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Abstract—The concept of complementary Nyquist pulse is
introduced in this paper. Making use of a half rate Nyquist pulse
and its complementary one, a dual pulse shaping transmission
scheme is proposed, which achieves full Nyquist rate transmission
with only a half of the sampling rate required by conventional
Nyquist pulse shaping. This is essential for realizing high-speed
digital communication systems with available and affordable data
conversion devices. The condition for cross-symbol interference
free transmission with the proposed dual pulse shaping is proved
in theory, and two classes of ideal complementary Nyquist pulses
are formulated assuming raised-cosine pulse shaping. Simulation
results are also presented to demonstrate the improved spectral
efficiency with dual pulse shaping and compare other system
performance against conventional Nyquist pulse shaping.

Index Terms—Nyquist pulse, complementary Nyquist pulse,
high-speed digital communications, and data conversion devices.

I. INTRODUCTION

In conventional single carrier communication systems,
Nyquist pulse shaping at the transmitter and matched-filtering
at the receiver are used to achieve inter-symbol interference
(ISI) free transmission and maximize the received signal-to-
noise ratio (SNR)[1]. These are the two fundamental princi-
ples for digital communications. As a class of Nyquist pulses,
raised-cosine pulses are widely used for such single pulse
shaping transmission by which a root raised-cosine pulse
is used as the spectral shaping pulse at the transmitter and
the same root raised-cosine pulse is used as the matched-
filter impulse response. A roll-off factor associated with the
raised-cosine pulse determines the actual transmitted signal
bandwidth which is often wider than the data symbol rate,
resulting in reduced spectral efficiency.

With the ever growing demand for high-speed wireless
communications, it is necessary to increase the signal band-
width and improve the spectral efficiency at the same time.
For wideband wireless applications such as high-speed point-
to-point wireless backhauls and aerial backbone links [2],
millimeter wave (mm-wave) communication technology has
been proven to be a feasible solution since there is more
bandwidth to be used for wireless transmission in mm-wave
bands such as the E-band (71-76 and 81-86 GHz) which has
two 5 GHz contiguous spectra [3-4]. On the other hand, the
devices for digital-to-analog conversion (D/A) and analog-to-

digital conversion (A/D) at high sampling rate such as 10
Giga samples per second (Gsps) or higher are lacking or very
expensive. In order to achieve high-speed mm-wave commu-
nications with 5 GHz or wider signal bandwidth, higher than
5 Gsps sampling rate D/A and A/D devices must be used and
the systems have to operate with lower spectral efficiency if
the transmitted signals have slow roll-off and hence require
excess bandwidth. Adopting frequency division multiplexing
(FDM) to divide a wide bandwidth into multiple narrow bands
will inevitably result in increased system complexity as well
as reduced system performance. Faster-than-Nyquist (FTN)
signalling[5-7] has recently attracted significant attention for
achieving higher spectral efficiency, but its implementation
complexity makes it infeasible to be adopted in high-speed
communication systems with commercially available digital
signal processing hardware.

This paper proposes a dual pulse shaping (DPS) transmis-
sion scheme by which the data symbols to be transmitted are
split into two half rate data streams, each passing through a
respective pulse shaping filter. This allows for half symbol
rate D/A and A/D devices to be used to achieve full rate
transmission. The proposed DPS is different from FDM as
the two data streams have overlapped signal spectra with
DPS whereas a guard band is necessary between two narrow
band channels with FDM. Criterion for spectral shaping
pulse selection to achieve cross-symbol interference (CSI) free
between the two data streams is also revealed and proved in
theory. Based on the concept of complementary Nyquist pulse
and assuming raised-cosine pulse shaping, two classes of ideal
complementary Nyquist spectral shaping pulses satisfying the
CSI-free condition are given, i.e., the root complementary
raised-cosine pulses and their 90 degree phase shifted ver-
sions (or Hilbert transforms). Simulations of the proposed
dual pulse shaping transmission system under Gaussian and
multipath fading channels are also performed to demonstrate
the improved spectral efficiency and characterize other system
performance such as peak-to-average power ratio (PAPR) and
bit error rate (BER).

The rest of this paper is organized as follows. In Section
II, the Nyquist theorem for ISI-free transmission is revisited
and the feasibility of FTN is commented. In Section III, the
concept of complementary Nyquist pulse is introduced and



the dual pulse shaping transmission is proposed. In Section
IV, the CSI-free condition is proved and two classes of
complementary Nyquist pulses satisfying this condition are
formulated. Simulation results are given in Section V to
compare the performance between dual pulse shaping and
single pulse shaping. Finally, conclusions are drawn in Section
VI.

II. NYQUIST PULSE SHAPING AND SPECTRAL EFFICIENCY

A. Nyquist Theorem
Nyquist pulse shaping is one of the fundamental techniques

widely used in digital communications, by which the signal
pulse x (t), a combination of the transmitter filter, the trans-
mission channel, and the receiver filter (ideally a matched
filter), satisfies the ISI-free condition

x (nTs) =

{
1, n = 0
0, n 6= 0

(1)

where Ts is the symbol duration. In the frequency domain, its
Fourier transform X (f) satisfies

1

Ts

∞∑
k=−∞

X

(
f − k 1

Ts

)
= 1. (2)

Suppose that the digital communication system has a
bandwidth (single sided) B. It can be shown that only if
Ts ≥ 1

2B there exists numerous choices for X (f) such that
the superposition of the overlapping replications of X (f)
separated by 1

Ts
is a constant as indicated by (2).

The well-known Nyquist pulse is the raised-cosine (RC)
pulse given in the frequency domain as

XRC (f) =


Ts, |f | ≤ 1−β

2Ts
Ts
2

[
2 + cosπTs

β

(
|f | − 1−β

2Ts

)]
, 1−β

2Ts
< |f | ≤ 1+β

2Ts

0, otherwise
(3)

where β is called the roll-off factor and takes values in the
range 0 ≤ β ≤ 1. In the time domain, the pulse, having the
raised-cosine spectrum, is

xRC (t) =


1, t = 0
sinπ 1

2β
2
β

, |t| = Ts
2β

sinπ t
Ts

π t
Ts

cosπ βt
Ts

1−
(

2βt
Ts

)2 , otherwise

. (4)

Furthermore, in the case where the channel is ideal, if the
receiver filter is matched to the transmitter filter, both filters
will have the root raised-cosine (RRC) frequency response

XRRC (f) =
√
XRC (f)

=


√
Ts, |f | ≤ 1−β

2Ts√
Tscos

πTs
2β

(
|f | − 1−β

2Ts

)
, 1−β

2Ts
< |f | ≤ 1+β

2Ts

0, otherwise
(5)

and hence the RRC impulse response

xRRC (t)

=


1√
Ts

(
1− β + 4β

π

)
, t = 0

β√
2Ts

[(
1 + 2

π

)
sinπ 1

4β
+
(
1− 2

π

)
cosπ 1

4β

]
, |t| = Ts

4β

1√
Ts

sinπ t
Ts

(1−β)+4β t
Ts
cosπ t

Ts
(1+β)

π t
Ts

[
1−

(
4βt
Ts

)2
] , otherwise

.

(6)

B. Spectral Efficiency of Nyquist Pulse Shaping

Apparently, when β 6= 0, there is an excess bandwidth
beyond the symbol rate 1

Ts
. Defining the spectral efficiency

(SE) as the symbol rate versus the occupied signal bandwidth
(double sided), i.e.,

SE =

1
Ts
1+β
Ts

=
1

1 + β
, (7)

we see that the SE for raised cosine Nyquist pulse shaping is
always less then 1 symbol per second per Hz (s/s/Hz).

C. Fast-than-Nyquist Signalling

FTN signalling generates data symbols every ξTs, 0 <
ξ < 1, at the transmitter. With the same bandlimited Nyquist
pulse, the ISI free condition as expressed in Eq. (1) for
x (nξTs) will no longer be satisfied. Though the data rate
can be increased, additional complexity at the receiver will be
needed to deal with the interference between symbols and a
sequence of received samples must be processed to make deci-
sions. Moreover, the signal PAPR at transmitter will normally
increase, and signal synchronization and channel estimation
at the receiver will become more difficult. Obviously, for
achieving high-speed low-cost wireless communications, the
FTN technique may not be a feasible solution due to the likely
unaffordable hardware implementation cost.

III. COMPLEMENTARY NYQUIST PULSE

In order to improve the spectral efficiency and achieve
Nyquist rate transmission with low complexity, we introduce
the concept of complementary Nyquist pulse in this Section
as follows.

Consider a half Nyquist rate system where the data symbols
are transmitted at symbol rate 1

2Ts
. Denote HN (f) as the fre-

quency domain representation of a Nyquist pulse satisfying the
condition

∑∞
k=−∞HN

(
f−k 1

2T s

)
=1, where the the scaling

factor 1
2T s

is ignored for convenience. The complementary
Nyquist pulse is defined as

HCN (f) = 1−HN (f) , for− 1

2Ts
≤ f ≤ 1

2Ts
. (8)

With raised-cosine pulse shaping, HN (f) and its time
domain pulse can have the raised-cosine spectra and raised-
cosine waveforms given by

HRC (f) =


1, |f | ≤ 1−β

4Ts
1
2

[
1 + cos 2πTs

β

(
|f | − 1−β

4Ts

)]
, 1−β

4Ts
< |f | ≤ 1+β

4Ts

0, otherwise
(9)

and

hRC (t) =



1
2Ts

, t = 0
sinπ 1

2β

4Ts
β

, |t| = Ts
β

sinπ t
2Ts

πt

cosπ βt
2Ts

1−
(
βt
Ts

)2 , otherwise

(10)

respectively, where 0 ≤ β ≤ 1 is the roll-off factor.
The corresponding complementary raised-cosine spectra

and complementary raised-cosine waveforms are then have
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Fig. 1. Half rate raised-cosine spectra (a) and their corresponding time-
domain pulses (b).

the following mathematical expressions

HCRC (f) = 1−HRC (f)

=


0, otherwise
1
2

[
1− cos 2πTs

β

(
|f | − 1−β

4Ts

)]
, 1−β

4Ts
< |f | ≤ 1+β

4Ts

1, 1+β
4Ts

< |f | ≤ 1
2Ts

(11)

and

hCRC (t) =
sinπ t

Ts

πt
− hRC (t)

=



1
2Ts

, t = 0
sinπ 1

β

π Ts
β

−
sinπ 1

2β

4Ts
β

, |t| = Ts
β

sinπ t
Ts

πt
−

sinπ t
2Ts

πt

cosπ βt
2Ts

1−
(
βt
Ts

)2 , otherwise

(12)

respectively. Fig. 1 and Fig. 2 show HRC (f) and hRC (t)
as well as HCRC (f) and hCRC (t) respectively for β =
0, 0.25, 0.5, 0.75, and 1.

We see that the Nyquist spectrum and its complementary
one for any given roll-off factor demonstrate a very interesting
property, that is, the sum of the two spectra is always a
constant within the signal bandwidth equivalent to a full rate
Nyquist spectrum with zero roll-off factor. This implies that
if two independent half rate data streams are transmitted with
the Nyquist pulse shaping and complementary Nyquist pulse
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Fig. 2. Complementary raised-cosine spectra (a) and their corresponding
time-domain pulses (b).

shaping respectively, called dual pulse shaping transmission,
full Nyquist rate can be achieved without excess bandwidth.

IV. CSI-FREE CONDITION FOR DUAL PULSE SHAPING
TRANSMISSION

In general, a dual pulse shaping transmission system can
transmit two independent data streams with any pair of
spectral shaping pulses as long as the pair of spectral shaping
pulses satisfy certain ISI-free and cross-symbol interference
(CSI) free conditions.

Suppose that the symbol rate for each parallel data stream
is 1

2Ts
and the symbol interval is 2Ts. Denote the frequency

representations of the two spectral shaping pulses as H1 (f)
and H2 (f) respectively. Obviously, after matched filtering,
the pulse frequency responses |H1 (f)|2 and |H2 (f)|2 must
satisfy the Nyquist ISI-free condition

∞∑
k=−∞

∣∣∣∣H1

(
f − k 1

2Ts

)∣∣∣∣2 = 1 (13)

and
∞∑

k=−∞

∣∣∣∣H2

(
f − k 1

2Ts

)∣∣∣∣2 = 1 (14)

respectively, where a scaling factor 1
2Ts

is ignored for con-
venience. In addition, to prevent the two data streams from
interfering each other, H1 (f) and H2 (f) also need to satisfy



a further CSI-free condition. Hence, we have the following
theorem.

Theorem (CSI-free condition): The necessary and suffi-
cient condition for a dual pulse shaping transmission system
with pulse shaping spectra |H1 (f)|2 and |H2 (f)|2 to satisfy
cross-symbol interference free is that

∞∑
k=−∞

H1

(
f − k 1

2Ts

)
H∗2

(
f − k 1

2Ts

)
= 0. (15)

Proof: Consider the interference from the first data
stream to the second one. Since the matched filter used for
receiving the second data stream is H∗2 (f), the interference
caused by the signal pulse in the first data stream can be
expressed as

z (t) =

∫ ∞
−∞

H1 (f)H
∗
2 (f) ej2πftdf. (16)

At any sampling instant t = n× 2Ts, the interference is

z (n× 2Ts) =

∫ ∞
−∞

H1 (f)H
∗
2 (f) ej4πnfTsdf. (17)

Breaking up the integral into integrals covering the finite range
of 1

2Ts
, we obtain

z (n× 2Ts) =
∞∑

k=−∞

∫ (2k+1)/4Ts

(2k−1)/4Ts

H1 (f)H
∗
2 (f) ej4πnfTsdf

=
∞∑

k=−∞

∫ 1/4Ts

−1/4Ts

H1

(
f − k

1

2Ts

)
H∗2

(
f − k

1

2Ts

)
ej4πnfTsdf

=

∫ 1/4Ts

−1/4Ts

 ∞∑
k=−∞

H1

(
f − k

1

2Ts

)
H∗2

(
f − k

1

2Ts

) ej4πnfTsdf.
(18)

To ensure z (n× 2Ts) = 0 for any n, the necessary and
sufficient condition is for (15) to be satisfied.

Similarly, to ensure interference free from the
second data stream to the first one, the same
condition

∑∞
k=−∞H∗1

(
f − k 1

2Ts

)
H2

(
f − k 1

2Ts

)
=∑∞

k=−∞H1

(
f − k 1

2Ts

)
H∗2

(
f − k 1

2Ts

)
= 0 should be

satisfied.
When the Nyquist pulse shaped and complementary

Nyquist pulse shaped spectra HN (f) and HCN (f) are used
for the two parallel symbol streams in the dual pulse shaping
transmission system, the two signal pulses can be selected as
a root Nequist pulse and a Ts-delayed root complementary
Nyquist pulse, i.e., H1 (f) =

√
HN (f) and H2 (f) =√

HCN (f)e−j2πfTs . It can be verified that these two pulses
satisfy the conditions specified by Eqs. (13), (14), and (15).

Alternatively, the two pulses can be selected as H1 (f) =√
HN (f) and H2 (f) =

{
−j
√
HCN (f), f ≥ 0

j
√
HCN (f), f < 0

which is

a 90 degree phase shifted version (or Hilbert transform) of√
HCN (f). It can be also verified that these two pulses satisfy

the conditions specified by Eqs. (13), (14), and (15).
For the root raised-cosine spectra and pulses given by

HRRC (f) =
√
HRC (f)

=


1, |f | ≤ 1−β

4Ts

cosπTs
β

(
|f | − 1−β

4Ts

)
, 1−β

4Ts
< |f | ≤ 1+β

4Ts

0, otherwise

(19)

and

hRRC (t)

=


1

2Ts
− β

2Ts
+ 2β

πTs
, t = 0

β

2
√
2Ts

[(
1 + 2

π

)
sinπ 1

4β
+
(
1− 2

π

)
cosπ 1

4β

]
, |t| = Ts

2β

sinπ t
2Ts

(1+β)−2β t
Ts
cosπ t

2Ts
(1−β)

πt

[
1−

(
2βt
Ts

)2
] , otherwise

(20)

respectively, the corresponding root complementary raised-
cosine spectra and pulses are given by

HRCRC (f) =
√
HCRC (f)

=


0, otherwise

cosπTs
β

(
|f | − 1+β

4Ts

)
, 1−β

4Ts
< |f | ≤ 1+β

4Ts

1, 1+β
4Ts

< |f | ≤ 1
2Ts

(21)

and

hRCRC (t) =

1
2Ts
− β

2Ts
+ 2β
πTs

, t = 0
sinπ 1

2β

π Ts
2β

− β

2
√
2Ts

[(
1 + 2

π

)
sinπ 1

4β
−
(
1− 2

π

)
cosπ 1

4β

]
, |t| = Ts

2β

sinπ t
Ts

πt
−
sinπ t

2Ts
(1+β)−2β t

Ts
cosπ t

2Ts
(1−β)

πt

[
1−

(
2βt
Ts

)2
] , otherwise

(22)

respectively. The root complementary raised-cosine pulses
hRCRC (t) with different roll-off factors are shown in Fig.
3. We see that they are all even functions of time.

The convolution between hRRC (t) and hRCRC (t− Ts)
can be expressed as hRRC (t) ∗ hRCRC (t− Ts) =
1
πTs

β

1−(β t−TsTs
)
2 sinπ

t
2Ts

cosπβ t−Ts2Ts
which is zero at t =

±2Ts,±4Ts, · · · , meaning that there is no CSI between the
two parallel symbol streams if hRRC (t) and hRCRC (t− Ts)
are used as the transmission pulses for the two parallel symbol
streams.

Corresponding to the 90 degree phase shifted
version of hRCRC (t) with spectra HORCRC (f) ={
−j
√
HCRC (f), f ≥ 0

j
√
HCRC (f), f < 0

, the odd root complementary

raised-cosine pulses are expressed as

hORCRC (t) =

0, t = 0

−
cosπ 1

2β

π Ts
2β

+ β

2
√
2Ts

[(
1− 2

π

)
sinπ 1

4β
+
(
1 + 2

π

)
cosπ 1

4β

]
, t = Ts

2β

cosπ 1
2β

π Ts
2β

− β

2
√
2Ts

[(
1− 2

π

)
sinπ 1

4β
+
(
1 + 2

π

)
cosπ 1

4β

]
, t = −Ts

2β

−
cosπ t

Ts
πt

+
cosπ t

2Ts
(1+β)+2β t

Ts
sinπ t

2Ts
(1−β)

πt

[
1−

(
2βt
Ts

)2
] , otherwise

(23)

which are shown in Fig. 4.
The convolution between hRRC (t) and hORCRC (t)

can be expressed as hRRC (t) ∗ hORCRC (t) =
1
πTs

β

(β t
Ts
)
2−1

sinπ t
2Ts

cosπβ t
2Ts

which is zero at

t = ±2Ts,±4Ts, · · · , meaning that there is no CSI
between the two parallel symbol streams if hRRC (t) and
hORCRC (t) are used as the transmission pulses for the two
parallel symbol streams.

The above root raised-cosine and root complementary
raised-cosine pulse shaping spectra are band-limited with
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Fig. 3. Root complementary raised-cosine pulses.
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Fig. 4. Odd root complementary raised-cosine pulses.

bandwidth 1
Ts

. This means that they can jointly achieve
Nyquist rate transmission regardless of the roll-off factor. Also
note that a root complementary raised-cosine spectrum has
a sharp transition at the two edges of the pass-band, which
represents an ideal condition to ensure ISI and CSI free.
In fact, transition from pass-band to stop-band is necessary
for any practical pulse, and hence equalization is generally
required to cancel both ISI and CSI.

V. A HALF SAMPLING RATE DUAL PULSE SHAPING
TRANSMISSION SYSTEM

A. System Model

With dual pulse shaping transmission, the data rate in
each parallel data stream only needs to be half of the total
data rate. This allows for lower sampling rate to be used in
the digital domain. Such a dual pulse shaping transmission
system is shown in Fig. 5. Suppose that the data symbol
rate is 1

Ts
. The D/A and A/D converters in the respective

transmitter and receiver only require a sampling rate of 1
2Ts

.
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u
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Fig. 5. Block diagrams of transmitter (upper) and receiver (lower) of half
sampling rate dual pulse shaping transmission system.

The input data bits after encoding and symbol mapping are
split into two streams by serial-to-parallel conversion (S/P),
followed by dual pulse shaping. The spectral shaping pulses
can be ideally selected as the non-causal complementary
Nyquist pulse pairs. Other practical (causal) pulses can be
selected as long as proper equalization techniques (which will
be presented separately [8]) are used in the receiver. After
equalization, the received two parallel data streams are merged
into one by parallel-to-serial conversion (P/S), followed by
demapping and decoding to retrieve the output data bits.

B. Performance Simulation Results

To demonstrate the feasibility and performance of the
proposed dual pulse shaping transmission system for high-
speed wireless applications, we now present the simulation
results assuming a 25 Gbps millimeter wave communication
system with 5 GHz bandwidth operating in the 71-76/81-86
GHz E-band. The sampling rate required for this system is
only 2.5 Gsps which is easily available with commercial A/D
and D/A devices at low cost. The 64-ary quadrature amplitude
modulation (64-QAM) is used to provide 6 bps/Hz spectral
efficiency over 5 GHz bandwidth, achieving 30 Gbps raw data
rate including some necessary overhead for synchronization,
channel estimation, and other system functionalities.

We firstly compare the spectral efficiency between the dual
pulse shaping and conventional raised-cosine Nyquist pulse
shaping referred to as single pulse shaping thereafter. As
shown in Fig. 6, with single pulse shaping, the spectral effi-
ciency drops from 1 to 0.5 symbols/second/Hz when the roll-
off factor varies from 0 to 1, whereas the spectral efficiency
is always 1 symbol/second/Hz regardless of the roll-off factor
for dual pulse shaping.

Secondly, the peak-to-average power ratio is compared
between dual pulse shaping and single pulse shaping, and
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the results are shown in Fig. 7. We see that the single
pulse shaping generally has better PAPR performance than
dual pulse shaping. With roll-off factor of 1, both schemes
demonstrate their respective best performance. However, for
single pulse shaping, this comes with the maximum excess
bandwidth. As we can always use larger roll-off factor for
dual pulse shaping, the performance gap can be significantly
reduced.

Finally, the BER performance (uncoded) is compared be-
tween the two pulse shaping schemes using zero-forcing
(ZF) and minimum mean square error (MMSE) equalizations
respectively. As seen from Fig. 8, both schemes demonstrate
the same performance in Gaussian channel with only additive
Gaussian noise. In multipath fading channel where a two-ray
model is assumed and the second path has random reflection
with 3 dB lower average power and a delay of 6 ns, the
dual pulse shaping scheme has slight performance degradation
which is almost negligible especially when the more practical
ZF equalization is used.
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Fig. 8. Bit error rate (BER) comparison (solid lines for ZF equalization and
dashed lines for MMSE equalization).

VI. CONCLUSIONS

By introducing the concept of complementary Nyquist
pulse, a dual pulse shaping transmission scheme is proposed,
which can achieve Nyquist rate with half rate sampling.
The cross-symbol interference free condition is proved in
theory and two classes of ideal ISI and CSI free spectral
shaping pulses are formulated assuming the root raised-cosine
spectra. Simulation results show that the dual pulse shaping
transmission system can provide higher spectral efficiency
with only slight degradation on PAPR and negligible impact
on BER performance as compared with conventional Nyquist
pulse shaping. For achieving extremely high-speed wireless
communications with tens or even hundreds of Gigabits per
second data rate when high-speed data conversion devises
are unattainable or costly, the proposed dual pulse shaping
transmission is certainly a viable and low cost solution.
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