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Abstract. This paper investigates the overhaul maintenance scheduling
problem in which the maintenance duration is uncertain at the time of
planning. This problem involves specifying the dates of trains’ arrival
at the maintenance centre while taking into consideration the due win-
dows, the desired number of trains in service, and the capacity of the
maintenance centre. The cycle time of each type of trains is random
with a known probability distribution. The objective is to minimise a
weighted sum of two components: (i) the deviation of the assigned ar-
rival dates from the due windows and (ii) the penalty for violating the
resources’ constraints. A combined genetic algorithm with sample aver-
age approximation solution approach is developed to solve this problem.
The solution approach consists of a genetic algorithm for global search
and an exact method to determine the arrival dates of train-sets when a
sequence of train-sets is known. The results with data provided by one
of the leading Australian maintenance center show that the proposed
method can produce good solution within acceptable computation time.

Keywords: Genetic algorithm - Stochastic cycle time: Quadratic earli-
ness/tardiness - Sample average approximation.

1 Introduction

This paper deals with the scheduling of overhaul maintenance of trains, arising
in the realm of passenger rail services. In the case of overhaul maintenance, the
trains are withdrawn from service and are sent to a specialised maintenance
centre where they will stay for at least one month for the entire maintenance
process. A typical objective of this problem is to minimise the total cost of
earliness and tardiness subject to the centre capacity. According to [8], this
problem is known as the Overhaul Maintenance Scheduling Problem (OMSP).
This paper addresses the stochastic version of OMSP, where the dwell time of
the trains at the maintenance centre is uncertain at the time of planning. We
refer to this problem as Stochastic Overhaul Maintenance Scheduling Problem
(SOMSP).
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In SOMSP, we consider the perspective of the maintenance centre’s planning
manager who must determine an arrival plan specifying the arrival dates for all
trains for one year or for a longer period, where each train has a distinct due
window and a random dwell time! that follows a known probability distribution
associated with the type of train. During the planning phase, one must take into
consideration the distinct due windows which are the desired arrival windows of
the trains. It is noted that the definition of due window in this paper is different
from those in most scheduling literature whereby it is referred to as the desired
completion window of a job.

The train arrives at the maintenance centre in groups. Each group is com-
prised of several cars coupled together and is referred to as a set or a train-set
(see for example [4]). All cars in a train-set undergo the maintenance in the
maintenance centre simultaneously. A feasible arrival plan is one that satisfies a
number of constraints. Firstly, a team of technicians and engineers with a broad
range of skills is needed to perform the maintenance tasks. To complete the
maintenance operations, the team must use various equipment and materials.
These renewable and nonrenewable resources can be quantified as centre capac-
ity. The centre capacity imposes a restriction on the number of train-sets which
can undergo maintenance simultaneously.

Secondly, on the arrival date, the train-set is completely withdrawn from
service and must stay at the maintenance centre for at least one month. This
long cycle time directly impacts the number of train-sets available in active
service. Therefore, a permissible number of train-sets that can be taken out of
service simultaneously are specified for each type of train-sets.

Solving the SOMSP is challenging for various reasons: (i) the single machine
scheduling problem with earliness and tardiness objectives, which is similar to
the OMSP, is known to be NP-hard [11]. Hence, the considered SOMSP with
stochastic dwell time is even harder to solve; and (ii) due to the non-uniform
distribution of the desired arrival window, there is a trade-off between respecting
the time window and satisfying the centre capacity and operational requirement
[6].

Due to the complexity of SOMSP, a Genetic Algorithm (GA) is proposed
to solve the considered problem. Based on previous study in [2], it is noted
that the decoding procedure, where a chromosome is transformed into a feasible
arrival plan, is a crucial step of GA. The decoding procedure used in [2] is a
simple greedy heuristic which does not generate good solution. To improve the
performance, we develop a new decoding procedure based on Sample Average
Approximation (SAA) method in this paper.

The remainder of this paper is organised as follows. Section 2 presents the rel-
evant literature. Section 3 gives the mathematical formulation of the considered
problem. Section 4 shows the model formulation using SAA approach. Section 5
describes the proposed genetic algorithm in detail. Section 6 reports the results

! In the context of this paper, dwell time and cycle time have the same meaning. The
two terms are used interchangeably.
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of the computational experiments. Finally, section 7 concludes the study and
gives directions for future research.

2 Literature review

Papers that consider the scheduling and planning of rolling stock’s maintenance
within the railway industry can be categorised into two groups. The first focuses
on the running maintenance which is performed during the connection between
two consecutive paths or overnight at the rolling stock depot. These studies
generally consider the perspective of the railway provider who must design a
rolling stock rostering plan while taking into consideration various maintenance
requirements. The design objectives often include minimising a weighted sum of
maintenance cost, deadhead cost due to unexpected failure, and substitution cost
due to the use of undesired train-sets [4]; and minimising the sum of deadhead
costs and number of train units [9].

The second focuses on the overhaul maintenance which is performed at a
specialised workshop. These studies generally consider the perspective of the
workshop’s planning manager who must determine the dates on which the trains
must be sent to the workshop for maintenance. As an early work, [8] proposes
a genetic algorithm for solving the OMSP. Doganay & Bohlin [1] formulates
the OMSP as a mixed integer linear programming model and solves it by exact
method. Lin et al. [6] formulates the high-level maintenance scheduling for high
speed trains as a mixed integer linear programming model and proposes a sim-
ulated annealing algorithm for solving large-scale instances. From these studies,
we can observe that the objective of minimising the total cost of earliness and
tardiness is a common design objective of OMSP.

The proposed SOMSP is similar to a Stochastic Multiple Resource Con-
strained Scheduling Problem (SMRCSP), in which one need to decide the start
times of jobs requiring different types of resources under uncertain processing
time [3]. This kind of problem has application in appointment sequencing and
scheduling where jobs correspond to operation appointments and resources cor-
respond to doctors, nurses and operating rooms [7]. However, the key differences
between the proposed SOMSP and the aforementioned problems involve: (i) each
type of train-sets has a known processing time on the first operation line where
preemptions are not allowed. That is, the scheduling on the first operation line
can be treated as a single machine scheduling problem; and (ii) for train-sets of
the same type, there exists a noticeable sequence among them. That is, train-set
with earlier due window should always arrive for maintenance earlier than the
others of the same type in order to minimise the objective function value.

3 Mathematical formulation

Consider a set N := {1,--- ,n} of train-sets and a planning period of T' days.
The planning horizon is discretised into calendar days which are indexed from 0
toT — 1.
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Each train-set j € N has a due window [e;, [;], where e; is the earliest desired
arrival date and [; is the latest desired arrival date. The earliness and tardiness
of train-set j if it arrives on day t are defined as Fj; = max{0,e; — t}, and
Tj; = max{0,t —l;}, respectively. Let c;; be the cost for assigning train-set j to
arrive on day ¢, as indicated in (1).

Cjt = )‘1E]2t + /\QTth, (1)

where A\; and Ay are the earliness and tardiness cost factors, respectively.

There are m types of train-sets and the set of all train-sets is partitioned into
m families. Each train-set belongs to a train family F* k € K = {1,--- ,m}.
Each type of train-sets requires a minimum duration on the first operation line,
during which the maintenance operations must be performed without interrup-
tion. For each train family F*, let p, be the minimum duration on the first
operation line. The minimum duration is assumed to be deterministic.

For each day t, let C; be the centre capacity (i.e. the number of train-sets
which can undergo maintenance simultaneously). Violation of this restriction is
permitted for a penalty cost. Let § be the unit penalty for violating the centre
capacity. In practice, the penalty is associated with each additional train-set to
account for overtime, outsourcing, and hiring contractors.

For each train family F* and each day t, let C; be the permissible number
of out-of-service train-sets. Violation of this restriction is permitted since the
shortage of some types of train-sets can be substituted by a different train type.
Let i be the unit penalty for violating the limit Cy;. In practice, a penalty is
associated with each substitution to account for the passengers’ dissatisfaction
due to the differences in their configurations.

The cycle time of each train-set j is a random variable D;. Train-sets in a
train family follows the same probability distribution. It is assumed that the
probability distribution for the cycle time of each type of train-sets is known. It
is further assumed that all D; are independent.

We introduce the time indexed binary variables z;; € {0,1} which is equal
to 1 if train-set j € N arrives at the maintenance centre on day t, and is equal
to 0 otherwise. Then, for each train-set j € IV its arrival day is defined as

T-1
S5 = Z tl'jt7 VieN (2)
t=0
Accordingly, we can define an arrival plan s = (s1,---,8,). For any arrival

plan s and any integers 1 < k < m and 0 < t < T, the number of trains of
family k that present at the centre on day ¢ is

Zi =Y Blsit), 3)

JEFk

where
lifs; <tands;+D; >t+1
0 otherwise ’

B(s;, ) Z{



Title Suppressed Due to Excessive Length 5

Then, the total number of trains present at the centre on day ¢ is

Zi =3 Zy. (5)

keK

If it is clear which arrival plan is considered, the superscript s can be dropped
and the notation Z; (Zy;) can be used instead of Z7 (Z,).
Formulation of SOMSP

T—1
Minag E Cjtjt

JEN t=0

T—1

+5 Z <5E [(Zt - Ct)+] + Z OB [(Zkt - th)+]> (6)
t=0 kEK

subject to

T—1

> zy=1, VjeN (7)

t=0

t
3y > zje <1, Vte[0,T—1] (8)
keEK jeF*k s=max(t—pr+1,0)
(3), (4), (5)
zj; € {0,1}, VjeN, Vte[0,T—1] 9)

Where (a)™ := max(a,0); E[.] denotes the expectation operator; o and j3
are weights reflecting the relative importance of the two components of the
objective function. The objective function (6) minimises the weighted sum of
two components: the cost incurred if train-set j arrives for maintenance on day
t (i.e. the quadratic earliness and tardiness costs); and the expected penalties
for violating the limits C; and Cy;. Constraint (7) guarantees that each train-set
is scheduled for maintenance on a particular day ¢ within the planning horizon.
Constraint (8) depicts the restriction on the first operation line. If a train-set
j occupies the first operation line in a given time interval, other train-sets are
not allowed to arrive during this period. Constraint (9) states that the decision
variables are binary.

4 SAA Model

Using the sample average approximation approach, the SOMSP formulation,
presented in section 3, can be rewritten as a mixed integer programming model.

Consider a set 2 := {1, - ,w} of scenarios. Each scenario comprises a vector
of realisations of cycle time which are drawn independently from the distributions
corresponding to each train family. Let ' be the cycle time of train-set j in
scenario w.
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Formulation of SAA Model

T-1 -1
(SAA) Min « Z Z cjtZie + ‘—;” Z (Z {522" + Z 6ktz;:t}> (10)

JEN t=0 weN \t=0 keK

subject to

(7), (8), (9)
Z Z Tjs S Ot + Z‘{),

JEN s=max(t—£¥+1,0)

VweR, Vtelo,T—-1  (11)

t
Z Z Tjs S th""ZL]:;)U

jEFFk s:max(tfg;"Jrl,O)
Vwe R, VkeK, Vte[0,T-1 (12)
zf > 0,25 >0, Ywe R, VkeK, Vvtel0,T-1] (13)

The objective function (10) is the weighted sum of two components: the first
component is the same as the first component of objective function (6), while the
second component is the sample average of the penalties for the additional train-
sets. We call the first component and second component of objective function
(10), the earliness tardiness cost (ETC) and the resource violation cost (RVC),
respectively. For every scenario w, constraints (11) and (12) describe the addi-
tional train-sets, represented by the slack variables z;” (z},), based on the limits
Cy and Cj;. Constraint (13) is the non-negativity constraint.

4.1 Property of SAA Model

SAA has been extensively used in literature to solve stochastic optimisation
problems (see for example, [7]). However, solving SAA model by itself can be
computationally challenging as the number of scenarios increases. To demon-
strate the complexity of SAA model, we perform a preliminary experiment with
various number of scenarios. The result in term of computation time is reported
in Table 1. In the same table, we also present the computation time required for
solving SAA model if a sequence is given. Given a set of train-sets, a sequence is
the order in which the train-set arrives at the maintenance centre. Let F be a set
of arcs representing the precedence relations obtained from the sequence. The
SAA model with sequence (SAA-sequence) includes the addition of the following
constraint:

T-1 T-1
dtau <> tay, Vi,j)€E (14)
t=0 t=0

Constraint (14) enforces the precedence relations among train-sets according
to the given sequence.
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Table 1. Computation time (in seconds) required for solving SAA model with and
without sequence

Number of scenarios SAA model SAA-sequence model

5 288.348 9.375

10 - 21.146
20 - 44.947
30 - 62.048
40 - 81.929
50 - 129.034
100 - 421.410

From Table 1, we note that SAA model cannot be solved within the time limit
of one hour when the number of scenarios is larger than or equal to 10 scenarios.
On the other hand, solving SAA model with given sequence is relatively easier.
Problem instance with 100 scenarios can be solved in less than 500 seconds.

5 The solution method

Motivated by the result in section 4, a genetic search with SAA (GS-SAA) is
proposed to solve the problem. The idea of GS-SAA is simple. It combines genetic
algorithm for global search and solving SA A-sequence model for a solution. The
genetic algorithm is inspired by [5] and has previously been studied in [2]. Detail
of the proposed GS-SAA is given below.

Algorithm

1: Generate initial population

2: Decode the chromosomes into solutions by solving SA A-sequence model
3: Evaluate the solutions

4: for the number of generations < ITiaz, and time < Tiez do

5: Select parents

6: Generate offspring (two-point crossover)

T Diversify offspring (mutation)

8 Decode offspring into solutions by solving SA A-sequence model

9 Evaluate the solutions
0: end for
1: return the best solution

10:
11:

The proposed GS-SAA starts with the generation of an initial population
of size p. Then, each chromosome in the initial population is decoded into a
sequence. The sequence decoding procedure works as follow. An arrival plan,
or a solution P is represented by a chromosome. Each gene in the chromosome
corresponds to a train-set and the gene value is generated randomly from the
uniform distribution U(0,1). The gene values determine the priority of the train
types. Respecting this priority list, the priority of train-sets (i.e. the sequence of
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train-sets) is obtained by sorting the train-sets in the same train family based
on its earliest desired arrival date (see Figure 1 for an example).

Train-set Index 1 2 3 4 5
Train type v K T T T
Due window [0, 28] [19,47] [30,58] [34,62] [41,69]
Chromosome 0.57 0.08 0.84 0.12 0.23
Sorted gene values 0.08 0.12 0.23 0.57 0.84
Priority of train types K T T v T
Decoded sequence 2 3 4 1 5

Fig. 1. Example of sequence decoding by train types.

Once the sequence is known, an arrival plan, or a solution P is generated by
solving the SAA-sequence model. Next, the solution P is evaluated according to
the objective function (6). The evaluation is the same as that given by [2].

Given the current generation, the next generation is produced through elite
selection, crossover, and mutation.

In the elite selection phase, some of the best individuals of the current gen-
eration will continue to exist in the next generation. The number of surviving
individuals is equal to Ngjize. The elite selection strategy is motivated by the
“Survival of the fittest” [10]. However, the drawback is that it can lead to pre-
mature convergence (i.e. catch in a local optimum).

In the crossover phase, a child is produced based on the two-point crossover
as in [2]. The two parents are randomly selected from a pool of parents. This
pool consists of the top Nejite best individuals of the current generation and
the remaining candidates are created from the Roulette Wheel Selection. Each
proportion of the wheel is given to an individual of the current generation. The
size of the proportion is equivalent to the probability of selection, which is defined

as

fitness
Probability of selection = ————,
sum of fitness

where fitness is equal to the inverse of the value of the objective function (6),
and sum of fitness is equal to the total fitness of all individuals.

In the mutation phase, some gene values of the child chromosome will be
replaced by a random number sampled from the uniform distribution U(0, 1).
The replacement is initiated when the random number is less than P,,. Detail
of the mutation process is discussed in [2].

6 Computational results

The GS-SAA method was coded in Python 2 on an Intel Core i5-6500 CPU
@3.2 Ghz with 8GB of RAM. The SA A-sequence problem was solved using the
Branch-and-Cut method in IBM ILOG CPLEX 12.6.1 on the same computer.
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We adopt the test problems in [2] where there are 3 train families with 35
train-sets in total. The planning horizon is set to one year. The parameters
associated with the train families are shown in Table 2. Furthermore, we set C
=5 46q=1,A =X =1,a =1, and 8 = 1000. For the setting of our genetic
algorithm, we have u = 20, Ngjite = 2, Py, = 0.05, T4, = 40, and T},,4, = 3600
(seconds). The information on the probability distributions of the cycle time by
train family is given in Table 3.

Table 2. Parameters for the train families

Norm Special

. . k
Train Family |F"| Dr Crs 601 Crt Oir
1 25 4 3 1 1 10
2 5 5 2 1 1 10
3 5 5 1 1 1 10

Norm refers to normal day and Special refers to special days.

Table 3. Probability distribution information for cycle time by train family.

Train Family Minimum Most likely Maximum Distribution

1 20 25 40 beta-PERT
2 27 30 46 beta-PERT
3 29 30 52 beta-PERT

In using SAA, one question to ask is how many scenarios are required in order
to obtain solution with good quality within acceptable computation time. To
answer this question, we extend the preliminary experiment in section 4.1 for the
SA A-sequence model such that both the solution quality and computation time
are presented. The SA A-sequence model is used to solve the test problems with
5, 10, 20, 30, 40, 50, and 100 scenarios. The scenarios are randomly generated.
The average objective value and average computation time obtained after 5 runs
are reported in Table 4.

Table 4. Average results for 5 runs of SAA-sequence for different number of scenarios

Number of scenarios Computation time (s) Objective Value ETC RVC

5 9.375 206,760 22,447 184.318
10 21.146 205,086 22,613 182.473
20 44.947 199,781 22,743 177.038
30 62.048 199,046 22,743 176.030
40 81.929 199,046 22,743 176.030
50 129.034 199,046 22,743 176.030
100 421.410 199,046 22,743 176.030

From Table 4, it can be seen that the computation time increases significantly
as the number of scenarios increases. As a good trade-off between solution qual-
ity and computation time, SAA-sequence with up to 10 scenarios is sufficient.
Therefore, we set 2| = 1,5, 10.
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Table 5 shows the performance of our GS-SAA method with 1, 5, and 10
scenarios, in comparison with the method proposed in [2] (denoted as MIM)
and solving SAA model by itself with 5 scenarios (denoted as SAA-5). For GS-
SAA and MIM solution aprroaches, the best solution of the initial population is
reported under the column titled “In.”, while the best solution of the final popu-
lation is reported under the column titled “obj.”. For SAA-5 solution approach,
the optimal solution obtained by CPLEX is reported under the column titled
“CPLEX obj.”. For each solution approach, 5 runs of experiment are performed,
the average, maximum and minimum of the objective values are also shown in
Table 5.

On average, GS_.SAA with 10 scenarios produces better solution for the ini-
tial population. This result is not surprising since the solution quality of the
approximation of the objective function (6) by its sample average increases with
increasing number of scenarios as demonstrated in Table 4.

To test the impact of the number of scenarios on the performance of GS_SAA,
we consider the relative improvement in the objective function value over the best
solution of the initial population and it can be calculated by (In. — obj.)/In. x
100%. On average, the relative improvement in the objective function value
over the best solution of the initial population is approximately 27.5%, 28.8%,
19.9%, respectively, for 1, 5, 10 scenarios. The small relative improvement of
GS_SAA with 10 scenarios is due to the amount of time required for solving
SAA-sequence model; as a result, only a few generations are explored and the
search capability of genetic algorithm is not fully employed. This observation
suggests that GS_SAA with 10 scenarios can potentially give better solution if
it is allowed to run for a longer period of time.

Furthermore, as shown in Table 5, the performance of GS_SAA is consistently
better than MIM irrespective of the number of scenarios used. The method used
in MIM to transform a sequence into a feasible arrival plan is just a simple greedy
heuristic and it suffers from poor performance as the idle time inserted between
train-sets is not optimal. On the other hand, given the sequence, GS_SAA gener-
ates an optimal arrival plan by solving the corresponding SA A-sequence model
using CPLEX.

Compare GS_SAA with SAA-5, it can be noted that the latter outperforms
GS_SAA in all runs of experiment. This reveals that a good sequence is crucial
to obtaining a good solution. However, as demonstrated in Table 1, solving SAA
model by itself is computationally challenging if the number of scenarios increases
or the problem size becomes large (CPLEX cannot obtain optimal solution in
1 hour given the problem size in this paper). This shows the limitation of SAA
model in large applications.
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Table 5. Comparison of the performance of the different solution approaches (solution
quality).

MIM GS_SAA SAA-5
1 scenario 5 scenarios 10 scenarios
In. obj. In. obj. In. obj. In. obj. CPLEX obj.

Run

607,466 475,601 343,337 248,974 200,096 247,636 331,497 230,787 218,949
533,746 475,601 340,804 227,894 344,851 238,421 330,219 246,854 226,197
624,286 475,601 379,608 242,879 370,441 238,200 314,281 280,038 213,755
629,515 475,601 344,171 331,267 338,932 234,148 331,583 282,617 212,428
5 593,304 475,601 320,719 300,493 345,213 243,890 348,386 286,488 216,267

=W N =

Average 597,663 475,601 345,745 270,301 337,906 240,495 331,203 265,357 217,519

Max 629,515 475,601 379,607 331,267 370,441 247,636 348,886 286,488 226,197

Min 533,746 475,601 320,719 227,894 290,096 234,148 314,281 230,787 212,428

In. is the best solution of the initial population.
obj. is the objective value. CPLEX obj. is the optimal solution obtained by CPLEX

Table 6 shows the computation times in seconds obtained by MIM, GS_SAA
with 1, 5 and 10 scenarios, and SAA-5. On average, SAA-5 can be solved to
optimality in 288.35 seconds, whereas MIM takes more than 1288.55 seconds,
and GS_SAA takes 1972.81, 3844.88, 4137.58 seconds, respectively, for 1, 5, 10
scenarios. Both MIM and GS_SAA require significant computation time because
both methods could only terminate after the predefined maximum number of
generations and time limit are reached.

Table 6. Comparison of the performance of the different solution approaches (Com-
putation time).

MIM GS_SAA SAA-5

1 scenario 5 scenarios 10 scenarios
1 1263.52 2053.31 3796.17 4132.10 137.55
2 1255.65 2036.93 3921.30 4104.96  202.65
3 1439.97 1903.90 3803.61 4051.59 135.22
4 888.78 1881.32 3829.91 4097.07  254.10
5 1594.85 1988.57  3873.41 4300.58  712.23
Average 1288.55 1972.81 3844.88 4137.58 288.35
Max 1594.85 2053.31 3921.30 4300.58  712.23
Min 888.78 1881.32 3796.18 4051.59  135.22

7 Conclusions

This paper examines the overhaul maintenance scheduling problem with stochas-
tic cycle time. We present the mathematical formulation of SOMSP and show
how it can be formulated as a mixed integer programming model using the sam-
ple average approximation approach. A combined genetic search with SAA is
developed to solve the problem. The result shows that solving the SAA model
by itself is computationally challenging as the number of scenarios become large.
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However, if a sequence of train-sets is given, the computation time decreases sig-
nificantly. Computational results reveal that the proposed GS-SAA can produce
good solution within acceptable time for test problem consisting of 35 train-sets
and a planning horizon of one year.

In conclusion, SAA can be used for small instances since CPLEX can obtain
optimal solution within acceptable computation time. For larger application,
GS_SAA is the preferred choice. It is noted that the performance of GS_SAA
depends on having both a good sequence and good inserted idle time. Future
work can investigate methods to further reduce the computation time of SAA-
sequence model to enable the search capability of the genetic algorithm.
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