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ABSTRACT Many sampling strategies in Sampling-Based Planning (SBP) often consider goal and obstacle
population and may however become less efficient in large and cluttered 3D environments with a goal
distanced away. This paper presents a search-space-Reduced optimal SBP approach (RSBP) for a rigid body.
This reduced space is found by a sparse search tree, which is enabled by a Metric Function (MF) built on a
neural network. The offline-learntMF estimates theminimum traveling cost between any two nodes in a fixed
small workspace with various obstacles. It allows connections of two sparse nodes without path planning,
where the connections represent the traveling costs (not paths). It is proven that the asymptotic optimality is
preserved in the RSBP (assuming a zero-error MF) and the optimality degeneration is bounded (assuming a
bounded-error MF). The computational complexity during planning is shown linear to the Lebesgue measure
of the entire search space (assuming the same sampling density across environments). Numerical simulations
have shown that in tested large and cluttered environments the RSBP is at least as fast as the bidirectional
fast marching tree* and informed rapidly exploring random tree*, with planned paths of similar optimality.
The results also have shown the RSBP’s improved scalability to large environments and enhanced efficiency
in dealing with narrow passages.

INDEX TERMS Learning, path planning.

I. INTRODUCTION
This paper studies the optimal path planning problems of
a rigid body in large and cluttered environments, aris-
ing from many search and inspection applications, e.g.,
an autonomous underwater vehicle navigates in a large cave
populated with stalactites [1], an unmanned aerial vehicle
flies through forests [2]. Optimal Sampling-Based Planning
(SBP) methods have been state-of-the-art for planning an
optimal collision-free (also referred to as feasible) path in
high dimensional spaces with complex obstacles, outper-
forming their exact counterparts, such as visibility graph [3],
Voronoi diagrams [4], and cell decomposition [5]. These SBP
planners, e.g., Probabilistic RoadMap* (PRM*) [6], Rapidly-
exploring Random Tree* (RRT*) [6], Informed RRT* [7],
Fast Marching Tree* (FMT*) [8], and Bidirectional
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FMT* (BFMT*) [9], typically grow a graph (a tree or a
roadmap) with collision-free random nodes, which are con-
nected via feasible and optimal paths (also referred to as
motions).

In cluttered environments, the commonly-used straight-
line motion might be quite short, therefore the aforemen-
tioned planners require dense sampling in a large search
space. Other choices of motions require solving optimization
problems and are thus not efficient [10]. This paper seeks to
reduce the search space via an offline-learnt Metric Function
(MF), for improving the runtime efficiency of optimal SBP
in large and cluttered environments.

After the first appearance of optimal SBPmethods, tremen-
dous effort has been made to improve their efficiency from
varying the key components: (i) nearest neighbor search [11];
(ii) graph connection [12]; (iii) collision checking [13], [14];
and (iv) node sampling [15], [16]. Besides, parallelizing sam-
pling (expanding two trees from the start and the goal) and
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FIGURE 1. Illustration of a reduced search space obtained from RSBP
(better viewed in color).

running multiple planners simultaneously in parallel threads
have been orthogonal effort to aforementioned [17], [18].

The effectiveness of SBP is determined by how much the
graph captures the information on connectivity and optimal-
ity of the planning problems. The effectiveness is therefore
determined by samples’ distribution and sampling strate-
gies. Other than commonly used uniform sampling, many
sampling heuristics have been designed for special scenar-
ios or purposes, such as ‘‘medial axis of Voronoi graphs’’
for capturing the skeleton of the feasible configuration
space [19], ‘‘boundary’’ for increasing probability in having
samples near boundaries [20], ‘‘bridge-test’’ for generating
samples in narrow passages [21], and ‘‘goal biasing’’ for
favoring search towards the goal region. Multiple aforemen-
tioned heuristics are combined for comprehensive purposes.

Some sampling strategies iteratively and adaptively change
their bias based on the statistics of the nodes previously
sampled. Expansive space trees explore the search space
by first measuring the density of the explored space, and
then biasing exploration towards some less explored space.
Resolution-complete SBP estimates the failure frequency of
tree expansions [22] for more effective exploration. A gen-
eralized Voronoi diagram is often employed to search for
free space in BFMT* [23]. Some other strategies iteratively
sample in the region confined by the current-best cost (via the
triangle inequality in Euclidean spaces) and then search for a
better solution [7].

Limiting or avoiding sampling in the non-optimal regions
is essential. However, such requirement ends in a dilemma:
knowing that some regions are non-optimal requires sam-
pling in these regions. Due to short motions of straight
lines, dense sampling is necessary in cluttered environments
(as shown in Fig. 1) to sufficiently reject some non-optimal
regions. As pointed out earlier, other options in connecting
samples involve directly solving a number of non-trivial
control or optimization problems and are not efficient for
optimal SBP.
Contributions: In this study, we seek the possibility

of searching for optimal regions (vice versa non-optimal
regions) via building a sparse tree, before planning an optimal
and detailed path. This detailed path is the output of the
RSBP algorithm and is usually termed as ‘‘path’’ in any SBP

(See Definition 1 in Section II). Here the prefix ‘‘detailed’’ is
used to distinguish a sparse path that is introduced later in (ii)
and formally defined in Section IV. The optimal region is a
reduced search space that is guaranteed in probability one to
contain a path that is optimal or sub-optimal (with bounded
optimality degeneration). The contributions of this paper are
itemized as follows.

(i) An offline-trained Metric Function (MF). It is assumed
that the obstacles in a 3D environment are known without
error. Rather than using the obstacle information purely in
a black-box fashion, we represent the obstacles by 3D occu-
pancy grids and directly use them as a part of the input to
the MF. The limitations of this assumption and the grid repre-
sentation will be discussed in Section VII. The proposed MF
uses the information of the obstacle occupancy within a small
fixed-size workspace (also referred to as a cell) to evaluate
the minimum traveling distance and reachability between any
two nodes in that cell. The reachability between two nodes is
‘‘true’’ if a feasible path exists to connect them.

The core of the MF consists of a Contractive AutoEn-
coder (CAE) and a Fully Connected Network (FCN). The
CAE encodes an arbitrary environment (obstacle occupancy)
in a lower-dimensional space. The CAE is a widely-used
technique in representation learning of 2D images and
3D geometries [24]. The FCN takes in the environment
encoding with the configurations of a node pair as the
input. It outputs the evaluations of the minimum traveling
distance and reachability. This MF is offline trained based
on the planning results of a large number of randomly-
generated problems in a cell (i.e., randomizing the obstacles
and the node pair). The planning results are obtained by the
PRM* method [6], [25].

(ii) Search-space-Reduced SBP (RSBP). The RSBP is
enabled by the offline-trained MF. In runtime, the RSBP
consists of two stages. Stage I first decomposes the large
workspace into cells of a same size, then uses the learnt MF
to generate a sparse tree, where sparse nodes are sampled
on the surfaces of these cells, and at last searches globally
for an optimal sparse path. The sparse path is composed of
some sparse nodes. The sparse tree is a graph capturing the
connectivity and traveling cost between sparse nodes. The
reduced search space is the union of cells that the found sparse
path goes through, as shown in Fig. 1 (the space is smoothed
for the illustration purpose). Stage II plans a detailed path
within the obtained reduced space by any classical SBP.

These nodes on this found sparse path are referred to as the
activated nodes. In contrast to the aforementioned detailed
path, the sparse path does not provide collision-free and
sufficiently-dense interpolations between consecutive acti-
vated nodes. The straight-line connections between the con-
secutive activated sparse nodes are very likely to collide with
obstacles. In Stage I, instead of using optimal and feasible
motions to connect sparse nodes, we only utilize the learnt
MF to estimate the value of minimum traveling distance and
the reachability between them. The detailed collision-free
motions between the consecutive sparse nodes are neglected
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in Stage I, which significantly reduces the number of calls to
sample nodes, check collisions, and connect nodes.

(iii) Properties of the RSBP planner (in runtime). 1: It is
shown that the search space can be reduced by a factor of
v/(uM ), where v (u) is the Lebesgue measure of the search
space in the entire workspace (in the cell) and M is the
number of the cells the sparse path goes through. 2: The
computational complexity of the RSBP is O(v), given a fixed
sampling density. The state-of-the-art optimal SBP typically
offers O(v log v) [6]. 3: In addition, the resultant RSBP is
proven to offer typical asymptotic optimality by assuming
the trained MF has zero estimation error. 4: The optimal-
ity degeneration due to the MF estimation error (assumed
bounded) is shown bounded.

(iv) Validation through numerical simulations. 1: Sim-
ulation results have demonstrated that in tested large and
cluttered environments the proposed RSBP is at least as fast
as the BFMT* and the Informed RRT* while producing
paths of similar optimality. 2: The scalability of the RSBP
is demonstrated through tests in cluttered environments of
growing sizes. 3: Through introducing additional data on cells
with narrow passages during offline training, the MF could
estimate costs of optimal paths through narrow passages,
making the RSBP more efficient than BFMT* and Informed
RRT* in finding narrow passages. This results also show that
the capability of the RSBP could be potentially enhanced
by including more data. It may allow reducing efforts
in designing and combining scenario-specific sampling
strategies.
Related work: The Informed RRT* restricts search in a

subspace confined by the cost of the current-best solution
and iteratively increases the density of samples in the sub-
space [7]. Batch Informed Trees* use an informed search
strategy to only consider the subspace that could provide a
better solution [16], which requires an initial feasible solu-
tion. However, it might be difficult to have a feasible initial
solution in a cluttered environment. The heuristics often result
in a conservative reduction in the search space since the
obstacles are not directly taken into account. Recently, a deep
neural network has been employed to offer better sampling
allocations in more likely regions, through biasing sampling
towards these regions via learnt sampling distributions [15].
However, it requires to encode all obstacles in the entire
workspace at once and is thus not suitable for large environ-
ments.

Learning generative models or extract features for 3D
objects from data has been an active field. It seeks a
lower-dimensional representation of object geometries (also
referred to as encoding) [24], [26]. While point clouds might
be a more general representation for obstacles, this paper
employs a grid representation. The grid representation is
an ordered structure and yields an easier loss function for
training. A point cloud is often an unordered set and requires
solving optimization problems to calculate the training losses.
Thus it is more challenging to train the MF if a point cloud
is adopted [27]. We seek a model on 3D grid objects for

generating environment encodings that are suitable for train-
ing the MF.

Using learning-based tools for planning has been explored
in VF-RRT [28], which is a tree-based motion planner
that minimizes the so-called cost-to-go (upstream cost). The
upstream cost is integrated over a vector field and kinody-
namic constraints are encoded in the estimated cost. However,
no obstacle information is considered, therefore this cost
estimation is not feasible to generate a sparse tree for large
cluttered environments. The proposed study is orthogonal
to [28].

Navigation of a robot using networks has also been stud-
ied, where many approaches take in raw images from cam-
eras or distance data from sonar sensors. Then through fuzzy
inference systems or recurrent neural networks, the system
outputs high-level commands, e.g., searching for a goal,
avoiding obstacles, and/or low-level control, e.g., maintain-
ing heading, turning, adjusting forward speed [29]. Graph
neural network models have also been investigated to solve
planning problems, which often require a graph representa-
tion of the environment and encode it into a neural network
structure [30]. Vector-based navigation using grid-cell repre-
sentations has been discussed in [31].

This paper is organized as follows. The problem formu-
lation is given in Section II, followed by the MF structure
and its training procedure in Section III. Then, the proposed
RSBP is presented and discussed in Section IV. After that,
the analysis on the asymptotic optimality, the bounded opti-
mality degeneration, and the computational complexity are
given in Section V. Results on numerical simulation are
summarized and discussed in Section VI. At last, discussions
on limitations and future work can be found in Section VII,
followed by conclusion in Section VIII.

II. PROBLEM FORMULATION
This paper considers the problems of planning an optimal
path of a rigid body from its initial configuration q0 ∈ SE(3)
to its goal region G ⊂ SE(3) in an obstacle-populated
3D workspace. A workspace with an obstacle population is
referred to as an environment. The workspace is defined as
W , [0, L] × [0, D] × [0, H ] ⊂ R3, where L ∈ R+,
D ∈ R+, and H ∈ R+.

Let the robot configuration be denoted as q = [xT , εT , η]T

in the 6-dimensional manifold SE(3) (embedded in a d = 7-
dimensional Euclidean space), where x = [x, y, z]T denotes
the body’s translational coordinates, and ε and η are the
quaternion representation of the body’s orientation in the iner-
tial frame. Let A(q) denote the closed subset of W occupied
by the rigid body at the configuration q ∈ C, where C , {q ∈
SE(3) | A(q) ⊂ W} is the entire configuration space (also
referred to as the entire search space). The Lebesgue measure
v of the search space C is typically determined by L, D, and
H , assuming no restriction on the body orientation.

The workspace W is populated by N rigid obstacles,
B1, . . . ,BN , where N increases as W grows. The obstacle
geometries and locations can be represented by a point cloud
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from laser scans and SLAM algorithms [32]. Their geome-
tries and locations are assumed known without error in this
study, the limitations from this assumption will be discussed
in Section VII. A configuration q is collision-free or feasible
if the rigid body placed at q does not intersect with any
obstacle in the workspace. Let Cfree , {q ∈ C|Bi ∩ A(q) =
∅,∀ i = 1, · · · ,N } denote the collision-free configuration
space, and Ccfree , {q ∈ C|q /∈ Cfree} the collision-not-free
configuration space. In the remainder of this paper, a set with
the superscript c denotes the complementary set.
Definition 1 (Path or Detailed Path): A path s(τ ) is a

mapping from [0, 1] to C. This path is also referred to as a
detailed path.
Notice that the prefix ‘‘detailed’’ is used to distinguish a
sparse path that is formally defined in Section V. A sparse
path is not suitable for low-level controllers. It is because that
the nodes of a sparse path are not sufficiently dense and the
straight-line connection between two consecutive nodes are
very likely to collide with obstacles.
Definition 2 (Strong and Weak Clearance) [6]: A path has

strong δ clearance if the minimum distance from the rigid
body along this path to the obstacles is δ. A path s is said to
have weak δ clearance if there exits a homotopic transform
π (α), where α = [0, 1], such that π (α = 0) = s, π (α = 1)
has strong δ-clearance, and π (α ∈ (0, 1]) has strong δα-
clearance.

This study seeks a planning approach that scales well to L,
D, and H and that solves a number of the following problems
for a given rigid-body robot and a fixed objective function
J (s) to minimize, where J (s) is the accumulated weighted
translational and rotational distances.
Problem 1: Given a workspace W with cluttered obsta-

cles, an initial configuration s(0) = q0 ∈ C, and a goal region
G ⊂ C, find a collision-free path s, i.e., s(τ ) ∈ Cfree, 0 ≤
τ ≤ 1 such that s(1) ∈ G and J (s) is minimized. The optimal
solution s of the problem is assumed weak-δ-clearance if
exists.

III. RSBP: OFFLINE TRAINED MF
Building a sparse search tree requires estimating minimum
traveling distance between two sparse nodes, which are most
likely interfered by multiple obstacles. This distance esti-
mation may be obtained by solving constrained optimiza-
tion problems or by using a feedback controller, which is
either inefficient, non-optimal, or unreliable for real-time
applications.

In this section, we present a neural network that is trained
offline and is suitable to learn theMF for estimatingminimum
distance and reachability between any two nodes within a
smaller workspace (also referred to as a cell) ω , [−l, l]×
[−d, d] × [−h, h], where l ∈ R+, d ∈ R+ and h ∈ R+.
We define the configuration space associated with this cell as
ζ , ω× SO(3). The Lebesgue measure u of ζ is determined
by l, d , and h since the range of the body orientation is fixed.
Notice that the discussion in this section is restricted to

such a cell. The minimum traveling distance between two

nodes in this cell is determined by four factors. They are
(i) the geometry of the rigid bodyA, (ii) the obstacle geome-
tries in ω, (iii) the configurations of this two nodes (p1 and
p2 in ζ ), and (iv) a definition of the minimum distance
(i.e., the Lagrangian in J (s)). Notice that p1 and p2 are
any pair of randomly sampled nodes in this cell. In this
paper, the Lagrangian in J (s) is a given weighted sum of
the translational distance and the rotational distance.Whether
this study can be extended to other Lagrangian needs further
investigation. It is practical to assume a fixed body geometry
and a fixed Lagrangian in J (s) for a given robot. These fixed
factors are referred to as internal characteristics. Factors (ii)
and (iii) vary among planning problems and they are referred
to as external factors.

In addition to considering two nodes (p1 and p2), the MF
takes in the obstacle occupation as a part of the input. In this
paper, the obstacle occupation is represented by 3D grids. It is
straight-forward and quick to convert points clouds to occu-
pancy grids. Each grid can take the value from 0 to 1, with
1 being 100%-sure occupied. In this paper no uncertainties
are associated with obstacles, therefore each grid can only be
0 or 1. Given a fixed cell and the number of the grids, the res-
olution of the obstacle representation is determined. Here
the obstacle representation is also referred to environment
representation. Let o ∈ χ denote the obstacle occupation
for ω, where χ is the set of all possible occupations. Then,
the proposed MF offers an estimation of minimum traveling
distance between two nodes and is denoted as

d : χ × ζ × ζ → R≥0, (1)

where R≥0 denotes the set of all non-negative real numbers.

A. METRIC FUNCTION STRUCTURE
The encoding of the environment in w is critical to learning
the MF. In this paper, the small environment in w is converted
into a × a × a occupancy grids, where a is the number of
grids along each axis. The limitations and the resolution loss
from the grid representation will be discussed in Section VII.
However, the grid representation results in an ordered struc-
ture in a high-dimensional space. The concatenation of this
representation and the sample configurations (χ × ζ × ζ ) is
not suitable as the input to the MF. In this paper, we use a
Contractive AutoEncoder (CAE) to capture an encoding e of
o in a b-dimensional vector space E (latent features) [24]. The
magnitude of the representation is also penalized (contracted)
during the network training. Then the encoding (highlighted
in orange in Fig. 2) is aggregated with two sample config-
urations, resulting in a (b + 2d)-dimensional encoding of
E × ζ × ζ , where d = 7 is the dimensions of q. It is
possible that the distance between two nodes is infinite when
no feasible path between them is available. As a result,
the network outputs two elements, one estimating the possi-
bility of a feasible path and the other estimating the minimum
distance.
The entire network structure is shown in Fig 2, which

consists of two subnetworks: a CAE and a Fully Connected
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FIGURE 2. Neural network structure of the MF.

TABLE 1. CAE parameters (a = 32,b = 48).

Network (FCN). The CAE takes in the a × a × a grid
representation of w. The encoder of the CAE consists of four
convolutional modules followed by a fully connected layer
that produces an encoding. Each convolutional module starts
with a 3D convolution layer, followed by a batch normal-
ization layer, a ReLU activation layer, and a max pooling
layer. The decoder takes in this encoding and maps it back
to a×a×a grids through five deconvolution modules, which
starts with a deconvolution layer, followed by a bias layer,
a batch normalization layer, and a ReLU activation layer
(except the last module). The last convolution layer employs
a sigmoid activation layer over a ReLU layer.

In the convolution and deconvolution modules, the stride
in all directions is 1, the padding of style is ‘‘same’’, the max
pool size is 2 in all directions. The number of the filters
and the kernel sizes vary and are summarized in Table 1,
with a and b being 32 and 48, respectively. The choice of a
and b will be discussed in the next subsection.
The encoding is concatenated with two node configura-

tions to create an input to the FCN. This network consists of
5 dense layers. Each layer is followed by a dropout layer. The
sizes of the dense layers and the dropout rates are summarized
in Table 2. Notice that the dropout rate is set to 0.2 in order to
avoid overfitting in training and to suppress arbitrary errors
in the MF evaluations as shown in Fig. 5.

B. TRAINING DATA
We assume that the number of obstacles is a Poisson random
variable with its intensity proportional to the volume of w,

TABLE 2. FCN parameters (a = 32,b = 48).

FIGURE 3. Examples of paths from PRM* and obstacles.

e.g., expected number of trees in a forest might be propor-
tional to the size of the forest. Therefore, increasing the size
of w (i.e., ζ ) results in more obstacles. With the same grid
resolution, the number of grids increases, which in return
requires more training data and introduces more difficulty in
training. The advantages from a larger w include allowing
more sparse samples and fewer MF evaluations in Stage I.
On the other hand, decreasing the size of w leads to fewer
obstacles and less-various environments, thus fewer training
data and less-difficult training. However, samples in Stage I
will be less-sparse, requiring more samples and more calls of
theMF evaluations. This paper uses a small size ofw such that
most of the optimal paths between any two nodes on surfaces
of w are not straight lines as shown in Fig. 3. In this way,
the MF captures optimal detour information, and the size of
w considered is still small for the CAE.
In this study, the robot body is box-shaped with its dimen-

sions being 0.75 × 0.5 × 0.25 [m3], which is similar to the
underwater robot developed at the University of Technology
Sydney. Only box-shaped obstacles are considered. For each
box, the lengths of three sides and the positions are indepen-
dently uniformly sampled from [1, 5]3 [m3] and [−6, 6]3 [m3]
respectively. While the roll and pitch angles of each obstacle
are zeros, the yaw angle is uniformly sampled from [0, 2π ].
The number of boxes is randomly generated from a Poisson
distribution with its intensity being 5. Also notice that due to a
high possibility of boxes being overlapping, the cell contains
various concave obstacles.

In this paper, we chose the cell size as [−3, 3]3 [m]3, then
after trial and error, we set a and b as 32 and 48, where a
is designed based on the obstacle complexity and compu-
tational power, and b is determined by the accuracy of the
obstacle reconstruction and the compactness of the encoding.
Limitation of this setting will be discussed in Section VII.
Such choice of obstacle populations might not be realistic
but makes obstacle generation easy and collision query quick
when the PRM* is applied to create training data.

VOLUME 7, 2019 153925



W. Lu, D. Liu: Scalable SBP Path Planning Approach via Search Space Reduction

FIGURE 4. An example showing the similarity between the original and
the reconstructed environments.

C. TRAINING
It is not trivial to train this neural network from
scratch. We follow a three-phase training approach used
in [24]. In the first phase of training, we only train the CAE
to reconstruct the grid representation. Then we fix the trained
CAE to train FCN, followed by a joint training on the FCN
and the encoder in CAE, which are already partially trained.
Phase I: The loss function used for training the CAE is a

summation of a cross-entropy loss on the mismatch between
the reconstructed grid output and the grid input, and a con-
tractive term for penalizing the magnitude of the encoding:

Ec = −
1
Mg

Mg∑
m=1

[pm log p̂m+(1− pm) log(1− p̂m)]+‖e‖2,

(2)

where Mg = a3 denotes the number of all grids, m iterating
over every grid, and pm (p̂m) is the (estimated) probability of
Grid m being occupied. The regularization on the encoding e
is its L2 norm.

About 90k environments o were randomly generated for
training the CAE. This network was initialized randomly and
trained with eq. (2). We initialized the kernel with a mean
being 0 and a standard deviation being 0.02. The bias was
again randomly generated from N (0, 0.02). We trained the
MF with a fixed learning rate of 1e− 4 using Adam [33],
for about 300 epochs. The training took 9 hours on a cluster
with an Intel Xeon Gold 2.7GHz CPU and a NVIDIAQuadro
P5000 graphics card. The error was reduced to 0.73, where
0.03 being the cross-entropy loss and 0.7 being the contrac-
tive loss on the length of the encoding, approximately. One
example comparing the reconstructed and original environ-
ments is shown in Fig. 4.
Phase II: The training data for the second and third phases

was obtained by the PRM* with dense sampling (approxi-
mately 20K samples per environment in a cell). For each ran-
domly generated environment of the cellw, we need to obtain
minimum distance values between a number of node pairs.
For this purpose, we randomly generated 46k environments o
in cells and 100 node pairs for each environment.

The outputs from the FCN consist of one for the feasibility
and one for the minimum distance value. The loss function
on feasibility is given as

Ef = −[pf log p̂f + (1− pf ) log(1− p̂f )], (3)

FIGURE 5. Estimation performance of a trained MF.

where pf (p̂f ) is the (estimated) probability of feasibility. The
loss function on minimum distance is given as

Ed = ‖d − d̂‖2, (4)

where d (d̂) is the (estimated) minimum distance between
nodes if a feasible path between is available. In the second
phase, we initialized the weights and bias of FCN with a
Xavier initializer and then trained FCN for about 100 epochs
by Adam, which took about 6 hours on the same machine,
with the CAE trainable parameters fixed. The training rate
was 1e−4. Note that when back propagating training errors
from the minimum distance values, the samples with infinite
values were not considered for training stability.
Phase III: In the final phase, we fine-tuned the entire

network jointly with all three loss equations (2) - (4). The
learning rate was reduced to 1e−5. The error in estimating
minimum distance is reduced from 11% to 7%. The scatter
plot of the true minimum distance values from the PRM*
against the estimated values from the MF is shown in Fig. 5,
where a closer distance from a point to the diagonal axis
represents a better estimation. The limitations on grid repre-
sentation and artificially-generated environments for training
will be discussed in Section VII.

IV. RSBP: PATH PLANNING
In runtime, the proposed RSBP consists of two stages.
In Stage I, a sparse tree is built by using the learnt MF and
a reduced search space is then found, which contains a sub-
optimal/optimal path. In Stage II, a classical SBP (this paper
uses BMFT*) densely sample nodes within the found reduced
search space to generate a detailed path. The algorithm is
summarized in the Algorithm 1. Details about Stages I and
II are given in the following subsections, respectively.

A. STAGE I
Before building a sparse search tree, the entire workspace
is decomposed into many small workspaces (cells), the size
of which is determined by the size of w used in obtaining
data and in training the MF, as shown in Fig. 6. In this
paper, a straight forward cubic-cell decomposition is adopted,
dividing the entire workspace into an array of cubic cells,
as shown in Fig. 6. Such decomposition might not be ideal.
It worked for the tested cases in this study. Limitations on this
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Algorithm 1 RSBP: Planning
Input: WorkspaceW , initial q0, goal G, the trained MF d .
Output: An optimal (or sub-optimal) path if exists.
Initialize

DecomposeW into {wi}i∈Ic , as well as the obstacle occu-
pation.
for w ∈{wi}i∈Ic do

Calculate obstacle encoding and restore.
end

Stage I
while n < a predefined number do

Randomly pick a cell w from {wi}i∈Ic .
Sample a node φi,n ∈ 9 i.
Calculate minimum distance between φi,n and any
existing node in 8i.
Connect φi,n to the node that leads to optimal accu-
mulated cost Ji,n.
Rewire nodes in 8i if better costs exist due to φi,n.

end
Find an optimal sparse path {φ∗i }i∈Iq .

Stage II
for i ∈ {1, · · · ,Mn} do

Plan an optimal path s∗i connecting φ∗i and G∗i via
BFMT*.

end
Concatenate s∗i for all i ∈ Ip to generate s∗.
return s∗.

FIGURE 6. Illustration of the workspace decomposition.

decomposition forW with a arbitrary shape will be discussed
in Section VII.

These cells are closed sets and are denoted as {wi}i∈Ic ,
where Ic denote the index set of all cells. Let �i = {x|x ∈
�(ωi)} denote the set of positions on the surfaces (bound-
aries) of the ith cell, where�(·) denotes the operator to obtain
the boundaries of a closed set. Then let 9i = �i × SO(3)
denote the set of all configurations whose positions are on the
surfaces of Cell i. Similarly let D denote all configurations
whose positions are on any cell edge. In Stage I, random
samples are generated only in9 = {9i}i∈Ic . With9 formally
defined, we give the formal definition of an (optimal) sparse
path.

FIGURE 7. The topology graph of the decomposed workspace.

Definition 3 (Sparse Path): A sparse path φ of a con-
tinuous path s is a sequence of the configurations where
s intersects with cell surfaces 9. The configuration set is
denoted as {φi}i∈Iφ = s ∩ 9, where Iφ is the index set of
the ordered intersected configurations.
Definition 4 (Optimal Sparse Path): An optimal sparse

path is a sparse path associated with an optimal continuous
path s∗. The configuration set is denoted by {φ∗i }i∈I∗φ , where
I∗φ is the index set of the ordered intersected configurations.
For simplicity, now assume that the optimal path in the

large workspace transverses a limited number of cells and
that it only transverses through the faces of these cells (not
cell edges). In addition, the length measure of path segments
on the cell faces is assumed zero. These assumptions do
not affect the convergence or the optimality properties of
the proposed RSBP and will be discussed with details in
Lemma 1 in Section V. Then we have a topological graph,
shown in Fig. 7. Each cell is represented by a disk, whose
periphery represents the set of all configurations on the cell
surface (not cell edges). Note that each connection of the
graph in Fig. 7 is bidirectional. A cell is adjacent to other
cells up to 6. The connections in Fig. 7 represent a path
transversing from one cell to an adjacent cell. Also in the
graph, the cells contain the initial node and goal nodes are
illustrated and they are denoted as ω0 and ωg (the later could
have more than one cells), respectively.

Now consider an optimal path transversing through cells,
starting from the initial cell and reaching the goal cell. These
cells are referred to as activated cells, which are highlighted
in red and bold in Fig. 6 (better viewed in color). In this
topology, the actual path segment within a cell is not shown
and is not planned in Stage I.

Stage I builds a sparse tree in a way same to RRT* [6].
However, the sampling only occurs on the surfaces 9 of all
cells (i.e., peripheries of all disks in Fig. 7), resulting in sparse
samples in the workspace. Each node φi,j is associated with
an accumulated cost value from the initial node, where i and
j are the cell index and the sampling sequence index j. Let Ji,j
denote the accumulated cost of φi,j and Ji,j is infinite if a path
from the initial node to φi,j is not available yet.

Let 8i ⊂ 9i denote the set of existing samples on the
surfaces of Cell i (ωi). Each new node is sampled by randomly
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choosing a cell index i ∈ Ic and then by randomly generating
a collision-free node qi,n in9i. If the cell is the goal cell or the
initial cell, the optimal traveling cost and reachabilities from
the new node to the goal region and the initial node are
estimated by the trained MF. In other cases, the cost and the
feasibility between φi,n and any node φ ∈ 8i are evaluated
by the MF.

Notice that φi,n can also be on the surface of an adjacent
Cell i′ (one surface could be shared by two cells). Similarly,
we check the cost and the feasibility between φi,n and any
node φ ∈ 8i′ by using the learnt MF.

Similar to the classical RRT* algorithm, we need to rewire
connections to update the sparse tree with more optimal costs.
After searching, the new node is connected to the node that
results in the most optimal Ji,n. Then all nodes in 8i and 8i′

are checked. Reconnected Node φi,j ∈ 8i to φi,n if

Ji,j > Ji,n + d(oi, φi,n, φi,j). (5)

where oi is the obstacle occupancy of Cell i and then set Ji,j
as the Ji,n + d(oi, φi,n, φi,j).
After a number of samples, a sparse tree is obtained, which

connects the initial node to the goal nodes in Fig. 7. Stage
I terminates if the number of samples reaches a predefined
one. Better termination strategymust be explored in the future
study. Then, an optimal sparse path is obtained, which is
composed of the sparse nodes and initial and goal nodes. Let
Iω denote the index set of the activated cells and Iq denote
the index set of the activated nodes. By connecting these
cells together, we find a reduced search space, as illustrated
in Fig. 8, denoted asR = {ωi}i∈Iω × SO(3).
Implementation Details on the MF Evaluations: Encoding

the environment of a cell via the encoder consists of many
convolution operations. Using the MF directly for each com-
bination of a cell environment and two node configurations
is inefficient on a device without a GPU. Therefore, after
decomposing the entire workspace as shown in Fig. 6, each
environment is encoded and the encoding is saved before
the step of the sparse sampling. The obstacles and cells are
fixed, so are the encodings. Then during the sparse sam-
pling steps, only the FCN is frequently used to estimate the
feasibility and the minimum distance between two nodes,
which substantially enhances efficiency. Such arrangements
tremendously limit the number of calling the CAE encoder,
as shown in the ‘‘Initialize’’ block of Algorithm 1. By doing
these, the number of calls to generate encodings is restricted
to v/u approximately.

B. STAGE II
Stage I outputs the reduced search space R and the inter-
mediate samples {φ∗i }i∈Iq . One straight forward planning is
to use an existing SBP approach and sample in the resul-
tant R. Here, we utilize the additional information {φ∗i }i∈Iq
to enhance the planning efficiency. We design a ball region
in configuration space for each φ ∈ {φ∗i }i∈Iq with a small
radius γ , resulting {G∗i }i∈Iq . Denote the number of activated

FIGURE 8. Sub-planning problems and optimal path segments.

cells asMn. Or equivalently letMn , card(Iq) denote the car-
dinality of Iq. Then,Mn sub-planning problems are generated,
as shown in Fig. 8. Let ζ i , ωIω(i)×SO(3) denote the search
space for Subproblem i ∈ Ip, where Ip is the sub-problem
index set. Re-index {φ∗i }i∈Iq and {G

∗
i }i∈Iq by the sub-problem

index Ip, resulting {φ∗i }i∈Ip and {G
∗
i }i∈Ip . Then the first sub-

problem is to find a path from the initial node to the ball
region G1 within ζ 1. The last sub-planning problem is to find
a path from φ∗Mn

to the goal region G within ζMn
. In between,

we have Mn − 2 sub-problems, where in ith sub-planning
problem the body starts at φ∗i and targets at G∗i within the
search space ζ i.

Once the path segment in each cell is planned, the path
segments are concatenated together to produce the optimal
path, since γ is set to a sufficiently small number. Note that
solving these sub-planning problems can be parallelized for
better efficiency. However, in the tests in Section VI these
sub-problems were solved one by one.

V. ANALYSIS
In this section, the probabilistic optimality convergence is
first proven held in the proposed RSBP, under the assump-
tion that the MF can accurately estimate optimal cost and
feasibility between any two nodes in a cell. In fact, as shown
in [34], the network work used has the capability to achieve
arbitrary accuracy given a sufficient number of neurons.
Then, the optimality degeneration is shown bounded under
the assumption that the trained MF has bounded errors. After
that, the computational complexity is shown linear to the
Lebesgue measure of the entire search space, given a fixed
sampling density.

A. ASYMPTOTIC OPTIMALITY
It is sufficient to only study the cases that the number of
intersections between the optimal path and surfaces is limited
and that the optimal path does not transverse through any cell
edge, since there exists a path s∗′ that is arbitrarily close to s∗

(Lemma 1).
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Lemma 1: For any ϑ > 0, there exists a strong-δ′-
clearance path s∗′ that such |s∗′(τ ) − s∗(τ )| ≤ ϑ for τ ∈
[0, 1], s∗′(τ ) intersects with9 limited times, and s∗′(τ )∩E =
∅ for τ ∈ [0, 1]. δ′ < δ/2, where δ is given in Definition 2.

Proof: According to Definition 2, we have π (α) that is
able to continuously transform s∗ into a path that has strong
δ-clearance. Therefore, there exist an α, such that s′ = π (α)
has an arbitrary δ′ clearance such that 2δ′ < δ. The maximal
difference between s∗ and s′ is a continuous function that is
zero when α = 0. Thereafter, there exists α for arbitrary ϑ
such that |s′(τ )− s∗(τ )| ≤ ϑ/2 and s′(τ ) has δ′-clearance.

Now without loss of generality, we assume that only one
segment ρ sits on a cell surface. We can construct a s∗′ that
is within ϑ/2 to s′ by adding variation to the path segment,
which is ιmin(ϑ/2, δ′)−→n . The unit vector −→n is the normal
of the cell surface. The function ι ∈ [0, 1] continuously
converges to zero at both endings of ρ. As a result, for any
ϑ > 0, we can find s∗′ that is within ϑ distance to s∗, which
has δ′-clearance. Clearly, s∗′ does not have a segment on a cell
surface. The same construction also applies to a point going
through an edge by operating on a segment containing this
point. �
Therefore it is sufficient to study the probabilistic conver-

gence to s∗′. In the remainder of this paper s∗′ is denoted
as s∗. Let n and k denote the number of samples in Stage I
and Stage II, respectively. To simplify proof, here we assume
the initial node and goal nodes are also in 9. The analysis is
conducted in two phases. It is first proven that in Stage I the
probability of the activated nodes converging to the optimal
sparse path is almost one, as n → ∞ (Lemma 2). Then
the asymptotic optimality is achieved by the property of the
asymptotic optimality from classical SBP (Lemma 3).
Lemma 2 (Convergence to an Optimal Sparse Path): As

n → ∞, P({{φn,i}i∈Iφ,n = {φ
∗
i }i∈I∗φ

}) = 1, where the most
outer {·} denotes an event.
Here we adopted a norm to denote the difference between

two detailed paths from [6],

||s− s′||BV =
∫ 1

0
||s(τ )− s′(τ )||dτ. (6)

Let sk,i denote path generated by Stage II given φ∗i , G∗i . Let
s∗i denote path segment in the cell associated with the ith sub-
planning problem, which is re-parameterized by τ ∈ [0, 1].
Then, in the second phase of the proof, we show the following
lemma.
Lemma 3: As η→ 0, n and k → ∞, then, for any i ∈ I∗φ

and ε > 0, P({||sk,i − s∗i ||BV < ε}) = 1.
The proof of Lemma 2 is outlined here, analogous to

[6]. We first prove the existence of a sequence of scalars
δl and sparse paths {φl,i}i∈Iφ,l with l being the sequence
index, such that {φl,i}i∈Iφ,l has strong δl-clearance. In addi-
tion, liml→∞ δl = 0, and liml→∞{φl,i}i∈Iφ,l = {φ

∗
i }i∈I∗φ

(Lemma 4). By construction, the samples within a cell are
connected. After that, we prove that the difference between a
sparse path and its closest one converges to zero, as n→∞
(Lemma 5). Then, considering Lemmas 4 and 5 yield that

FIGURE 9. Projection of Balls B′
n covering φn.

the sparse path converges to an optimal sparse path asso-
ciated with a weak-δ-clearance optimal path, as n → ∞

(Lemma 2).
Since samples are obtained in an incremental manner in

Stage I, the connections between samples also depend on
their appearance sequence. Here we adopted a notion of
Marked Point Process from [6], where samples {φ1, φ2, · · · }
are associated with {ξ1, ξ2, · · · }, respectively. Notice that the
cell index associated with φi is dropped here and i is the
sampling index (served as the identity). Besides, {ξ1, ξ2, · · · }
are independently uniformly sampled from the support [0, 1]
in order to represent sampling order of samples. For example,
φi is sampled before φi′ if ξi < ξi′ .
Here in Stage I, we resort to a new graph, termed as random

cell graph, the cell size of which is fixed, different to the
varying r in a random r-disc graph used in [6].
Definition 5 (Random r-Disc Graph [6]): Let r ∈ R+, and

n, d ∈ N. A random r-disc graph Gn(r) in d dimensions is
a graph whose n vertices, {q1, q2, · · · , qn}, are independent,
uniformly distributed random variables in (0, 1)d , and such
that (qi,qi′ ), i 6= i′, is an edge if and only if ||qi,qi′ || ≤ r and
ξi < ξi′ .
Definition 6 (Random Cell Graph): Given a cell decom-

position, and the union 9 of their surfaces. A random cell
graph Gn in d dimensions is a graph whose n vertices from
9, {φ1, φ2, · · · , φn}, are independent, uniformly distributed
random variables in Gn, and such that (φi, φi′ ), i 6= i′, is an
edge if and only if φi and φi′ are from a same cell and ξi < ξi′ .
As in [6], now consider a random cell graphGn and another

graph G′n ⊂ Gn. Let Ji,j denote the accumulated optimal cost
from q0 in reaching φj (i being the cell index of φj). In G′n,
each vertex has a single parent leading to an optimal cost Ji,j.
Since the graph is built incrementally, the cost showing φj in
both G′n and Gn is same. Apparently, G′n is from the planning
in Stage I.

The following lemma is a variation from Lemma 50 in [6].

Lemma 4: Let s∗ be an optimal path that has strong δ-
clearance (see Definition 2). Let {δl}l∈N be a sequence of real
numbers, such that liml→∞ δl = 0. Since 0 ≤ δl ≤ δ, for all
l ∈ N. Then, there exists a sequence of sparse paths {φl}l∈N
such that liml→∞ φl = φ

∗.
Proof: The existence of φl can be guaranteed by

the existence of sl , which is guaranteed by Lemma 50
in [6]. �
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Let 6n denote the set of sparse paths in Gn and let φ′l be
the sparse path that is closest to φl in the set 6n.
Lemma 5: The variation between φl′ and φl converges to

zero almost surely, i.e.

P({ lim
n→∞

∑
i∈Ic

||φl′,i − φl,i|| = 0}) = 1. (7)

Proof: As shown in Fig. 9, construct a number of balls
Bl = {Bl,1,Bl,1, · · · ,Bl,Ml } covering φl . Since the surface
goes through the center of the ball Bl,i and the samples are
generated on the surface, then we conclude that there exit a
number of balls B′l in a space with one dimension fewer. The
projections of B′l onto the intersected surfaces are illustrated
in Fig. 9.

As in [6], the proof is based on the Borel-Cantelli lemma by
showing that

∑
n∈N P({

∑
i∈Ic ||φl

′,i − φl,i|| ≥ ε}) is finite for
any ε > 0, which implies that

∑
i∈Ic ||φl

′,i − φl,i|| converges
to zero almost surely. Again {·} denotes an event. The index
n is associated with Gn. Notice that in the remainder of this
proof the index l of the path sequence in Lemma 4 is dropped
for simplifying notation, therefore φ′,i = φl′,i, φi = φl,i, and
Mn = Ml,n.
Let α, β ∈ (0, 1) be two constants, both of which are not

functions of n. Construct a set B′n of balls covering the path
φ, whose radius is rn , min{δ, 4( µ(9)

µ(B′n)
)1/(d−1)( log nn )1/(d−1)}.

The operator µ denotes a function to obtain the Lebesgue
measure of a closed space. Notice that rn is obtained from [6],
with d − 1 replacing d since B′n is one dimension fewer than
Bn.
The following is analogous to [6]. Now consider a new set

B′′n of balls with radius βδn. Let In,m denote the event that
there is no sample in B′′n , as follows.

In,m ,

{
1, if (B′′n,m) ∩ Vn = ∅
0, otherwise.

(8)

Let Kn denote the number of empty balls in B′′n , i.e., Kn ,∑Mn
m=1 In,m. Consider the event that In,m holds for at most an

α fraction of the balls in Bn, i.e., {Kn ≤ αMn}.
Recall that the vertices is subsequent balls in B′n are con-

nected by edges in Gn. If only at most α fraction of the
balls in B′′n are empty, then

∑
i∈Ic ||φ

′,i − φi|| is bounded by
(α + β)rnMn.
Then taking the complement of both sides and using the

monotonicity of probability measures,

P({
∑
i∈Ic

||φ′,i − φi|| ≥ (α + β)δn}) ≤ P(Kn ≥ αMn). (9)

It can be shown that the right-hand side of inequality above
is summable for all small α, β > 0. According to Lemma 55
in [6], let ν ∈ (0, 1) and pn , e−µ(B

′′
n)νn/µ(9)

≤ e−cβν log(n)

for some c, then we have

P({Kn ≥ αMn}) ≤ e−cn + e−Mnpn . (10)

FIGURE 10. Reachability classification error.

Summing up both sides yields

∞∑
n=1

P({Kn ≥ αMn}) ≤
∞∑
n=1

e−cn + e−Mnpn <∞, (11)

and thus P({
∑

i∈Ic ||φ
′
n,i − φn,i|| > ε}) <∞. �

The proof of Lemma 2 is given as follows.
Proof: Recall that φ∗ denotes the optimal sparse path,

and that liml→∞ φl = φ∗. By Lemma 5, limn→∞ ||φl′,n −

φl || = 0 holds with probability one. Thus, by repeated
application of the triangle inequality, limn→∞ ||φl′,n−φ

∗
|| =

0. Therefore,

P({ lim
n,l→∞

||φl′,n − φ
∗
|| = 0}) = 1.

P({ lim
n→∞

Jn(G) = J∗}) = 1. (12)

where J∗ is the optimal cost to Problem 1. �
Recall Lemma 3, the optimal path in the ith sub-planning

problem between φ∗i and G
∗
i can be obtained by classical opti-

mal SBP approaches. Typical asymptotic optimality prop-
erty from SBP approaches holds and its proof is neglected
here [6].
To sum up, if the sparse path converges to the intersections

between the optimal path and the cell surfaces, the obtained
path segments from Stage II must be overlapped with the
optimal path. Therefore, the path resulted from the proposed
RSBP is optimal.

B. OPTIMALITY DEGENERATION
The MF network has two outputs, one being the feasibility
between two nodes, and the other being the estimated cost.
The optimality degeneration from the MF estimation errors
is given based on the following assumptions. The feasibility
estimation is a common classification problem, this error is
assumed bounded by false positive δfp and false negative δfn,
as shown in Fig. 10. It is also assumed that the estimated
cost has bounded error δc, i.e., |c − ct | ≤ δc, and that the
cost is Lipschitz continuous with support L over the node
configuration of the input to the MF network, for any given
environment in a cell. These assumptions are commonly
used in deep reinforcement learning [35]. The variables with
superscript t denote the true values. In addition, it is assumed
that the optimal and sub-optimal sparse paths have strong
δ-clearance, where δ > δfn. Otherwise the RSBP might fail
to find these paths.
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Given a path φ = {φi}i∈Iq defined as intersection between
surfaces and path s. Recall that M , card(Iq) denotes the
cardinality of Iq. For the ith segment of s, its endings are φi
and φi+1. Let c∗i,i+1 denote the true cost between these two
nodes.

Then, the estimated cost of the ith path segment from the
MF network is bounded by

cti − δc ≤ ci ≤ c
t
i + δc. (13)

Now consider a case that the optimal sparse path φ∗ trans-
verses through false negative regions. Therefore, φi has a
maximum distance δfn to φ∗i , which affects the i − 1th and
ith sub-planning problems. Then, for 1 < i ≤ M ,

c∗i−1 − Lδfn ≤ cIi−1 ≤ c
∗

i−1 + Lδfn, (14)

c∗i − Lδfn ≤ cIi ≤ c
∗
i + Lδfn, (15)

where cIi denotes cost return from Stage I. The cost estima-
tion of a path closest to the optimal solution from Stage I,∑

i∈Iq c
I
i , therefore is within[∑

i∈Ip

c∗i − 2(M − 1)(Lδfn + δc),

∑
i∈Ip

c∗i−1,i + 2(M − 1)(Lδfn + δc)
]
.

Then consider the path founded by RSBP in a case
where the φi is incorrectly classified as collision-free. Then,
the resultant path from Stage I ends up in an infeasible choice.
In Stage II, a number of samples will be generated near this
infeasible samples, resulting in a new path. The maximum
deviation is δfp and the misclassification of the φ∗i leads
to cost estimation errors of i − 1th and ith path segments,
as shown below. Then for 1 < i < Mn,

cIi−1 − Lδfp − δc ≤ cIIi−1 ≤ c
I
i−1 + Lδfp + δc, (16)

cIi − Lδfp − δc ≤ cIIi ≤ c
I
i + Lδfp + δc. (17)

The sparse path found in Stage II
∑

i∈Iq c
II
ii , therefore is

within the range as follows,[∑
i∈Ip

cIi − 2(M − 1)(Lδfp + δc),

∑
i∈Ip

cIi + 2(M − 1)(Lδfp + δc)
]
. (18)

Consider the worst scenario such that the sparse path found
in Stage I only yields potential optimality given by

∑
i∈Iq c

∗
i +

2(M − 1)(Lδfn + δc) and that feasibility error and estimation
error lead to a feasible path with more cost. Equations (16)
and (18) yield an bound optimality of the path obtained by
RSBP, as follows,∑

i∈Iq

c∗i + 2(M − 1)(Lδfp + Lδfn + δc), (19)

where the second summation is the bounded optimality
degeneration.

C. COMPUTATIONAL COMPLEXITY
Here the computational complexity from planning (not learn-
ing) in the RSBP regarding the size of the workspace is
analyzed. Recall that n denotes the number of samples in
Stage I and k denotes the number of samples in Stage II.
The complexity of Stage I is based on the number of calling
the MF network. Each call has the complexity of O(zn3h),
where z is the number of the network layers and nh is the
maximum number of the neurons in each layer. For a given
cell with nc samples, the complexity in connecting nodes is
then O(n2czn

3
h). While given a fixed sampling density across

all environment of different sizes, since the area of surfaces of
a cell is fixed, thus the expected number of samples associated
with one cell is fixed. Then the complexity in connecting
nodes in each cell is fixed thus O(1). The number of cells
is linear to the Lebesgue measure of an entire search space C,
so is the computational complexity in Stage I.

In Stage II, the complexity of finding an optimal in a cell
is given by [6], which is O(k log k logd N ). Recall N is the
number of obstacles in a cell. Again, for a cell of fixed size,
it is reasonable to assume N is bounded by a constant and the
required k to achieve acceptable path is also bounded by a
constant.

Altogether, the computational complexity in Stage I and
Stage II is O(Mk log k logd N + Mn2c ln

3
h). Recall M is the

number of cells transversed by the optimal path. Then by
assuming the same sampling density across environments of
different sizes, the complexity is O(M ) (M is linear to the
Lebesgue measure of C).

VI. NUMERICAL VALIDATIONS
The numerical simulations in this paper considered opti-
mal planning problems of a given rigid-body robot in
3D large workspaces populated with box-shaped obstacles
(possibly overlapping). Recall that the robot is box-shaped
with dimensions of 0.75× 0.5× 0.25 [m3]. The workspaces
are also box-shaped, whose dimensions are a multiplication
of the cell dimensions with some integers. Decompositions
on the workspace of an arbitrary shape will be discussed in
Section VII.
In the first set of simulations, a workspace of sizes 78 ×

30 × 6 [m3] was considered to comprehensively test the
proposed RSBP against Informed RRT* and BFMT* in clut-
tered environments, regarding the resultant path optimality
and the planning time. In each of these simulations, the obsta-
cle population was randomly generated in the same way as
Section III. The second set of simulations involved a number
of workspaces of increasing sizes to show the scalability of
the RSBP. At last, a non-cluttered workspace with narrow
passageswas designed to demonstrate the potential advantage
of the RSBP in finding narrow passages.

The implementations of the BFMT* and the Informed
RRT* in OMPL were used [25]. In both methods, the goal
threshold was set to 0.1. The parameters of BFMT* are cho-
sen as follows. The free space volume was set to 0.1 and the
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number of samples was the multiplication of 1/216 [K/m3]
and the volume of the workspace (i.e., 1K samples per cell on
average). Other parameters were kept as default. Regarding
Informed RRT*, the resolution of state validity check was set
to 0.1, the range was set to 3.0, and other parameters were
kept as default. Notice that the planning time of Informed
RRT* were carefully manually adjusted (in an incremental
manner) to obtain a complete path for each simulation.

Notice that such comparison is unfair since BFMT* and
Informed RRT* are not using any prior knowledge about
the environment/obstacle distribution, the robot, or previous
planning results. However, it is still promising to integrate
learning techniques to summarize knowledge from previous
planning and to enhance planning efficiency in a new and
similar environment.

A. CLUTTERED ENVIRONMENTS
An example of obstacles’ population in the workspace of
sizes 78 × 30 × 6 [m3] is depicted in Fig. 12, where the
robot’s initial configuration is indicated by a cross and its goal
configuration is illustrated by a solid triangle. The parameters
of cell sizes have been discussed in Section III. The training
results of the MF have been illustrated in Fig. 5.
The entire workspace was decomposed into 65 cells and

the obstacle occupation in each cell was encoded by the
encoder of the CAE from Section III. Nodes were sampled
on the surfaces of these cells and then the minimum distance
between any two nodes in the same cell was evaluated by
the FCN. On average 30 sparse samples per surface of a cell
were generated. A sparse tree was built and searched for an
optimal sparse path that is composed of the sparse samples.
The results (shown in Fig. 11) were summarized over 20 runs
with random obstacle populations and fixed robot initial and
goal nodes. Stage I took about 23 seconds to find the reduced
search space. Notice that in some tests, Stage I took nearly
70 seconds to finish building the sparse tree. The reason could
be that the sampling in certain cell surface is quite challenging
due to a small collision free region.

The activated samples (8∗) are highlighted by blue spheres
in Fig. 12. The obtained reduced search space is shown by the
transparent boxes. Then, the planning problem in the entire
workspace was decoupled into 13 sub-planning problems.
Solving the
13 sub-planning problems can be easily parallelized. How-
ever, in the results given here, these 13 subproblems were
solved one by one. Each subproblem took about 0.5 to
0.8 second via the BFMT*, using approximately 1K samples
per subproblem.

For comparison, we solved the same planning problem
by BFMT* and Informed RRT* directly. An initial path for
Informed RRT* might be non-trivial in these environments.
The number of samples in BFMT* was set to 65K and
the parameter for Informed RRT* was set to 100 seconds.
Informed RRT* could not provide complete paths in 90 sec-
onds most of the time and it sometimes finished in less
than 100 seconds. The planning time for Informed RRT*

FIGURE 11. Comparison of RSBP, BFMT*, and Informed RRT*.

FIGURE 12. Comparison of the optimal paths generated by RSBP and
BFMT*, showing similar paths were found. The union of the transparent
boxes are the obtained reduced search space (better viewed in color).

was manually picked by trial-and-error (through gradually
increasing the planning time).

The comparison results are summarized in Fig. 11. For
the tested cases, the proposed RSBP method generated paths
of similar optimality to BFMT*, while RSBP took less than
half of the time required by BFMT*. The paths from RSBP
and BFMT* are shown in Fig. 12, which are very close.
The Informed RRT* was not efficient for the large cluttered
environment tested in this study. The resultant path from it
contains unnecessary detour.

B. SCALABILITY
A set of workspaces with varying sizes were simu-
lated to test the scalability of RSBP. In addition to
the aforementioned tests, we included another six sizes,
the width and height are fixed. All together, the length
of all workspaces considered are chosen in the set of
{78, 102, 138, 174, 210, 282, 352}[m]. Then the volumes of
all workspaces are {1.4, 1.84, 2.49, 3.13, 3.78, 5.08, 6.37} ×
104[m3], each workspace is subsequently indexed by I, · · · ,
and VII. Intuitively, the number of samples required and
computational complexity increases as the volume of the
workspace increases.

As given in [6], the complexity is n log n, where the sample
number n is proportional to the volume of the workspace,
if the sampling density stays the same. Considering the
rewiring process and updates of minimum cost at each tree
node, the complexity may be higher [8]. The complexity is
evidenced by the results shown in Fig. 13.

By using RSBP, the number of cells that required to check
is proportional to the workspace volume (or the Lebesgue
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FIGURE 13. Computational time comparison of RSBP, BFMT*, and
Informed RRT*.

FIGURE 14. Performance comparison of RSBP, BFMT*, and Informed RRT*
in the workspaces of Type III and IV.

FIGURE 15. Performance comparison of RSBP, BFMT*, and Informed RRT*
in the workspaces of Type V and VI.

measure of the entire search space). Thus the complexity
in Stage I is linear to the workspace volume, better than
n/ log n. In Stage II, the complexity is again proportional to
the length of the path (in these experiments proportional to
the volume of the workspace). Such analysis is evidenced by
results shown in Fig. 13.

As for the performance among three compared methods,
the observation was similar to the one in the previous subsec-
tion. The proposed RSBP approach produced paths with sim-
ilar optimality to BFMT*, while Informed RRT* could not
offer competitive solutions. Following figures show examples
of performance comparisons on path optimality.

C. NARROW PASSAGES
In the above simulations, the distributions of obstacle pop-
ulation in the tests and in the MF network training process
share the same one, where narrow passages hardly present.
We used the trained MF for testing the narrow passage cases,
the prediction error from the MF evaluation increased a lot.
This is expected since the training samples did not cover the
narrow passage scenarios. Therefore, we designed a distri-
bution to randomly generate 1K narrow passages, formed by
three cubes of random sizes. The optimal cost and feasibility

FIGURE 16. The workspace with two narrow passages.

FIGURE 17. Paths from RSBP, BFMT*, and Informed RRT*.

in cells with narrow passages were obtained by PRM*. This
new set of data was included in the previous training data
set and was used to retrain the MF network. After training,
the new network is able to estimate optimal cost with the error
being about 6− 9% of the optimal values.
We then designed a new workspace, where two vertical

blocks created two narrow passages, as shown in Fig. 16.
In this tests, the chance that the path found by BFMT* trans-
verses through both narrow passages was low (less than 7%)
with 85k samples, and the chance of transversing one passage
was still not satisfied (less than 15%). While the chance of
Informed RRT* finding a narrow passage was a bit higher
than BMFT*, since more samples were generated (more
planning time was allowed to obtain a complete path). On the
contrary, the proposed RSBP was able to find the narrow
passage almost 100%. The paths from the three methods are
illustrated in Fig. 17. One of the purposes of this test is to
show that RSBP’s capability in dealing with some special
cases can be enhanced by more data and training. Therefore
the sampling strategy called bridge-test for planning path in
narrow passages is not compared here [21].

VII. LIMITATIONS AND FUTURE WORK
A. WORKSPACE DECOMPOSITION
In principle, the workspace decomposition does not have to
align with the workspace axes. Cells can be overlapped when
the workspace has an arbitrary shape. However, the computa-
tional complexity during planning might increase due to the
increased number of cells. In fact, the workspace decomposi-
tion in Stage I is not necessary for building a sparse tree since
the sparsity of nodes is enabled by the learnt MF. However,
if the node sampling and connection is conducted in the
same way as classical SBP, each MF evaluation of two nodes
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(within a cell) requires encoding the local environment from
scratch. The encoding consists of many convolution layers
in the CAE encoder, making the evaluation particularly slow
on an onboard machine with no GPU. The decomposition
procedure is able to significantly reduce the number of calling
the CAE encoder.

In the current implementation, the size of cells has to be
determined as a priori, which depends on the obstacle shapes
and populations. Zoom-out-and-in networks [36], an exten-
sion of convolution networks, might be used to adjust the cell
size online. However, this may require even more training
data and needs further investigation.

B. INEFFICIENCY
Based on the current implementation, the proposed RSBP is
slower in small and uncluttered environments than BFMT*
and Informed RRT*. The proposed sparse sampling could be
combined with other existing strategies on node sampling and
connection. Future work involves improving the efficiency
in the MF evaluation through model reduction on the trained
neural network [37].

C. NETWORK GENERALITY
At shown by the narrow passage scenario in Section VI,
the MF network has to be retrained if the robot geometry,
the distance function, or obstacle shape and population are
dramatically different from previous training. Obstacle vari-
ations during planning have to be similar to the training
examples. In other cases, the proposed RSBP approach is not
reliable by itself. Many techniques in transfer learning could
be explored [38]. A more generative neural network model
must be investigated.

D. DATA AND TESTS
In this paper, the environments for training and testing are
artificially generated from the same distribution of boxes
and they may not reflect real-world scenarios. Future work
includes collecting data from a more realistic simulator and
the real world.

E. OBSTACLE REPRESENTATION
Different than classical SBP, obstacle information is used
explicitly rather than in a black-box fashion. The assumption
of knowing obstacle occupancy without error is strong. The
proposed algorithm is not able to deal with the uncertainties
of obstacles. However, the value of each grid can represent
an occupancy probability, which may extend the current
approach to situations with obstacle uncertainties. In fact,
the loss function in training, i.e., eq. (2) is probabilistic in
nature.

Such obstacle representation can be built from Bayesian
SLAM algorithms [39]. The resolution loss from the grid
representation of obstacles contributes to errors of MF eval-
uations. Point clouds might be a better representation, which
however is usually unordered and makes training of the neu-
ral networks more difficult. Some existing work on using

recurrent neural networks for encoding point clouds can be
explored [40].

F. ORTHOGONAL REDUCTION
Reduction on the dimensions of the configuration/state space
is not considered in this paper, which has been explored
in many robotic applications [41]. Non-uniform dimension
reduction for motion planning will be explored and might be
combined with the proposed RSBP.

G. DYNAMIC CONSTRAINTS
The dynamic constraints force theMF to take the robot veloc-
ities into account. The training data should also reflect these
constraints. Therefore these SBP approaches (e.g. PRM*)
built in the configuration space are not sufficient. Constraint-
based planning should be adopted instead.

VIII. CONCLUSION
This paper introduces a search-space-reduced sampling and
planning approach for optimal paths in large and cluttered
environments. The capability of the proposed method can be
enhanced by adding more data and improving the network
structure. It may allow reducing efforts in designing and
combining problem-specific sampling strategies. The neural
network model based on a contractive autoencoder is able to
estimate optimal traveling cost and reachability between two
nodes. The RSBP is proven to hold asymptotic optimality and
the bounded optimality degeneration. Numerical simulations
have also demonstrated that RSBP outperforms the BFMT*
and Informed RRT* in large and cluttered scenarios. As evi-
denced by analysis and numerical simulations, the computa-
tional complexity of RSBP is linear to the Lebesgue measure
of the entire search space.
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