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Abstract

In this work, we develop a new approxima-

tion method to solve the analytically intractable

Bayesian inference for Gaussian process mod-

els with factorizable Gaussian likelihoods and

single-output latent functions. Our method

– dubbed QP – is similar to the expectation

propagation (EP), however it minimizes the L2

Wasserstein distance instead of the Kullback-

Leibler (KL) divergence. We consider the spe-

cific case in which the non-Gaussian likelihood

is approximated by the Gaussian likelihood. We

show that QP has the following properties: (1)

QP matches quantile functions rather than mo-

ments in EP; (2) QP and EP have the same local

update for the mean of the approximate Gaus-

sian likelihood; (3) the local variance estimate for

the approximate likelihood is smaller for QP than

for EP’s, addressing EP’s over-estimation of the

variance; (4) the optimal approximate Gaussian

likelihood enjoys a univariate parameterization,

reducing memory consumption and computation

time. Furthermore, we provide a unified inter-

pretations of EP and QP – both are coordinate

descent algorithms of a KL and an L2 Wasser-

stein global objective function respectively, un-

der the same assumptions. In the performed ex-

periments, we employ eight real world datasets

and we show that QP outperforms EP for the task

of Gaussian process binary classification.

1 Introduction

Gaussian Process Models and Expectation Propaga-

tion. Gaussian process (GP) models have attracted

the attention of the machine learning community due

to their flexibility and their capacity to measure un-

certainty. They have been widely applied to learning
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tasks such as regression (Williams and Rasmussen, 1996;

Snelson et al., 2004), classifications (Williams and Barber,

1998; Hensman et al., 2015) and stochastic point pro-

cesses modeling (Møller et al., 1998). However, one

shortcoming of GP models with non-Gaussian likeli-

hoods is the analytic intractability of the Bayesian in-

ference. To address this issue, various approximate

Bayesian inference methods were proposed, such as the

Monte Carlo sampling (Neal, 1997), Laplace approx-

imation (Williams and Barber, 1998), variational infer-

ence (Jordan et al., 1999) and expectation propagation

(EP) (Opper and Winther, 2000; Minka, 2001b). The ex-

isting approach most relevant to this work is EP, which

approximates the non-Gaussian likelihoods with the Gaus-

sian likelihoods by iteratively minimizing local forward

Kullback-Leibler (KL) divergences. As described by

Gelman et al. (2017), EP enjoys high scalability on large

datasets. However, EP is not guaranteed to converge, and

it is known to over-estimate the GP variance (Minka, 2005;

Heess et al., 2013; Hernández-Lobato et al., 2016).

Wasserstein Distance. Optimal transport divergences –

such as the Wasserstein distance – have recently gained

substantial popularity. The Wasserstein distance is a nat-

ural measure between two distributions, and it has been

successfully employed for a number of learning tasks, such

as image retrieval (Rubner et al., 2000), text classification

(Huang et al., 2016) and image fusion (Courty et al., 2016).

More recent works focus on using the Wasserstein dis-

tance for inference, including designing Wasserstein gen-

erative adversarial networks (Arjovsky et al., 2017), Wass-

estein variational inference (Ambrogioni et al., 2018) and

Wasserstein auto-encoders (Tolstikhin et al., 2017). In

spite of its appealing intuitive formulation and excellent

performance, the Wasserstein distance has prohibitive com-

putation cost (Cuturi, 2013), especially for high dimen-

sional distributions (Bonneel et al., 2015).

Contributions. In this work, we overcome some of the

shortcomings of EP by developing an efficient Bayesian

inference approximation method that minimizes the L2

Wasserstein distance. Here below we detail the four main

contributions of this paper.

First, in Sec. 4, we develop QP, an approximate inference

algorithm similar in spirit to EP for GP models with fac-
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torizable non-Gaussian likelihoods and single-output latent

functions. Similar to EP, QP does not require to directly

minimize the global L2 Wasserstein distance between the

true and the approximate joint posteriors. Instead, it iter-

atively minimizes the local L2 Wasserstein distances be-

tween two kinds of approximate marginal distributions,

employing true likelihoods or not, and in turn matches the

quantile functions (rather than moments in EP), for which

it is dubbed quantile propagation (QP). We further pro-

vide the update formulas for the mean and the variance of

the Gaussian likelihood. The estimate of the mean in QP

is equal to EP’s, however its variance is lower than EP’s,

therefore improving EP’s over-estimation of the variance

(Minka, 2005; Heess et al., 2013; Hernández-Lobato et al.,

2016). Importantly, although employing the more complex

L2 Wasserstein distance compared to the KL divergence,

our method enjoys the same computational time complex-

ity as EP’s, with the help of two lookup tables.

Second, in Sec. 5, we show that similar to EP, the opti-

mal approximate Gaussian likelihood in QP enjoys an eco-

nomic parameterization, i.e. its form relies solely on a sin-

gle latent variable. Compared with a general full param-

eterization on all latent variables, this property allows to

reduce the memory consumption by a factor of N (the size

of the data). It also consistently reduces the computation

time by optimizing fewer parameters in each local update

– O(1) for the economic parametrization vs O(N2) for the

full parameterization.

Third, in Sec. 6, we provide an unified interpretations of

EP and QP. We show that both methods are instances of

coordinate descent algorithms to a KL divergence and an

L2 Wasserstein global objective function respectively with

the same assumptions.

Finally, in our experiments in Sec. 7, we compare EP and

QP for the task of Gaussian process binary classifications

on eight real world datasets. The results show that our

method outperforms EP in both predictive accuracy and un-

certainty quantification, which validates that QP alleviates

EP’s over-estimation of the variance.

2 Related Work

Expectation propagation (EP) was first proposed for the

GP model (Opper and Winther, 2000) and then general-

ized by Minka (2001a,b). Power EP (an extension of

EP) (Minka, 2004, 2005) exploits the more general α-

divergence (a value of α = 1 corresponds to the forward

KL divergence in EP) and was recently used in conjuncture

with the GP pseudo-point approximation (Bui et al., 2017).

Although, generally not guaranteed to converge, perform-

ing local updates using fixed-point iterations was shown to

perform well in practice for GP regression and classifica-

tion (Bui et al., 2017). By comparison, our approach pro-

vides guarantees of convergent local updates for the class of

GP models equipped with the general Lp (p ≥ 1) Wasser-

stein distance. Moreover and for the same GP class with

the L2 Wasserstein distance, we show the optimal approx-

imate likelihood to rely solely on a single latent variable

– as opposed to all latent variables. A similar result was

previously shown for the GP with a forward KL divergence

(Seeger, 2005).

Without guarantees of convergence or the explicit global

objective function, interpreting EP has proven to be a

hard task. As a result, a number of works have instead

attempted to directly minimize the divergences between

true and approximate joint posteriors, employing such as

KL (Jordan et al., 1999; Dezfouli and Bonilla, 2015), renyi

(Li and Turner, 2016), α (Hernández-Lobato et al., 2016)

and optimal transport divergences (Ambrogioni et al.,

2018). To deal with the infinity issue of KL (and

more general of the renyi and α divergences) raised by

different supports (Montavon et al., 2016; Arjovsky et al.,

2017; Gulrajani et al., 2017), Hensman et al. (2014) em-

ploys the product of tilted distributions as an approxi-

mation. A number of variants for EP have also been

proposed, including the convergent double loop algo-

rithm (Opper and Winther, 2005), distributed EP (Xu et al.,

2014; Gelman et al., 2017) built on partitioned datasets,

averaged EP (Dehaene and Barthelmé, 2018) assuming

that all approximate likelihoods contribute similarly, and

stochastic EP (Li et al., 2015) regarded as sequential aver-

aged EP.

The L
2 Wasserstein distance between two Gaus-

sian distributions has the closed form expression

(Dowson and Landau, 1982). A detailed research on the

Wasserstein geometry of the Gaussian distribution is con-

ducted by Takatsu (2011). Recently, the formula is applied

to a robust Kalman filtering (Shafieezadeh-Abadeh et al.,

2018) and to Gaussian processes (Mallasto and Feragen,

2017). A more general extension to elliptically contoured

distributions is provided by Gelbrich (1990), which they

employ to compute probabilistic embeddings for words

(Muzellec and Cuturi, 2018). Moreover, a geodesic inter-

pretation can be attributed to the L2 Wasserstein distance

using any distribution (Benamou and Brenier, 2000), and

this has already been exploited to develop approximate

Bayesian inferences (El Moselhy and Marzouk, 2012).

Our work builds on the L2 Wasserstein distance, and it

does not exploit any of these closed form expressions (or

their assumptions); it enjoys computational efficiency by

levering the EP framework.

3 Prerequisites

In this section, we review GP models with non-Gaussian

likelihoods and one-output latent functions, the expectation

propagation algorithm and the Wasserstein distance.
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3.1 Gaussian Process Models

Consider a dataset of N samples D = {xi, yi}Ni=1, where

xi ∈ R
d is the input vector and yi ∈ R is the out-

put scalar. The basic idea behind the GP model is es-

tablishing the mapping from inputs to outputs via a la-

tent function f : Rd → R which is assigned a GP prior.

Specifically, we assume a zero-mean GP prior p(f) =
N (f |0,K), where f = {fi}Ni=1, with fi ≡ f(xi),
is the set of latent function values and K is the covari-

ance matrix induced by evaluating the covariance func-

tion k(·, ·) at every pair of inputs. This work exploits the

commonly used squared exponential covariance function

k(x,x′) = γ exp
[
−∑d

i=1(xi − x′
i)

2/(2α2
i )
]
. We denote

the GP hyper-parameters as θ = {γ, α1, · · · , αd}, and for

notational simplification, we will omit conditioning on θ.

Along with the prior, we assume a factorized likelihood

p(y|f) =
∏N

i=1 p(yi|fi) where y is the set of all outputs.

Given the above, the posterior f is expressed as:

p(f |D) = p(f)
∏N

i=1 p(yi|fi)
p(D) ,

where the model evidence p(D) =
∫
p(f)

∏N
i=1 p(yi|fi)

df is often analytically intractable. Interestingly,

numerous problems can be well modeled in this

way: binary classification (Williams and Barber,

1998; Kuss and Rasmussen, 2005), one-output regres-

sion (Williams and Rasmussen, 1996; Jylänki et al., 2011),

log Gaussian cox processes (Møller et al., 1998) and

warped Gaussian processes (Snelson et al., 2004).

3.2 Expectation Propagation

In this section, we review the application of expectation

propagation (EP) to the above described GP models. EP

deals with the analytical intractability by exploiting the

Gaussian likelihood to approximate the individual non-

Gaussian likelihood:

p(yi|fi) ≈ ti(fi) ≡ Z̃iN (fi|µ̃i, σ̃
2
i ).

The function ti is often called the site function and is spec-

ified by site parameters: the scale Z̃i, the mean µ̃i and the

variance σ̃2
i . Notably, in the case of GP models with fac-

torized likelihoods, each local approximation relies merely

on fi instead of all variables f . We refer to this property as

an economic parameterization. Seeger (2005) showed that

such a parameterization is equivalent to a more general one

that uses all variables. Interestingly, although our method

employs a more complex Wasserstein distance, this prop-

erty still holds, as elaborated in Sec. 5.2.

Consequently, the intractable posterior distribution p(f |D)
is approximated by a Gaussian distribution q(f):

q(f) =
p(f)

∏N
i=1 ti(fi)

q(D) ≡ N (f |µ,Σ),

µ = ΣΣ̃−1µ̃, Σ = (K−1 + Σ̃−1)−1,

where conditioning on D is omitted from q(f) for nota-

tional simplification, µ̃ is the vector of µ̃i, Σ̃ is diagonal

with Σ̃ii = σ̃2
i , and the log approximate model evidence

log q(D) has the below closed form expression:

log q(D) =
N∑

i=1

log Z̃i −
1

2
log |K + Σ̃|

− 1

2
µ̃T(K + Σ̃)−1µ̃− N

2
log(2π).

This approximate model evidence is further employed to

optimize GP hyper-parameters θ⋆ = argmaxθ log q(D).
The core of EP is the optimization for a site function ti(fi).
A naive way is minimizing the forward KL divergence

between the true posterior p(f |D) and the distribution

p̃(f |D) ∝ p(f |D)ti(fi)/p(yi|fi) formed by replacing the

factor p(yi|fi) by ti(fi), namely, argminti KL(p(f |D)‖
p̃(f |D)). However, this is still intractable. Instead, EP

substitutes q\i(f) ∝ q(f)/ti(fi) (cavity distribution) for

p\i(f |D) ∝ p(f |D)/p(yi|fi) (Li et al., 2015; Bui et al.,

2017), expressed as:

q\i(f) = p(f)
(∏

j 6=i

tj(fj)
)
/q\i(D)

≈ p\i(f) = p(f)
(∏

j 6=i

p(yj|fj)
)
/p\i(D),

where q\i(D) and p\i(D) are normalizers. This assump-

tion in turn leads to an approximation q̃(f) (tilted distribu-

tion) to the true posterior p(f |D) and a new KL objective

function to minimize:

p(f |D) ≈ q̃(f) =
q(f)p(yi|fi)p\i(D)q(D)

ti(fi)q\i(D)p(D)
,

KL(q̃(f)‖q(f)) = KL(q̃(fi)‖q(fi)).
The minimization of the KL objective function is

realized by projecting the tilted distribution q̃(fi)
onto the Gaussian distribution space projKL(q̃(fi)) =
argminN KL(q̃(fi)‖N (fi)) = N (fi|µ⋆, σ⋆2), and then

using the optimal Gaussian distribution to update ti(fi) ∝
N (fi)/q

\i(fi), where the optimum parameters µ⋆ and σ⋆2

can be found by simply matching its moments with q̃(fi)’s,

µ⋆ = µq̃i , σ⋆2 = σ2
q̃i ,

where µq̃i and σ2
q̃i

are the mean and the variance of q̃(fi).
We summarize EP in Algorithm 1. In Sec. 4, we propose a

new approximation algorithm similar to EP while exploit-

ing the L2 Wasserstein distance for local updates instead of

the KL divergence.

3.3 Wasserstein Distance

We use M1
+(Ω) to denote the set of all probability mea-

sures on Ω. This work considers probability measures on
3



the d-dimensional real space R
d. Intuitively speaking, the

Wasserstein distance between two probability distributions

µ, ν ∈ M1
+(R

d) is defined as the cost of transporting prob-

ability mass from one to the other. We are particularly in-

terested in the subclass of Lp Wasserstein distances and its

formal definition is presented as below.

Definition 1 (Lp Wasserstein distances). Consider the set

of all probability measures on the product space R
d × R

d,

whose marginal measures are µ and ν respectively, denoted

as U(µ, ν). The Lp Wasserstein distance between µ and ν
is defined as

Wp(µ,ν)≡
(

inf
π∈U(µ,ν)

∫

Rd×Rd

‖x−z‖pp dπ(x,z)

)1/p

where p ∈ [1,∞) and ‖ · ‖p is the Lp norm.

The Wasserstein distance has a number of important prop-

erties. Like the KL divergence, the Wasserstein distance

has a minimum value of zero, achieved when two distribu-

tions are equivalent, but different from KL, it is symmet-

ric. Another essential property, we exploit to provide our

method with computational efficiency, is:

Proposition 1. (Peyré et al., 2019, Remark 2.30) The Lp

Wasserstein distance between one-dimensional distribution

functions µ and ν ∈ M1
+(R) equals the Lp distance be-

tween the quantile functions of µ and ν

Wp
p(µ, ν) =

∫ 1

0

|F−1
µ (y)− F−1

ν (y)|p dy,

where Fµ : R → [0, 1] is the cumulative distribution

function (CDF) of µ, defined as Fµ(x) =
∫ x

−∞
dµ, and

F−1
µ is the pseudoinverse or quantile funcntion, defined as

F−1
µ (y) = minx{x ∈ R∪{−∞} : Fµ(x) ≥ y}. Replacing

µ with ν in these definitions yields Fν and F−1
ν .

We will often use probability density functions into the no-

tation W(·, ·). Besides, another important feature of the

L2 Wasserstein distance is on translating random variables.

We exploit it in the proof of the economic parameterization.

Proposition 2. (Peyré et al., 2019, Remark 2.19) Con-

sider the L2 Wasserstein distance defined for µ and ν ∈
M1

+(R
d), and let fτ (x) = x − τ , τ ∈ R

d, be a trans-

lation operator. If µτ and ντ ′ denote the probability mea-

sures of translated random variables fτ (x), x ∼ µ, and

fτ ′(x), x ∼ ν, respectively, then we have W2
2(µτ , ντ ′) =

W2
2(µ, ν) − 2(τ − τ ′)T(mµ −mν) + ‖τ − τ ′‖22 where

mµ and mν are means of µ and ν respectively. In partic-

ular when τ = mµ and τ ′ = mν , µτ and ντ ′ become

zero-mean measures, and there is

W2
2(µτ , ντ ′) = W2

2(µ, ν)− ‖mµ −mν‖22.

4 Quantile Propagation

In this section, we propose a new approximation algo-

rithm, which matches local tilted distributions by minimiz-

Algorithm 1 Expectation (Quantile) Propagation

Input: p(f), p(yi|fi), ti(fi), i = 1, · · · , N , θ

Output: q(f) approximate posterior

1: repeat

2: repeat

3: for i = 1 to N do

4: q\i(fi) ∝ q(fi)/ti(fi) cavity distribution

5: q̃(fi) ∝ q\i(fi)p(yi|fi) tilted distribution

6: ti(fi)← projKL[q̃(fi)]/q
\i(fi) by (3.2)

(QP: ti(fi)← projW[q̃(fi)]/q
\i(fi)) by

(4.2)(4.2)

7: q(f) ∝ p(f)
∏

i ti(fi) by (3.2)

8: end for

9: until convergence

10: θ = argmaxθ log q(D) by (3.2)

11: until convergence

12: return q(f)

ing the L2 Wasserstein distance instead of EP’s forward

KL divergence. As summarized in Algorithm 1, the differ-

ence lies in the L2 Wasserstein distance based projection

projW(q̃(fi)) ≡ argminN W2
2(q̃(fi),N (fi)). Although

employing a more complicated divergence, our method en-

joys the same computational time complexity as EP’s and

alleviates EP’s over-estimation of variances.

More as per Proposition 1, minimizing W2
2(q̃(fi),N (fi))

is equivalent to minimizing the L2 distance between quan-

tile functions of q̃(fi) andN (fi), so we refer to our method

as quantile propagation (QP). This section focuses on de-

riving formulas for local updates with approximating the

non-Gaussian likelilhood p(yi|fi) with an effficiently pa-

rameterized Gaussian likelihood ti(fi). We later (in Sec. 5)

show that such a parameterization is equivalent to a more

general one using all f .

4.1 Convexity of Lp Wasserstein Distance

We first show Wp
p(q̃,N (µ, σ2)) to be strictly convex about

µ and σ. Provided the convexity, we can resort to either

elegant closed form expressions if available or for example

the gradient descent to optimize µ and σ. Formally, we

want to show the following theorem:

Theorem 1. Given two univariate distributions: Gaussian

N (µ, σ2), σ ∈ R+
1, and arbitrary q̃, the Lp Wasserstein

distance Wp
p(q̃,N ) is strictly convex about µ and σ.

Proof. Let F−1
q̃ and F−1

N (y) = µ +
√
2σerf−1(2y − 1)

be quantile functions of q̃ and the GaussianN , where erf is

the error function. Then, we consider two distinct Gaussian

distributionsN (µ1, σ
2
1) and N (µ2, σ

2
2) with σ1, σ2 ∈ R+

and a convex combination w.r.t. their parametersN (a1µ1+
a2µ2, (a1σ1 + a2σ2)

2) with a1, a2 ∈ R+ and a1 + a2 = 1.

1In this paper, R+ represents the set of positive real numbers.
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Given the above, we further define εk(y) = F−1
q̃ (y)−µk−

σk

√
2erf−1(2y−1), k = 1, 2, for notational simplification,

and derive the convexity as below:

Wp
p(q̃,N (a1µ1 + a2µ2, (a1σ1 + a2σ2)

2))

(a)
=

∫ 1

0

|a1ε1(y) + a2ε2(y)|p dy

(b)

≤
∫ 1

0

∣∣∣a1|ε1(y)|+ a2|ε2(y)|
∣∣∣
p

dy

(c)

≤ a1

∫ 1

0

|ε1(y)|p dy + a2

∫ 1

0

|ε2(y)|p dy

= a1Wp
p(q̃,N (µ1, σ

2
1)) + a2Wp

p(q̃,N (µ2, σ
2
2)),

where (a) and (c) are due to Proposition 1 and the convexity

of f(x) = xp, p ≥ 1, over R+ respectively. the equality

at (b) holds iff (condition 1) F−1
q (y) = 1/2

∑2
k=1(µk +

σk

√
2erf(2y−1)), and (c)’s equality holds iff (condition 2)

εk(y) ≥ 0, k = 1, 2, ∀y ∈ [0, 1]. Two conditions can’t be

attained at the same time as the condition 1 is equivalent to

ε1(y) = −ε2(y) and then in terms of the condition 2, there

is ε1(y) = ε2(y), which contracts the fact that N (µ1, σ
2
1)

is different fromN (µ2, σ
2
2). Therefore, the Lp Wasserstein

distance Wp
p(q̃,N ), p ≥ 1, is strictly convex about µ and σ,

which guarantees the uniqueness of minimum parameters.

4.2 Minimization of L2 Wasserstein Distance

Fortunately, the L2 Wasserstein distance W2
2(q̃,N (µ, σ2))

has almost closed form expressions for optimal µ and σ, so

yielding efficient local updates. We leave extensions of our

method on other Lp, with p 6= 2, Wasserstein distances to

the future work.

We obtain minimum parameters µ⋆ and σ⋆ of the L2

Wasserstein distance W2
2(q̃,N (µ, σ2)) based on Proposi-

tion 1. Specifically, we employ the quantile function based

reformulation (Eqn. (1)) of W2
2(q̃,N (µ, σ2)), and zero its

derivatives w.r.t. µ and σ. The results are directly provided

with derivations left to Appx. A:

µ⋆ = µq̃,

σ⋆ =
√
2

∫ 1

0

F−1
q̃ (y)erf−1(2y − 1) dy,

=
√
2

∫ ∞

−∞

xerf−1(2Fq̃(x) − 1)q̃(x) dx,

where Fq̃ is the CDF of q̃. Eqn. (4.2) is used for analy-

sis of QP’s properties, and we turn to computate the local

variance based on Eqn. (4.2) to get rid of the usually an-

alytically intractable quantile functions. Interestingly, the

updating equation for µ is same as EP’s: both equal the

mean of q̃. If q̃ has multiple modes, EP and QP match a

Gaussian distribution with the average of modes. In terms

of the local variance estimate, the optimum provided by QP,

i.e., Eqn. (4.2), denoted as σQP, is always less or equal to

EP’s optimum, denoted as σEP and calculated as Eqn. (3.2):

Theorem 2. σQP ≤ σEP where QP employs the L2 Wasser-

stein distance.

Proof. LetN (µQP, σ
2
QP) be the optimal Gaussian in the QP

algorithm with the L2 Wasserstein distance. As per Propo-

sition 1, we reformulate W2
2(q̃,N (µQP, σ

2
QP)) in quantile

functions:

W2
2(q̃,N (µQP,σ

2
QP))

=

∫ 1

0

|F−1
q̃ (y)−µQP−

√
2σQPerf−1(2y−1)|2 dy

(a)
=

∫ 1

0

(F−1
q̃ (y)−µQP)

2

︸ ︷︷ ︸
(A)

+(
√
2σQPerf−1(2y−1))2︸ ︷︷ ︸

(B)

−2(F−1
q̃ (y)−µQP)

√
2σQPerf−1(2y−1)

︸ ︷︷ ︸
(C)

dy

=σ2
EP−σ2

QP.

where the step (a) decomposes the Wasserstein distance

into three components: the integral of the term (A) equals

the variance estimated by EP, σ2
EP, due to the equivalent

mean estimates µQP = µEP = µq̃; calculation of the in-

tegral of (B) is straightforward and yields σ2
QP; in (C),∫

µQPσQPerf−1(2y−1) dy is zero and the left can be rewrit-

ten as 2σ2
QP with utility of Eqn. (4.2). Therefore, the last

line is obtained, and further due to the non-negativity of

the Wasserstein distance, we have σ2
EP ≤ σ2

QP. Equality

holds iff q̃ is Gaussian.

4.3 Implementations of Updating Formulas

Updates of the mean and the variance based on Eqn. (4.2)

and (4.2) require the probability density function (PDF)

and the CDF of the tilted distribution q̃. As per the book of

(Rasmussen and Williams, 2005), the cavity distribution is

a Gaussian denoted as q\i(f) = N (f |µ, σ2), and the PDF

of the tilted distribution is therefore expressed as q̃(f) ∝
q\i(f)p(y|f). Typical choices of likelihoods include the

probit likelihood p(y|f) = Φ(yf) for binary classification,

where Φ(x) =
∫ x

−∞
N (x|0, 1) dx is the cumulative distri-

bution function of the standard Gaussian and y ∈ {−1, 1},
the Gaussian p(y|f) = N (y|f, σ2

n) with some fixed vari-

ance σ2
n and y ∈ R for one-output regression, the Poisson

likelihood p(y|λ = exp(f)) = λy exp(−λ)/y! with y ∈ N

for log Gaussian cox processes.

For the binary classification, the PDF of the tilted dis-

tribution q̃(f) with the probit likelihood is provided by

Rasmussen and Williams (2005):

q̃(f) = Z−1Φ(yf)N (f |µ, σ2),
5



where Z ≡ Φ(ky) and k ≡ µ/
√
1 + σ2, and the mean

estimate also has a closed form expression:

µ⋆ = µq̃ = µ+
σ2yN (ky)

Φ(ky)
√
1 + σ2

.

The computation of the optimal σ⋆ requires the CDF of q̃.

Fortunately, it has a almost closed form expression:

Fq̃(x) = Z−1

[
1

2
Φ(h)− yT

(
h,

k + ρh

h
√
1− ρ2

)

+
y

2
Φ(k)− yT

(
k,

h+ ρk

k
√
1− ρ2

)
+ yη

]
,

where Z , k have been defined in Eqn. (4.3), h ≡ (x−µ)/σ,

ρ ≡ 1/
√
1 + σ−2, T (·, ·) is the Owen’s T function:

T (h, a) =
1

2π

∫ a

0

exp
[
− (1 + x2)h2/2

]

1 + x2
dx,

and η is defined as

η =

{
0 hk > 0 or (hk = 0 and h+ k ≥ 0),

−0.5 otherwise.

Provided the above, the optimal σ⋆ can be computed by

Monte Carlo sampling:

σ⋆ ≈
√
2

ZN

J∑

j=1

xjerf−1(2Fq̃(xj)− 1)p(y|xj),

where xj , j = 1, · · · , J , are sampled from the Gaussian

q\i(f |µ, σ2). We observe that σ⋆ is a function of three pa-

rameters: the cavity distribution’s µ and σ, and the output

y, so we resort to two lookup tables to accelerate QP in

practice. Two tables are built for y = 1 and y = −1 respec-

tively, and each table is two-dimensional, containing values

of the optimal σ⋆ over a regular grid of µ and σ. As a re-

sult, the local updates of QP and EP can be implemented in

the same computational time complexity of O(1).

5 Economic Parameterization

In this section, we prove the efficient parameterization for

QP, namely, the optimal site function ti only depends on

the local latent variable fi instead of all latent variables f .

5.1 Review: Proof for EP

We first review the proof for EP (Seeger, 2005). Let’s

define a more general site function ti(f) approximating

the likelihood p(yi|fi), and the cavity and the tilted dis-

tributions are expressed as q\i(f) ∝ p(f)
∏

j 6=i t̃j(f) and

q̃(f) ∝ q\i(f)p(yi|fi). To update ti(f), EP matches a

multivariate Gaussian distribution N (f) to q̃(f) by mini-

mizing the KL divergence KL(q̃‖N ) which is rewritten as

(see details in Appx. C.1):

KL
(
q̃‖N

)
= KL

(
q̃i‖Ni

)
+ Eq̃i

[
KL
(
q
\i
\i|i‖N\i|i

)]
,

where and hereinafter, \i|i represents the conditional dis-

tribution of f\i (leaving fi out from f ) given fi. In other

words, q
\i
\i|i = q\i(f\i|fi) and N\i|i = N (f\i|fi). We

minimize this KL divegence by setting q
\i
\i|i = N\i|i to

zero the term Eq̃i [KL
(
q
\i
\i|i‖N\i|i

)
] as q

\i
\i|i is Gaussian

and matching moments between q̃i and Ni to minimize

KL
(
q̃i‖Ni

)
. Finally, the site function ti is updated by di-

viding the optimal Gaussian N (f) by the cavity distribu-

tion q\i(f):

ti(f) ∝ N (f)/q\i(f)

=
✘
✘
✘
✘✘N (f\i|fi)N (fi)/(✘✘

✘
✘
✘

q\i(f\i|fi)q\i(fi))
= N (fi)/q

\i(fi).

Thus, the optimal site function ti relies solely on the local

latent variable fi.

5.2 Proof for QP

This section proves the economic parameterization for QP.

We first show the following theorem, and then follow the

same steps in Eqn. (5.1), it is simple to show that the opti-

mal site function ti replies on only fi.

Theorem 3. Minimization of W2
2(q̃(f),N (f)) w.r.t. N (f)

results in

q\i(f\i|fi) = N (f\i|fi).

Proof. (a) We rewrite the W2
2(q̃(f),N (f)) as below (see

detailed derivations in Appx. C.2):

W2
2(q̃,N )=inf

πi

Eπi

[
‖fi−f ′

i‖22+W2
2(q

\i
\i|i,N\i|i)

]
,

where the prime indicates that the variable is from the

Gaussian N , πi = π(fi, f
′
i) and the inf is over U(q̃i,Ni).

q\i(f) is known to be Gaussian and WLOG defined as

q\i(f) ≡ N
([

f\i

fi

] ∣∣∣∣
[
m\i

mi

]
,

[
S\i S\ii

ST
\ii Si

])
,

where m\i and S\i are f\i’s mean and covariance, and mi

and Si are fi’s. It follows that the conditional q\i(f\i|fi)
is expressed as:

q\i(f\i|fi) = N (f\i|m\i|i,S\i|i),

m\i|i = m\i + S\iiS
−1
i (fi −mi) ≡ afi + b,

S\i|i = S\i − S\iiS
−1
i ST

\ii.
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Similar to q\i(f), the Gaussian N is written as:

N (f ′) ≡ N
([

f ′
\i

f ′
i

] ∣∣∣∣∣

[
m′

\i

m′
i

]
,

[
S′
\i S′

\ii

S′ T
\ii S′

i

])

and the conditional is correspondingly expressed as:

N (f ′
\i|f ′

i) = N (m′
\i|i,S

′
\i|i),

m′
\i|i = m′

\i + S′
\iiS

′−1
i (f ′

i −m′
i) ≡ a′f ′

i + b′,

S′
\i|i = S′

\i − S′
\iiS

′−1
i S′ T

\ii.

Given the above expressions, we exploit Proposition 2 to

rewrite Eqn. (5.2) as:

W2
2 (q̃,N ) = inf

πi

Eπi

[
‖fi − f ′

i‖22 + ‖m\i|i −m′
\i|i‖22

]

+ W2
2

(
N (0,S\i|i),N (0,S′

\i|i)
)

︸ ︷︷ ︸
(A)

.

To minimize this expression, we need to optimize m′
i,m

′
\i,

S′
i, S

′
\i and S′

\ii. Note that among them, S′
\i is only con-

tained in the term (A) and is optimized by simply setting

S′
\i|i=S\i|i

Eqn. (5.2)
=⇒ S

(n)∗
\i =S\i|i+S′

\iiS
′−1
i S′ T

\ii.

As a result, Part A is minimized to zero.

Next, we plug in expressions of m\i|i and m′
\i|i (Eqs. (5.2)

and (5.2)) into optimized Eqn. (5.2):

min
S′

\i

Eqn. (5.2) = inf
πi

Eπi

[
‖fi − f ′

i‖22+

‖afi − a′f ′
i + b− b′‖22

]
.

Note that m′
\i is only contained in b′, so we optimize it by

zeroing the above function’s derivative about m′
\i, which

results in:

b′ = b+ aµq̃i − a′m′
i

Eqn. (5.2)
=⇒

m
(n)∗
\i = S′

\iiS
′−1
i m′

i + b+ aµq̃i − a′m′
i,

where µq̃i is the mean of q̃(fi). Consequently, the mini-

mum value of Eqn. (5.2) becomes (see detailed derivations

in Appx. C.3):

min
m′

\i

Eqn. (5.2) = (1 + aTa′)W2
2(q̃i,Ni) + ‖a‖22σ2

q̃i+

‖a′‖22S′
i − aTa′

[
σ2
q̃i + S′

i + (µq̃i −m′
i)

2
]
,

where σ2
q̃i

is the variance of q̃(fi). We note that W2
2(q̃i,Ni)

is the Wasserstein distance between two univariate distribu-

tions, so we exploit Proposition 1 to reformulate it:

W2
2(q̃i,Ni) = σ2

q̃i + (µq̃i −m′
i)

2 + S′
i − 2

√
2S′

icq̃i ,

where cq̃i ≡
∫ 1

0 F−1
q̃i

(y)erf−1(2y − 1) dy. Eqn. (5.2) is

therefore simplified by plugging the above reformulation

into it (see detailed derivations in Appx. C.4):

Eqn. (5.2) = W2
2(q̃i,Ni) + ‖a‖22σ2

q̃i−
2aTa′cq̃i

√
2S′

i + ‖a′‖22S′
i︸ ︷︷ ︸

(C)

.

Now, we are left with optimizing m′
i, S

′
i and S′

\ii. We op-

timize S′
\ii, only existing in the above term (C), by zeroing

the derivative of the above function w.r.t. S′
\ii:

a′∗=
√
2(S′

i)
−1/2cq̃ia

Eqn. (5.2)
=⇒ S′∗

\ii=
√
2(S′

i)
1/2cq̃ia.

The corresponding minimum value of Eqn. (5.2) is

min
S′

\ii

Eqn. (5.2) = W2
2(q̃i,Ni) + ‖a‖22(σ2

q̃i − 2c2q̃i).

The results of optimizing m′
i and S′

i have already been pro-

vided in Eqs. (4.2) and (4.2): m′∗
i = µq̃i and S′∗

i = 2c2q̃i .
Plug them into Eqs. (5.2) and (5.2), and we have a′∗ = a

and b′∗ = b. Based on the two equations and Eqn. (5.2), we

have q\i(f\i|fi)(= N (f\i|afi+b,S\i|i)) = N (f\i|fi)(=
N (f\i|a′fi + b′,S′

\i|i)). Furthermore, based on this con-

clusion and taking the same steps in Eqn. (5.1), the eco-

nomic parameterization is proved.

5.3 Benefits from Economic Parameterization

Consider the full parameterization for the approximate like-

lihood ti(f) = Z̃iN (f |µ̃i, Σ̃i). It has N random variables

f , a N -dimenstional mean µ̃i and a N × N covariance

matrix Σ̃i. As a result, the approximate posterior distribu-

tion q(f) with N likelihoods owns O(N3) indeterminate

parameters and consumes O(N3) memory. And, in each

local update, O(N2) parameters need optimizing.

In constrast, the economic parameterization for the ap-

proximate likelihood ti(fi) = Z̃iN (fi|µ̃i, σ̃
2
i ) has only

one random variables fi, one mean µ̃i and one variance

σ̃2
i . Consequently, the approximate posterior distribution

has O(N) indeterminate parameters and consumes O(N2)
memory dominated by the covariance matrix of the prior

distribution. In terms of a local update, less computational

time is required due to O(1) parameters being optimized,

which is significantly less than O(N2) parameters of the

full parameterization.

6 Unified Interpretations

In this section, we intend to provide unified interpretations

of EP and QP algorithms.

6.1 Interpretation of EP

Consider an intractable global objective function of the

forward KL divergence between the true and the approx-
7



imate posterior distributions KL(p(f |D)‖q(f)). EP ran-

domly selects a factor ti(fi) to optimize by minimizing

this function. For tractability, EP makes the assumption

of p\i(f |D) ≈ q\i(f) as mentioned in Sec. 3.2, which re-

sults in two more approximations: the true posterior being

approximated by the tilted distribution p(f |D) ≈ q̃(f) and

KL(p(f |D)‖q(f)) ≈ KL(q̃(f)‖q(f)). Further as per the

simplification in Eqn. (3.2), EP turns out to minimize the

local KL objective function KL(q̃(fi)‖q(fi)). Concretely,

EP matches a Gaussian N (fi) to q̃(fi) by minimizing the

forward KL divergence and then uses the Gaussian to up-

date ti(fi) ∝ N (fi)/q
\i(fi). In this way, we can regard

EP as a coordinate descent algorithm to the global ob-

jective function KL(p(f |D)‖q(f)) under the assumption

p\i(f |D) ≈ q\i(f).

6.2 Interpretation of QP

Similar to EP, QP considers an intractable global ob-

jective function of the L2 Wasserstein distance be-

tween the true and the approximate posterior distribu-

tions W2
2(p(f |D), q(f)). QP also randomly selects a fac-

tor ti(fi) to optimize and makes the same assumption of

p\i(f |D) ≈ q\i(f), which causes an approximation to the

L2 Wasserstein objective function W2
2(p(f |D), q(f)) ≈

W2
2(q̃(f), q(f)). To optimize ti(fi), QP fits a Gaussian

N (f) to q̃(f) by minimizing the L2 Wasserstein distance,

and then updates ti(fi) ∝ N (f)/q\i(f). As per what

has been concluded in Theorem 5.2, QP finally solves

N ⋆(fi) = argminNi
W2

2(q̃i,Ni) (Eqn. (5.2)), and updates

ti(fi) ∝ N ⋆(fi)/q
\i(fi). In this way, we can regard

QP as a coordinate descent algorithm to the global ob-

jective function W2
2(p(f |D), q(f)) under the assumption

p\i(f |D) ≈ q\i(f). Interestingly, such analysis provides

unified interpretations for EP and QP. That is, EP and QP

are coordinate descent algorithms to a forward KL and a L2

Wasserstein objective function respectively under the same

assumption.

7 Experiments

In this section, we compare QP and EP algorithms on the

GP binary classification. The experiments employ various

real world data and aim to compare relative accuracy of two

different approximations rather than optimizing the abso-

lute performance.

Performance Evaluation To evaluate the performance,

we employ two measures: the error rate (E) and the test log-

likelihood (TLL). E quantifies the prediction accuracy for

the binary classification while TLL measures the prediction

uncertainty.

Benchmark Data We use the six real life datasets em-

ployed in the work of Kuss and Rasmussen (2005): Iono-

sphere, Wisconsin Breast Cancer, Sonar (Dua and Graff,

2017), Leptograpsus Crabs, Pima Indians Diabetes (Ripley,

1996) and the USPS digit data (Hull, 1994). The USPS

digit data consist of 0 - 9 and images of 3 and 5 are used for

the binary classification. Besides, we use extra UCI open

datasets: Iris and Wine (Dua and Graff, 2017). Iris and

Wine have three classes and experiments of binary clas-

sification are conduct on every two different classes. We

summarize the dataset size and data dimensions in Table 1.

Prediction In the training stage, EP and QP optimize

the site parameters µ̃ and Σ̃ and GP hyper-parameters θ.

Given these, we compute the approximate predictive dis-

tribution for the binary target y∗ with the input of x∗ in

the test stage. Let K∗ denote the N × 1 covariance matrix

evaluated at all pairs of training and test inputs, (xi,x∗),
i = 1, · · · , N , and k∗ = k(x∗,x∗), and then we have the

following predictive distribution:

q(y∗ = 1|D) = Φ


 KT

∗ (K + Σ̃)−1µ̃√
1 + k∗ −KT

∗ (K + Σ̃)−1K∗


 .

Experiment Settings In the experiment, we split the

each dataset into 10 folds and each time we use 1 fold

as the test set and other 9 folds as the training set. As

a result, totally 10 experiments are run on each dataset

and the averaged results are summarized in Table 1. For

EP and QP, we set the maximal iteration of the inner re-

peat loop of Algorithm 1 as 10, and for the outer loop, we

use the minimization optimizer implemented in the book

of Rasmussen and Williams (2005) with the maximal iter-

ation of 40.

Results The result table (Table 1) consists of two sec-

tions. The top one shows the results on the same datasets

employed by Kuss and Rasmussen (2005), and our results

about EP are close to theirs. Compared with EP, QP gains

lower error rates on a half of datasets and same eror rates on

one third of datasets, while performs worse on the Pima In-

dians dataset. In perspective of the TLL, QP surpasses EP

on all datasets except the Pima Indians dataset. The bottom

section employs additional datasets to provide more evi-

dence of QP’s alleviation of EP’s over-estimation of vari-

ances. Although the error rates are not improved signif-

icantly on these experiments, the uncertainty measures of

QP are always better than EP’s.

8 Conclusions

In this work, we propose an approximate Bayesian infer-

ence for Gaussian process models with factorizable Gaus-

sian likelihoods and one-output latent functions. Like EP,

the proposed method approximates the non-Gaussian like-

lihood by the Gaussian likelihood and optimizes the Gaus-

sian likelihood in the local updates, but it minimizes the L2
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E (%) TLL

Dataset n m EP QP EP QP

Ionosphere 351 34 10.71 6.79 -13.70 -9.01

Cancer 683 9 3.24 3.24 -7.29 -6.74

Pima Indians 732 7 14.29 17.42 -22.72 -30.46

Crabs 200 7 3.0 3.0 -1.92 -1.78

Sonar 208 60 14.12 13.53 -16.46 -11.94

USPS (3 vs 5) 1540 256 3.44 2.92 -12.24 -10.63

Iris (setosa vs versicolor) 100 4 0 0 -4.97×10−2 -4.97×10−2

Iris (setosa vs virginica) 100 4 0 0 -3.28×10−2 -3.23×10
−2

Iris (versicolor vs virginica) 100 4 7 7 -2.46 -2.07

Wine (classes 1 vs 2) 130 13 3.08 3.85 -1.34 -1.27

Wine (classes 1 vs 3) 107 13 0 0 -4.99×10−2 -4.87×10
−2

Wine (classes 2 vs 3) 119 13 3.64 2.73 -8.19×10−1 -8.17×10
−1

Table 1: Results on Benchmark Datasets. The first three columns give the name of the dataset, the number of instances

m and the number of features n. For two methods, the table records the average error rate (E) and the test log likelihood

(TLL). The top section is on the benchmark datasets employed by Kuss and Rasmussen (2005) and the bottom section uses

additional datasets to further demonstrate the performance of our method.

Wasserstein distance instead of the KL divergence. Con-

sequently, the local update matches the quantile functions

of local one-dimensional distributions rather than moments

by EP. Interestingly, both of our method and EP update

the Gaussian mean to be the mean of the tilted distribu-

tion, while the local variance estimate by our method is

smaller than EP’s, which results in alleviating EP’s defi-

ciency of over-estimating variances. We further show the

economic parameterization property of our method – the

optimal approximate likelihood relies on merely a single

latent variable, and such a property reduces memory con-

sumption by a factor N , i.e., the number of data, and com-

putational time through optimizing a much less number

(O(1), vs O(N2) for the full parameterization) of parame-

ters in each local update. Also, we deliver unified interpre-

tations of EP and the proposed method respectively – we

regard both methods as coordinate descent algorithms to a

KL and a L2 Wasserstein global objective function under

the same approximation assumption. Our experiments em-

ploying a wide range of real world datasets show that our

method outperforms EP on the task of Gaussian process

binary classification, and also provides empirical evidence

for alleviation of over-estimation of variances.
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Accompanying the submission Quantile Propagation for Wasserstein-Approximate Gaussian Processes.

A Minimum of L2asserstein Distance between Univariate Gaussian and Non-Gaussian

Distributions

In this section, we prove the formulas (Eqs. (4.2) and (4.2)) of the minimum µ∗ and σ∗ for p = 2. Recall the optimization

problem: we want to use a Gaussian distribution N (µ, σ2) to fit a non-Gaussian distribution q by minimizing the L2

Wasserstein distance between them:

min
µ,σ

W2
2(q,N ) = min

µ,σ

∫ 1

0

∣∣∣F−1
q (y)− µ−

√
2σerf−1(2y − 1)

∣∣∣
2

dy,

where F−1
q is the quantile function of the non-Gaussian distribution q, namely the pseudoinverse function of the corre-

sponding cumulative distribution function Fq .

To solve this problem, we first calculate derivatives about µ and σ:

∂W2
2

∂µ
= −2

∫ 1

0

F−1
q (y)− µ−

√
2σerf−1(2y − 1) dy,

∂W2
2

∂σ
= −2

∫ 1

0

(F−1
q (y)− µ−

√
2σerf−1(2y − 1))

√
2erf−1(2y − 1) dy.

Then, by zeroing derivatives, we obtain the optimal parameters:

µ∗ =

∫ 1

0

F−1
q (y)−

√
2σerf−1(2y − 1) dy

=

∫ ∞

−∞

xq(x) dx−
√
2

2
σ

∫ 1

−1

erf−1(y) dy

= µq −
√
2σ

∫ ∞

−∞

xN (x|0, 1/2) dx

= µq,

σ∗ =
√
2

∫ 1

0

(F−1
q (y)− µ)erf−1(2y − 1) dy

/∫ 1

0

2(erf−1)2(2y − 1) dy

=
√
2

∫ 1

0

F−1
q (y)erf−1(2y − 1) dy

/∫ ∞

−∞

2x2N (x|0, 1/2) dx

︸ ︷︷ ︸
=1

=
√
2

∫ 1

0

F−1
q (y)erf−1(2y − 1) dy.

B Minimization of Wp

p

When using other Wp
p to get different performances, we can apply the gradient descent to obtain optimal µ∗ and σ∗

(elegant updating equations are unavailable). For simplification, we define ε(y) = F−1
q̃ (y)− µ−

√
2σerf−1(2y − 1) and

η(x) = x− µ−
√
2σerf−1(2Fq̃(x)− 1), and derivatives can be directly computed as:

∂µWp
p = −p

∫ 1

0

|ε(y)|p−1sgn(ε(y)) dy = −p
∫ ∞

−∞

|η(x)|p−1sgn(η(x))q̃(x) dx,

∂σWp
p = −p

∫ 1

0

|ε(y)|p−1sgn(ε(y))erf−1(2y − 1) dy = −p
∫ ∞

−∞

|η(x)|p−1sgn(η(x))erf−1(2Fq̃(x)− 1)q̃(x) dx.

Furthermore, we resort to Monte Carlo sampling to calculate the derivatives. Consider q̃(x) = q\i(x)p(yi|x)/Z defined as

Eqn. (4.3) and we approximate ∂µWp
p as:

∂µWp
p = −p

∫ ∞

−∞

∣∣η(x)
∣∣p−1

sgn
(
η(x)

)
p(yi|x)q\i(x)/Z dx,
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≈ − p

J

J∑

j=1

∣∣η(xj)
∣∣p−1

sgn
(
η(xj))

)
p(yi|xj)/Z,

∂σWp
p = −p

∫ ∞

−∞

∣∣η(x)
∣∣p−1

sgn
(
η(x)

)
erf−1(2Fq̃(x)− 1)p(yi|x)q\i(x)/Z dx,

≈ − p

J

J∑

j=1

∣∣η(xj)
∣∣p−1

sgn
(
η(xj)

)
erf−1(2Fq̃(xj)− 1)p(yi|xj)/Z,

where xj are i.i.d. sampled from the Gaussian distribution q\i(x).

C Details of Economic Parameterization

C.1 Decomposition of the KL divergence in Proof for EP

KL(q̃(f)‖N (f)) =

∫
q̃(f) log

q̃(f\i|fi)q̃(fi)
N (f\i|fi)N (fi)

df

=

∫
q̃(fi) log

q̃(fi)

N (fi)
dfi +

∫
q̃(fi)

∫
q̃(f\i|fi) log

q̃(f\i|fi)
N (f\i|fi)

df\i dfi

= KL
(
q̃(fi)‖N (fi)

)
+ Eq̃(fi)

[
KL
(
q̃(f\i|fi)‖N (f\i|fi)

)]

C.2 Details of Eqn. (5.2)

W2
2 (q̃(f),N (f)) ≡ inf

π∈U(q̃,N )
Eπ

(
‖f − f (n)‖22

)

= inf
π∈U(q̃,N )

Eπ

(
‖fi − f

(n)
i ‖22

)
+ Eπ

(
‖f\i − f

(n)
\i ‖22

)

(a)
= inf

π∈U(q̃,N )
Eπi

[
‖fi − f

(n)
i ‖22 + Eπ\i|i

(
‖f\i − f

(n)
\i ‖22

) ]

(b)
= inf

πi

Eπi

[
‖fi − f

(n)
i ‖22 + inf

π\i|i

Eπ\i|i

(
‖f\i − f

(n)
\i ‖22

) ]

= inf
πi

Eπi

[
‖fi − f

(n)
i ‖22 + W2

2(q̃\i|i,N\i|i)
]

(c)
= inf

πi

Eπi

[
‖fi − f

(n)
i ‖22 + W2

2(q
\i
\i|i,N\i|i)

]
,

where the superscript (n) indicates that the variable is from the Gaussian N . In (a), πi = π(fi, f
(n)
i ) and π\i|i =

π(f\i,f
(n)
\i |fi, f

(n)
i ). In (b), the first and the second inf are over U(q̃i,Ni) and U(q̃\i|i,N\i|i) respectively. (c) is due to

q̃(f\i|fi) being equal to q\i(f\i|fi):

q̃(f\i|fi) =
q̃(f)

q̃(fi)
∝

p(f)
✘

✘
✘✘p(yi|fi)
∏

j 6=i tj(f)

q\i(fi)✘✘
✘✘p(yi|fi)

= q\i(f\i|fi).

C.3 Details of Eqn. (5.2)

min
m

(n)

\i

Eqn. (5.2)

= inf
πi

Eπi

[
‖fi − f

(n)
i ‖22 + ‖a(fi − µq̃i)− a(n)(f

(n)
i −m

(n)
i )‖22

]
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= inf
πi

Eπi

[
‖fi − f

(n)
i ‖22

]
+ ‖a‖22σ2

q̃i + ‖a(n)‖22S(n)
i − 2aTa(n)

Eπi

(
fif

(n)
i − µq̃im

(n)
i

)

= inf
πi

Eπi

[
‖fi − f

(n)
i ‖22

]
+ ‖a‖22σ2

q̃i + ‖a(n)‖22S(n)
i + aTa(n)

Eπi

(
‖fi − f

(n)
i ‖22 − f2

i − (f
(n)
i )2 + 2µq̃im

(n)
i

)

= inf
πi

Eπi

[
‖fi − f

(n)
i ‖22

]
+ ‖a‖22σ2

q̃i + ‖a(n)‖22S(n)
i + aTa(n)

Eπi

(
‖fi − f

(n)
i ‖22 − (fi − µq̃i)

2−

2fiµq̃i + µ2
q̃i − (f

(n)
i −m

(n)
i )2 − 2f

(n)
i m

(n)
i + (m

(n)
i )2 + 2µq̃im

(n)
i

)

= (1 + aTa(n))W2
2(q̃i,Ni) + ‖a‖22σ2

q̃i + ‖a(n)‖22S(n)
i − aTa(n)

(
σ2
q̃i + µ2

q̃i + S
(n)
i + (m

(n)
i )2 − 2µq̃im

(n)
i

)

= (1 + aTa(n))W2
2(q̃i,Ni) + ‖a‖22σ2

q̃i + ‖a(n)‖22S(n)
i − aTa(n)

[
σ2
q̃i + S

(n)
i + (µq̃i −m

(n)
i )2

]

C.4 Details of Eqn. (5.2)

W2
2(q̃i,Ni) =

∫ 1

0

(
F−1
q̃i

(y)−m′
i −
√
2S′

ierf−1(2y − 1)
)2

dy,

=

∫ 1

0

(F−1
q̃i

(y)−m′
i)

2 + 2S′
ierf−1(2y − 1)2 − 2

√
2S′

ierf−1(2y − 1)(F−1
q̃i

(y)−m′
i) dy,

=

∫ 1

0

(F−1
q̃i

(y)− µq̃i + µq̃i −m′
i)

2 dy + S′
i − 2

√
2S′

icq̃i ,

= σ2
q̃i + (µq̃i −m′

i)
2 + S′

i − 2cq̃i

√
2S

(n)
i ,

where F−1
q̃i

(y) is the quantile function of q̃(fi) and cq̃i ≡
∫ 1

0 F−1
q̃i

(y)erf−1(2y − 1) dy.
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