectives are subject to
• the bandwidth capacity of the substrate links
• the topology of the substrate network, virtual network
• the results of the node embedding process

C. Problem formulation
The objective function and constraints are modelled into a
mathematical program (MP) as follows, ℎ𝑢𝑢,𝑣𝑣

𝑖𝑖 is the portion of
the bandwidth of substrate link (𝑚𝑚,𝑛𝑛) allocated to virtual
link 𝑖𝑖:

min��� � ℎ𝑢𝑢,𝑣𝑣
𝑖𝑖

(𝑢𝑢,𝑣𝑣)∈𝑝𝑝𝑚𝑚,𝑛𝑛𝑖𝑖𝑝𝑝𝑚𝑚,𝑛𝑛

� (1)

ℎ𝑢𝑢,𝑣𝑣
𝑖𝑖 ≥ 𝑏𝑏𝑏𝑏𝑢𝑢,𝑣𝑣

𝑖𝑖 ,∀(𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑆𝑆,∀𝑖𝑖 (2)

� � ℎ𝑢𝑢,𝑣𝑣
𝑖𝑖 ≤ 𝑟𝑟 ∗ 𝑏𝑏𝑏𝑏(𝑚𝑚,𝑛𝑛), ∀�𝑝𝑝𝑚𝑚,𝑛𝑛� ∈ 𝒫𝒫𝑆𝑆,∀𝑖𝑖 (3)

(𝑢𝑢,𝑣𝑣)∈𝑝𝑝𝑚𝑚,𝑛𝑛𝑖𝑖

0 < 𝑟𝑟 ≤ 𝑅𝑅 (4)

The objective function (1) attempts to minimize the
bandwidth resources allocated to all virtual links in 𝐸𝐸𝑉𝑉 of the
VNR, each virtual link is allocated the bandwidth resource
ℎ𝑢𝑢,𝑣𝑣
𝑖𝑖 on all the substrate links (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑆𝑆 of the substrate path
𝑝𝑝𝑚𝑚,𝑛𝑛 ∈ 𝒫𝒫𝑆𝑆 having two ends (𝑚𝑚,𝑛𝑛) where the virtual nodes of
virtual link 𝑖𝑖 are embedded on. (1) is also used to minimize
the total energy consumption, which is proportional to the
length of the substrate path that the virtual link is embedded
on, the shorter the path, the less number of active nodes. The
constraint expressed in (2) ensures that the allocated
bandwidth resource satisfying the virtual link bandwidth
demand 𝑏𝑏𝑏𝑏𝑢𝑢,𝑣𝑣 of the virtual link 𝑖𝑖. The constraint expressed
in (3) ensures that the total bandwidth resource allocated to
virtual links on substrate link (𝑢𝑢, 𝑣𝑣) of substrate path 𝑝𝑝𝑚𝑚,𝑛𝑛 is
limited to the value of substrate link bandwidth multiplied by
the congestion ratio 𝑟𝑟. In the constraint expressed in (4), r is
the congestion ratio to set a limit on the substrate link usage
to minimize the maximum link utilization; r has an upper

limit of R, which is calculated in advance based on the hose
traffic demand model [8].
D. Motivation for a heuristic
The virtual link embedding is NP-Hard as it is reduced to the
un-split-table flow problem [3], therefore, a heuristic
algorithm is required to find a solution that satisfies all three
objectives. The greedy approach could not provide the
solution that can integrate with network monitoring in real-
time for the optimal operation requirement, nevertheless,
applying SDN paradigm may allow the integration with any
monitoring applications based on SDN attributes of
programmability, central control. Additionally, SDN-based
approach will allow the link embedding algorithm to select
the appropriate substrate paths based on SDN ability to steer
the network flows at fine-grained and coarse-grained levels,
SDN central control and central view. Therefore, the link
embedding algorithm will be realized as an SDN application
on top of SDN controller.

IV. PROPOSED ARCHITECTURE TO REALIZE CEVNE LIM
CEVNE LiM heuristic algorithm will embed VNR’s virtual
links on substrate paths satisfying three objectives
concurrently for optimal network operation requirement.
CEVNE LiM heuristic will be based on the micro-service
architecture for extended SDN application [9], which
facilitates new service creation, service composition in a
three-tier architecture with UI tier, business tier and database
tier.
The architecture to realize CEVNE LiM process is depicted
in Fig. 1. The three-tier architecture of CEVNE LiM stays in
the application layer of the SDN controller, in which the UI
tier consists of REST API and CLI, the business tier consists
of new services for cost saving, energy saving and congestion
avoidance; the database tier consists of link residual
capacities.

Fig. 1: The architecture to realize CEVNE LiM application

A. Services to handle link embedding multiple objectives
In this section, MSs are proposed for each CEVNE LiM
objective cost saving, energy saving and congestion
avoidance. The monitoring application provides real-time
status to exclude substrate paths, which are alerted as
congested. The path selection algorithm selects the substrate
path based on objectives to embed the virtual link.

1) Services implementing cost saving, energy saving,
congestion avoidance

a) Cost saving:
The selected path satisfying the cost saving objective is the
shortest path between two end-points. The shortest paths can
be retrieved using path management API core service, or the

function equal cost multi path (ECMP) shortest path graph
(SPG) in SR application. Fig. 2 presents an example of the
path satisfying the cost saving objective, in which the shortest
paths between two end-points A and B are A-S1-B or A-S2-
B. The other paths between A and B are A-S1-C-S2-B, A-S2-
D-S1-A, which are not shortest paths.

Fig. 2: the example of the cost saving between A and B.

b) Energy saving
The energy saving objective is implemented based on the
resilience design of the leaf-spine fabric to steer traffic flows
to the fall-back spine in case of network failure. There are
links from reserved spines to leaf nodes. To save energy, the
reserved spines and their links are put into sleep mode, they
will be turned into active mode in case of emergency. Fig. 3
presents an example of a lead-spine fabric with a resilience
design, spine S3 is the reserved one, S3 and all its links S3-
A, S3-B, S3-C, S3-D, S3-E are put in sleep mode to save
energy.

Fig. 3: an example of energy saving of leaf-spine fabric.

c) Congestion avoidance

The congestion avoidance objective is implemented by
spreading the traffic evenly to all active network devices. The
dynamic resource allocation algorithm to minimize stress and
to prevent fragmentation [10] is used to select the least usage
substrate path. Initially, the fabric is symmetric. After
provisioning some VNRs, the resources are allocated to
virtual nodes and links, their residual resources are different
for each device. The substrate links’ residual resources are
stored in the database. The congestion-aware algorithm
retrieves the fabric’s residual resources to select switches
having the largest residual resource in the active spine list,
which may not be the shortest paths.

Fig. 4: an example of a congestion avoidance in leaf-spine fabric

In Fig. 4, the leaf-spine fabric has 3 spine nodes and 5 leaf
nodes, spine S3 is in sleep mode. The paths between C and D
are C-S2-D and C-S1-D, to avoid congestion, path C-S2-D is
selected because of highest residual capacity, path C-S3-D is
not counted as it is in sleep mode.

2) Monitoring application
Applying one network monitoring method as specified in
[11], OpenNetMon provided an end-to-end measurement of
throughput, packet loss, latency and link utilization in the
SDN network, or applying the In-band network telemetry
[12] using P4 language to monitor real-time network
operation. The monitor application is used to watch for
highly-utilized substrate paths (nearly congestion), which
will be excluded from future virtual link embedding. The

results of congestion avoidance and the monitoring
application will complement each other.

3) Path selection strategy
The path selection algorithm (PSA) receives the two end-
points as input, provokes the services to implement cost
saving, energy saving and congestion avoidance to receive
the results of each objective. The PSA selects the substrate
path using the steps: (i) the energy saving result covers the
cost saving result, (ii) the congestion control result and
monitoring result should match, the lowest residual link will
be alerted of potential congestion in the monitoring
application, (iii) the PSA result should be the intersection
between the cost, energy saving and the congestion control
and monitoring results. (iv) If the PSA gives no result, the
congestion control result will be selected. (v) If the PSA gives
multiple results, one is selected randomly. The PSA is
designed to be a simple decision algorithm as it needs to
respond quickly in a high-speed fabric. With the PSA, the
selected substrate path is ensured to satisfy all objectives.
To illustrate how the PSA works, Fig. 5 presents an example
of the leaf-spine fabric of four spine nodes and seven leaf
nodes. The two end points are C and E, the cost saving
objective results in substrate paths C-S1-E, C-S2-E, C-S3-E,
and C-S4-E; the energy saving objective results in substrate
paths C-S1-E, C-S2-E, C-S3-E; the congestion avoidance
objective results in the descending order based on the residual
link capacity C-S2-E, C-S3-E, and C-S1-E; as the substrate
path C-S1-E is alerted as a congestion path by the monitoring
application, the substrate path for the virtual link embedding
between node C and E is C-S2-E.

Fig. 5: example of PSA in the leaf-spine fabric

V. CEVNE LINK EMBEDDING ALGORITHM AND REALIZATION

A. CEVNE link embedding algorithm
The input for CEVNE LiM algorithm are the virtual network
request (VNR), the substrate node end-points that virtual
nodes are embedded on, the bandwidth demands of virtual
links. LiM algorithm will call the PSA to select the substrate
paths for each virtual link, which satisfy three objectives and
not in congestion state according to the monitoring
application. LiM repeats the process until all virtual links are
embedded, or an error occurs and the whole VNR is
terminated.

Algorithm: CEVNE LiM algorithm
1 Input:
2 virtual network request
3 substrate node end-points that virtual nodes are

embedded on
4 Virtual link bandwidth demands
5 reserved spine nodes 𝑠𝑠𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 // from network operators
6 Output:
7 substrate path for each virtual link
8 For each virtual link 𝑒𝑒𝑣𝑣 in 𝐸𝐸𝑉𝑉
9 (m,n) = embedded end-points of 𝑒𝑒𝑣𝑣;

10 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟 = PSA(m,n);
11 If 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟 is empty
12 Return;

13 End if
14 IntentMgr.submit(new intent(𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟));
15 End For
16 Function PSA(m,n)
17 {p1} = cost_saving(m,n) ∩ energy_saving(m,n);
18 {p2} = congestion_avoidance(m,n);
19 {𝑝𝑝𝑟𝑟} = ({p1} ∩ {p2})
20 If {𝑝𝑝𝑟𝑟} is empty
21 Return 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {p2};
22 else
23 Return 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {𝑝𝑝𝑟𝑟};
24 End if.
25 End function
26 Function cost_saving(m,n) // applying the shortest path between

(m,n)
27 {𝑝𝑝𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐} = ∅;
28 For each 𝑝𝑝 ∈ PathAPI.shortest_path(m,n);
29 If p.residual ≥ 𝑒𝑒𝑣𝑣. 𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑚𝑚𝑝𝑝𝑛𝑛𝑏𝑏
30 {𝑝𝑝𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐}.add(p);
31 End if
32 End for
33 Return {𝑝𝑝𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐}
34 End function
35 Function energy_saving(m,n) // applying on the cost

saving results
36 {𝑝𝑝𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒} = cost_saving(m,n).excludes(𝑠𝑠𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟);
37 Return {𝑝𝑝𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒}
38 End function
39 Function congestion_avoidance(m,n) // applying on all paths

between (m,n)
40 {𝑝𝑝𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝} = PathAPI.get_paths(m,n);
41 𝑝𝑝𝑐𝑐1 = “”;
42 For each 𝑝𝑝𝑐𝑐 ∈ {𝑝𝑝𝑐𝑐𝑟𝑟𝑚𝑚𝑝𝑝}
43 If (𝑝𝑝𝑐𝑐.residual ≥ 𝑒𝑒𝑣𝑣. 𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑚𝑚𝑝𝑝𝑛𝑛𝑏𝑏)
44 If (𝑝𝑝𝑐𝑐1 == “”)
45 𝑝𝑝𝑐𝑐1= 𝑝𝑝𝑐𝑐;
46 Else if (𝑝𝑝𝑐𝑐.residual > 𝑝𝑝𝑐𝑐1.residual)
47 𝑝𝑝𝑐𝑐1= 𝑝𝑝𝑐𝑐;
48 End if
49 End if
50 End for
51 Return 𝑝𝑝𝑐𝑐1
52 End function

B. CEVNE LiM application realization
CEVNE LiM algorithm is developed into an SDN composite
application [9] called CEVNE LiM application that is on top
of the ONOS controller in a leaf-spine fabric SDN substrate
network running SR application. The leaf-spine fabric is
configured in ONOS controller and is presented in the ONOS
UI as in Fig. 6.

Fig. 6: Substrate network configured as leaf-spine fabric in ONOS UI

VI. PERFORMANCE EVALUATION
The CEVNE LiM performance evaluation includes test
scenarios setup, running CEVNE application and analyzing
results. The next subsection describes the test scenario setup.

A. Test scenario setup
The test scenario includes a substrate network and multiple
virtual networks that are to be virtualized and provisioned
over the substrate. The substrate network is a leaf-spine fabric
with four leaf switches, four spine switches, eight hosts, and
links connecting switches and hosts as in Fig. 7. The leaf,

spine switches, which are white boxes running open-source
software, are configured to run SR protocol on ONOS
controller as specified in Atrium [13]. The substrate network
and their capacities are specified in TABLE 1.

TABLE 1: Substrate network capacities

 Total number CPU capacity BW capacity

Leaf switches 4 1
Spine switches 4 1
Hosts 8 100
Link leaf-spine 16 10
Link leaf-host 8 1

In TABLE 1, hosts have large CPU capacities, they are ready
to have virtual nodes embedded on. Links between leaf and
spine switches have high bandwidth capacity, they are ready
for virtual links to be embedded on.
We design different test cases with various VNRs’
requirements to test the performance of CEVNE LiM in terms
of runtime, average path length, average node stress, average
link stress, energy consumption, acceptance ratio and total
costs / revenue. VNRs in test cases are different in topologies
and resource demands as specified in TABLE 2.

TABLE 2: The design of test scenarios
Test cases No of virtual

nodes
CPU
demands

No of virtual
links

BW
demands

1 3 10 2 3
2 5 10 4 3
3 4 10 3 3
4 5 10 4 3
5 4 10 3 3

In TABLE 2, there are 5 different VNRs, with the number of
requested virtual nodes ranges from 3 to 5, and the number of
requested virtual links ranges from 2 to 4.

B. CEVNE execution platform
The CEVNE LiM application is compiled, deployed and
activated on the ONOS controller as CEVNE virtual link
service. CEVNE LiM application implements PSA energy-
saving algorithm, cost-saving algorithm and congestion-
aware algorithm. The CEVNE LiM is invoked via the CLI or
the REST API. Each virtual link detail is input as a tuple of
the source and destination host locations, and the bandwidth
demand. The result of the CEVNE LiM application runs on
the ONOS controller is shown in the Fig. 7.

Fig. 7: CEVNE LiM application execution in ONOS UI

In Fig. 7, the red-dashed lines are the selected substrate paths,
where the virtual links are embedded on. On the substrate
paths, the flow rules are installed on leaf and spine switches
to establish the route. They are highlighted as the result of the
flow rule creation for each substrate path. The CEVNE LiM
execution in the ONOS CLI for the VNR in Fig. 7 is
summarized in TABLE 3.

TABLE 3: Results of CEVNE LiM when running a test case

 Virtual
links

Node
mapping
results

CEVNE LiM results

1 AB host 1,
host 2

The hosts are connected to leaf 01.

2 BC host 2,
host 3

onos:cevne-get-mapped-paths of: 001 of: 002
5000000;DefaultPath{src=of: 192/2, dst=of: 192/1,

type=INDIRECT, state=ACTIVE, expected=false,
links=[DefaultLink{src=of: 192/2, dst=of: 002/3,
type=DIRECT, state=ACTIVE, expected=false},
DefaultLink{src=of: 001/3, dst=of: 192/1,
type=DIRECT, state=ACTIVE, expected=false}],
cost=ScalarWeight{value=0.0}}

3 AE host 1,
host 5

onos:cevne-get-mapped-paths of: 001 of: 003
5000000;DefaultPath{src=of: 191/3, dst=of: 191/1,
type=INDIRECT, state=ACTIVE, expected=false,
links=[DefaultLink{src=of: 191/3, dst=of: 003/4,
type=DIRECT, state=ACTIVE, expected=false},
DefaultLink{src=of: 001/4, dst=of: 191/1,
type=DIRECT, state=ACTIVE, expected=false}],
cost=ScalarWeight{value=0.0}}

4 ED host 5,
host 4

onos:cevne-get-mapped-paths of: 003 of: 002
5000000;DefaultPath{src=of: 193/2, dst=of: 193/3,
type=INDIRECT, state=ACTIVE, expected=false,
links=[DefaultLink{src=of: 193/2, dst=of: 002/2,
type=DIRECT, state=ACTIVE, expected=false},
DefaultLink{src=of: 003/2, dst=of: 193/3,
type=DIRECT, state=ACTIVE, expected=false}],
cost=ScalarWeight{value=0.0}}

In TABLE 3, the CLI command cevne-get-mapped-paths
invokes the virtual link mapping for virtual links AB, BC,
AE, and ED.
Row 1: The virtual link AB is the link between host 1 and
host 2, which is within the leaf 01, they are connected in the
VXLAN connecting the ToR switch (leaf 1) and the hosts.
Row 2: The virtual link BC is between host 2 and host 3,
which is the path between leaf 01 (host 2 location) and leaf
02 (host 3 location). The path between leaf 01, and spine 02
(port 1), spine 03 (port 2) and leaf 02 is selected. Data in row
3 and row 4 are explained similarly as in row 2.

C. Evaluation results
The CEVNE LiM performance is evaluated by analyzing its
implementation results and comparing them with those of the
k-shortest path link-mapping algorithm [14]. The metrics
used to compare the behavior of the two algorithms are the
total runtime, acceptance ratio, average path length, average
node stress, average link stress, and energy consumption.
These metrics are selected because they reflect the three
CEVNE objectives: cost saving, energy saving and
congestion awareness. The following subsections will
examine each of the results.

1) Runtime
The runtime results show that CEVNE LiM converged faster
than the k-shortest path algorithm. This explains the simple
path selection algorithm of CEVNE LiM. In the Alevin
framework, the runtime includes the configuration time for
each test run. In ONOS controller, the configuration is run
once, and its runtime is calculated separately. It takes the
CEVNE LiM application about 3ms to embed each virtual
link; and the total runtime is the multiplication of the number
of virtual links in the VNR. Fig. 8 shows that k-shortest path
runtime is in the range of 60–70ms for the five test cases,
while CEVNE LiM runtime is in the range of 10–30ms; 30ms
is when the CEVNE LiM application is first loaded. This
shows that the CEVNE LiM achieves it cost saving objective
with the quick response time.

2) Average path length
The average path length results show that the CEVNE LiM
approach always have the shorter substrate path length
compared to the k-shortest path algorithm. This is the result
of the CEVNE LiM application searching for the shortest
paths between two end-points. The k-shortest path approach
configures the fabric as a normal bi-directed graph, and

searches in the whole graph for each virtual link. This affects
both the path length and the runtime.
In Fig. 8, the CEVNE LiM algorithm has 2.0 as the average
path length for any substrate paths that the virtual link is
embedded on. The k-shortest path algorithm has the average
path length in the range of 3.0–4.0. This shows that the
CEVNE LiM achieves its cost saving objective, and its
energy saving objective because the longer the path, the more
active substrate nodes and more energy consumption.

Fig. 8: Results of runtime and average path length

Fig. 9: Results of average node stress, link stress, and energy consumption.

3) Average node stress, average link stress

In the Alevin framework, the average node stress is the ratio
of total of all node stress over the total number of substrate
nodes. Similarly, the average link stress is the ratio of total of
all link stress over the total substrate links. These are similar
to the average node utilization and average link utilization
introduced in [15].
In CEVNE, the average node stress and average link stress
are calculated for leaf and spine switches on the fabric. If each
virtual node of a virtual link is connected to a different leaf
switch, the average node stress involves three nodes: two leaf
switches and one spine switch. The average link stress
involves two substrate links: links between each leaf and the
spine switches. For congestion control purposes [16], the link
mapping is spread out to different leaf and spine switches as
implemented in the path selection algorithm. The average
node stress and the average link stress results show that the
CEVNE LiM algorithm distributes the link mapping onto
more substrate nodes and links than the k-shortest path
algorithm.
In Fig. 9, the k-shortest path algorithm has the average node
stress in the range of 0.2–0.3 while the CEVNE LiM’s
average node stress is in the range 0.38–0.55. The k-shortest
path algorithm has the average link stress in the range of
0.18–0.3 while the CEVNE LiM’s average link stress is in the
range 0.25–0.38. The CEVNE LiM has on average 0.2 (20%)
more node stress than the k-shortest path approach. The

CEVNE LiM has on average 0.1 (10%) more link stress than
the k-shortest path approach.

4) Energy consumption
The energy consumption results show that CEVNE LiM
algorithm achieves its energy saving objective as specified in
2) average path length. As CEVNE LiM has shorter average
path length than the k-shortest path algorithm, CEVNE LiM
has less number of active nodes along the paths, resulting in
less power consumption. In Fig. 9, the energy consumption
of CEVNE LiM is 10 units lower on average compared to the
k-shortest path algorithm.

5) Acceptance ratio
The acceptance ratios of both algorithms are the same, and at
the 100% in all test cases. The results of runtime, average
path length, average node stress, average link stress, and
energy consumption show that CEVNE LiM algorithm
achieves three objectives, and prevails the k-shortest path
algorithm in these objectives.

D. Discussion
CEVNE LiM can be applied to NFVI, SFC, can be considered
as the functional component of RFB specialized in LiM. The
virtual link embedding process is a necessary step in the
virtual network function provisioning, placement in NFV,
SFC; NFVI is also SDN-based, hence, the CEVNE LiM can
be leveraged in these processes, in which the bandwidth
requirement is specified as a latency constraint, to offer cost
saving, energy saving, congestion avoidance objectives.
CEVNE LiM can be extended to be the functional component
of the RFB specialized in LiM [17].
CEVNE LiM focuses on three objectives concurrently on the
SDN network. The CEVNE LiM application realizes each
objective as a micro-service and implements the path
selection algorithm to search for the selected path based on
each objective result. The evaluation shows that CEVNE LiM
achieves its three objectives of cost saving, energy saving and
congestion aware.
The choice of SDN and SR technologies, and SDN-SR based
leaf-spine fabric as the substrate network. The CEVNE LiM
chooses the SN that is configured as a leaf-spine fabric using
the SR application, which is the next generation fabric, where
the automation is introduced via the programmability and
service composition on top of the SDN controller. The
CEVNE LiM approach is based on SDN paradigm that
realizes it as SDN applications that are modular, composable,
and extendable [18].

VII. CONCLUSION
CEVNE link mapping algorithm is proposed to minimize the
cost, the energy and to avoid the network congestion in
allocating substrate link resources to virtual links. Based on
SDN and SR technologies, the CEVNE LiM is an active
virtual link mapping process that can interact with the routing
rules on switches to select substrate paths for the virtual link
mapping. It is completely different from the passive link
mapping algorithms in the traditional VNE. The CEVNE
LiM receives the node mapping results from the CEVNE
NoM algorithm and the VNR topology as inputs and searches
the substrate paths that satisfy the virtual links’ bandwidth
demands and objective constraints based on its path selection

algorithm. In the evaluation, the CEVNE LiM algorithm is
compared with the k-shortest path algorithm in the Alevin
framework. The results of both approaches are analyzed
according to the runtime, average path length, average node
stress, average link stress, and energy consumption. The
evaluation shows that the CEVNE LiM algorithm prevails the
k-shortest path algorithm in achieving all three objectives: the
cost saving, the energy saving and the congestion avoidance.
CEVNE LiM can be applied to NFVI, SFC, can be considered
as the functional component of the RFB specialized in LiM.

REFERENCES
[1] D. Günther, R. Henjes, B. Reuther, and P. Müller, "German-lab

experimental facility.," presented at the Future Internet-FIS 2010,
2010.

[2] N. M. K. Chowdhury and R. Boutaba, "A survey of network
virtualization.," Computer Networks, vol. 54, no. 5, p. 15, 2010.

[3] A. Fischer, J. F. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
"Virtual Network Embedding: A Survey," Communications Surveys &
Tutorials, IEEE, vol. 15, no. 4, p. 19, 2013.

[4] E. Zahavi, A. Shpiner, O. Rottenstreich, A. Kolodny, and I. Keslassy,
"Links as a Service (LaaS): Guaranteed tenant isolation in the shared
cloud," in Proceedings of the 2016 Symposium on Architectures for
Networking and Communications Systems, 2016, p. 12: ACM.

[5] A. Marotta, E. Zola, F. D'Andreagiovanni, and A. Kassler, "A Fast
Robust Optimization-based Heuristic for the Deployment of Green
Virtual Network Functions. ," Journal of Network and Computer
Applications, vol. 95, p. 12, 2017.

[6] S. R. Chowdhury et al., "Revine: Reallocation of virtual network
embedding to eliminate substrate bottlenecks," presented at the
IEEE/IFIP Integrated Network Management Symposium (IM). 2017.

[7] X. Li, C. Lung, and S. Majumdar, "Green spine switch management for
datacenter networks," Jounal of Cloud Computing: Advances, Systems
and Applications vol. dec 2016, p. 19, 2016.

[8] E. Oki, Linear programming and algorithms for communication
networks: a practical guide to network design, control, and
management. CRC Press., 2012

[9] M. Pham and D. B. Hoang, "SDN applications-The intent-based
Northbound Interface realisation for extended applications," presented
at the NetSoft Conference and Workshops, Seoul, Korea, 2016.

[10] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, F. De Turck, and S.
Latre, "Dynamic resource management in SDN-based virtualized
networks," in Network and Service Management (CNSM), 2014 10th
International Conference on, 2014, pp. 412-417.

[11] P. Tsai, C. Tsai, C. Hsu, and C. Yang, "Network monitoring in
software-defined networking: a review," IEEE Systems, vol. 12, no. 4,
p. 12, 2018

[12] C. Kim et al. (2016, July 5th). Inband network telemetry (INT)
specification. Available: http://p4.org/wp-
content/uploads/fixed/INT/INT-current-spec.pdf

[13] S. Das. (2016). Atrium. Available: https://github.com/onfsdn/atrium-
docs/wiki

[14] M. T. Beck, C. Linnhoff-Popien, A. Fischer, F. Kokot, and H. de Meer,
"A simulation framework for virtual network embedding algorithms.,"
presented at the Telecommunications Network Strategy and Planning
Symposium (Networks), 2014.

[15] M. Chowdhury, M. R. Rahman, and R. Boutaba, "Vineyard: Virtual
network embedding algorithms with coordinated node and link
mapping," IEEE/ACM Transactions on Networking (TON), vol. 20, no.
1, p. 14, 2012.

[16] D. Medhi, Network routing: algorithms, protocols, and architectures.
Morgan Kaufmann., 2010.

[17] A. Mimidis-Kentis et al., "The Next Generation Platform as A Service:
Composition and Deployment of Platforms and Services," Future
Internet, 2019

[18] D. B. Hoang, "Software Defined Networking – Shaping up for the next
disruptive step?," Australian Journal of Telecommunications and the
Digital Economy, vol. 3, no. 4, p. 15, 20

http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
https://github.com/onfsdn/atrium-docs/wiki
https://github.com/onfsdn/atrium-docs/wiki

	I. Introduction
	II. related work
	III. CEVNE virutal link embedding problem statement
	A. Problem statement
	B. Objectives
	C. Problem formulation
	D. Motivation for a heuristic

	IV. proposed architecture to realize CEVNE LiM
	A. Services to handle link embedding multiple objectives
	1) Services implementing cost saving, energy saving, congestion avoidance
	a) Cost saving:
	b) Energy saving
	c) Congestion avoidance

	2) Monitoring application
	3) Path selection strategy

	V. cevne link embedding algorithm and realization
	A. CEVNE link embedding algorithm
	B. CEVNE LiM application realization

	VI. performance evaluation
	A. Test scenario setup
	B. CEVNE execution platform
	C. Evaluation results
	1) Runtime
	2) Average path length
	3) Average node stress, average link stress
	4) Energy consumption
	5) Acceptance ratio

	D. Discussion

	VII. conclusion
	References

