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Abstract—There is growing interest in integrating communi-
cation and radar sensing into one system. However, very limited
results are reported on how to realize sensing using complicated
mobile signals when joint communication and radar sensing
(JCAS) is applied to mobile networks. This paper studies radar
sensing using one-dimension (1D) to 3D compressive sensing
techniques, referring to signals compatible with latest fifth
generation (5G) new radio (NR) standard. We demonstrate that
radio sensing using both downlink and uplink 5G signals can be
realized with reasonable performance using these CS techniques,
and highlight the respective advantages and disadvantages of
these techniques. 1
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I. INTRODUCTION

The recently proposed perceptive mobile network [1], [2],
with a conceptual plot provided in Fig. 1, can provide inte-
grated communication and radio sensing in one system. On
a unified sensing platform, information associated with e.g.,
human behaviour, moving objects and environmental changes
can be extracted from communication signals via sensing
parameters. Estimation of sensing parameters, such as the
delay, angle of arrival (AoA), angle of departure (AoD) and
Doppler frequency of multipath signals, is a critical task in
perceptive mobile networks.

Although existing studies demonstrates the feasibility and
potential of JCAS, most of them consider general signal for-
mats, such as simple single carrier and multicarrier modulation
[3], and is limited to point-to-point links such as millimeter
wave radio for vehicular networks [4]. In [5], preliminary work
on using orthogonal frequency-division multiplexing (OFDM)
signal for sensing was reported. In [6], sparse array optimiza-
tion was studied for multiple-input multiple-output (MIMO)
JCAS systems. In [7], the multiple access performance bound
is derived for a multiple antenna JCAS system. In [8], mutual
information for an OFDM JCAS system is studied, and power
allocation for subcarriers is investigated based on maximizing
the weighted sum of the mutual information for radar and
communications. However, there is only very limited work
directly using modern mobile communication signals and
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Fig. 1: Proposed perceptive mobile network with 5G CRAN.

networks in JCAS systems, involving orthogonal frequency
division multiple access (OFDMA) and multi-user MIMO
(aka spatial frequency division multiple access, SDMA). Such
signal structure makes most existing sensing parameter esti-
mation techniques not directly applicable. For example, ac-
tive radar sensing technologies mainly deal with optimized
or unmodulated transmitted signals [9], [10]; most passive
sensing techniques consider simple single carrier and OFDM
signals [11], [12]. In addition, conventional spectrum analysis
techniques such as MUSIC [3] and ESPRIT [5] require con-
tinuous observations, which are not always available here. In
turns, how JCAS can actually be realized at a system level
in the mobile network, specifically, how radar sensing can be
done based on communication signals using multiuser-MIMO
and OFDMA technologies, is a fundamental and challenging
problem. We will show that compressive sensing (CS) is an
excellent candidate technology for this problem, after proper
signal formulation.

In this paper, referring to the 5G NR standard, we study one-
dimension (1D) to 3D CS algorithms for estimating sensing
parameters in perceptive mobile networks. These CS algo-
rithms are developed from existing ones to make them capable
of estimating all the sensing parameters. We consider both
downlink and uplink sensing, to be consistent with downlink
and uplink communications. The communication signals used
for sensing are the OFDM-type demodulation reference signals
(DMRS) in the 5G specification [13]. We use both 5G-



compatible channels recommended by 3GPP and our own
generated cluster channel model which has a better control for
radio propagation for sensing purpose. We compare these CS
algorithms, and demonstrate their respective advantages and
disadvantages, under various channel conditions and system
setup.

This rest of the paper is divided into three parts. The first
part provides 5G usable signal and channel description. The
second part describes various sensing parameter estimation
algorithms including 1D, 2D, and 3D in details. In the third
part, we discuss simulation results and outline a comparative
study from these results obtained from 5G reference signals.

II. SIGNAL AND CHANNEL MODELS

We consider 5G-compatible signals with OFDMA and
SDMA (or multi-user MIMO, MU-MIMO) modulations. In
a typical setup, there are 4 SDMA users, each with a single
antenna, and a BS with a 16 antenna uniform linear array. The
signal bandwidth is assumed to be 100 MHz. DMRS [13] is
used as a primary signal for sensing. Propagation channels are
generated based on clustered channel models of two forms.
The first one is developed by us and named as Cluster-
Chl, and the second one is the QuaDRiGa channel model
[14], recommended by 3GPP for modelling communication
channels in LTE and 5G systems.

A. DMRS Signal Generation

DMRS signal is generated according to the Gold sequence
as defined in [13] of 3GPP TS 38.211, both for Physi-
cal Downlink Shared Channel-PDSCH and Physical Uplink
Shared Channel-PUSCH. The generated physical resource-
block (PRB) indicates DMRS to a 3-D grid comprising a
14-symbol slot for the full carriers across the DMRS layers
or ports. The values and indices of DMRS signals are both
known to the BS, and are used as prior when doing sensing
from received signals. Here, interleaved DMRS subcarriers of
PDSCH are used in downlink sensing, while groups of non-
interleaved DMRS subcarriers of PUSCH are used in uplink
sensing.

B. Channel Modelling

Random continuous values are used for delay, Doppler shift,
AoAs and AoDs as actual sensing parameters. The multipaths
of the channels are generated in clusters, indicating reflections
coming from scattering obstacles. We generate approximate
scatters for simulating sensing by using both the Cluster-Chl
and QuaDRiGa model.

Consider a narrowband antenna array model [1], [2]. The
array response vector of a size-M array with θ of either AoD
or AoA is,

a(M, θ) = [1, ejπ sin(θ), · · · , ejπ(M−1) sin(θ)]H , (1)

For M1 transmitting and M2 receiving antennas, the M2 ×
M1 time-domain baseband channel impulse response (CIR)
matrix at time t′ can be represented as

H̃(t′) =

L∑
`=1

b`δ(t
′ − τ`)ej2πfD,`t

′
a(M2, φ`)a

T (M1, θ`),

(2)

where for the `-th out of a total of L multipath signals, θ`
and φ` denote the AoD and AoA, respectively, b`, τ` and fD,`
are the amplitude, propagation delay, and Doppler frequency,
respectively.

1) Cluster-Chl Channel Model: In Cluster-Chl, we can
have a flexible and accurate control on all the channel parame-
ters including AoA, AoD, Doppler shift, delay, and amplitude,
and then verify with sensing results. The multipath channels
of Cluster-Chl are randomly generated in clusters following a
complex Gaussian distribution to generate sensing parameters
for moving objects around the mobile network node, which
mimics the ray tracing model.

For the channels used in this paper, we generate 3 clusters
with delay centered at 29, 39 and 49 µs, corresponding to a
distance of 87, 117 and 147 meters, with AoA center randomly
generated between -120 to 120 degrees, and moving speed
randomly generated between 0 to 40 m/s. In each clusters,
as like we did in [1], multipath signals for each RRU/MS are
generated randomly by mimicking reflected/scattered signals
from objects. In each cluster, the multipath is generated
following a uniform distribution of [5, 10] for the total number,
[0, 28] degrees for direction span, [0, 0.05] µs for delay
(corresponding to [0, 15] m for distance). We use a pathloss
model with pathloss factor 40 for downlink and 20 for uplink
sensing. The transmission power of the RRU and MS is 30
dBm and 25 dBm respectively. The total thermal noise in the
receiver is −174 + 10 log(108) = −94 dBm.

2) QuaDRiGa Channel Simulator: QuaDRiGa is a spatial
geometry based 3D MIMO channel generator [14], originated
from the WINNER series models and supports rich cluster
multipath scenarios specified by the 3GPP-3D cluster-based
models mentioned in TR 36.873 and TR36.901 [14]. We
generate QuaDRiGa channels equivalent to moving scatters by
simulating moving transmitters and receivers from open source
simulator for sensing demonstration. Non-line of sight chan-
nels are simulated. One problem with the QuaDRiGa model
is that scatters can not be accurately placed and configured.
The other problem is that the Doppler frequencies for each
multipath is not explicitly provided and hence we cannot verify
the accuracy of estimates.

III. SENSING PARAMETER ESTIMATION

We develop and test 1D, 2D and 3D CS algorithms for
sensing parameter estimation using the received signals. These
algorithms are extended from the 1D-CS algorithms [15], 2D
Kronecker CS [16], and 3D N-way Tensor tool [17]. We test
these algorithms utilizing Cluster-Chl in downlink sensing and
QuaDRiGa model in uplink sensing. We also compare our 1D



to 3D results with the cases when the occupied PRB is small in
uplink and with the results from 2D discrete Fourier transform
(DFT).

A. Signal Model for Sensing

The received radar signal data is based on 3D observation
samples, comprising of those from multiple receiving anten-
nas, multiple DMRS subcarriers and multiple DMRS signals
over time. The modulated data symbols can be removed from
the received DMRS signals by applying equalization, which
will be a simple one-tap multiplication if no two users are
sharing the same subcarrier. In this paper, we consider the
case that only each subcarrier is used by only one user in
DMRS signals. After the equalization, the processed received
signal at the n-th subcarrier and the t-th DMRS signal can be
represented as

Yn,t =
L∑
`=1

b`e
−j2πnτ`f0ej2πtfD,`Ts ·

a(M2, φ`)a
T (M1, θ`) + zn,t, (3)

=ArxCnDtA
T
tx + zn,t, (4)

where the `-th column in Arx and AT
tx are a(M2, φ`) and

aT (M1, θ`), respectively; if there is no two multipath having
the same delay values, Dt and Cn are diagonal matrices with
the `-th diagonal element being b`ej2πtfD,`Ts and e−j2πnτ`f0 ,
respectively, otherwise there will be non-zero values in other
entries; and Zn,t is the noise matrix. When each user only
has one transmitting antenna, AT

tx becomes a all-one col-
umn vector, and Yn,t and Zn,t become column vectors too.
The task for sensing parameter estimation is to estimate
{τ`, fD,`, φ`, θ`, b`}, ` ∈ [1, L] from the received signals. In
this paper, we only consider the estimation of the first three
parameters.

B. Estimation of Sensing Parameters

Since the signals are relatively independent in the three
domains of delay, AoA and Doppler, they can be formulated
in a high-dimension (3D here) vector Kronecker product form.
Therefore, we can apply 1D to 3D CS techniques to estimate
these sensing parameters. In a typical system, we can get
sufficient number of observations for the delay (linked to
number of subcarriers), intermediate AoA observations (linked
to number of antennas) and a limited number of samples in the
Doppler domain (linked to DMRS signals over a portion of
channel coherent period). The Doppler frequency is typically
very small in a perceptive mobile network and the accumulated
phase shift usable is also small due to the limited period of
channel coherent time. This makes it inaccurate for estimating
Doppler using CS algorithms. Next, we briefly review each of
the three sensing algorithms based on received signal in (4).

1) 1D Compressive Sensing: We assume that there is only
one multipath signal within each quantized delay bin for each

cluster in the 1D CS based algorithm. By stacking the signals
in (4) from all available subcarriers to one matrix, we can get

Yt =W DtA
T
rx︸ ︷︷ ︸

Gt

+Zt, (5)

where the `-th column of W is {e−j2πnτq,`f0}. We can then
treat (5) as an on-grid multi-measurement vector (MMV) CS
problem and use algorithms such as 1D sparse Bayesian CS
to get the estimate for Gt. The dictionary Ψ1 is a partial DFT
delay matrix, approximating W. Once the delays and Gt are
estimated, we can get the AoA estimates through calculating
the cross-correlation between columns from Gt on the indexes
obtained from given threshold as below,

φ` ≈
1

π
∠

(
M−1∑
p=1

((Gt)·,p)
∗(Gt)·,p+1

)
, (6)

where (Gt)·,p denote the p-th column Gt.
The Doppler frequency fD,` can be estimated across multi-

ple DMRS signals, based on the cross-correlation of (Gt)`,·,
where (Gt)`,· denotes the `-th row of Gt. Assume the interval
between every two estimates of Gt and Gt+1 is uniform and
be Ts for any t, which can be relaxed easily. Let Nd be the
total OFDM blocks used for estimating the Doppler frequency.
Then,

fD,` ≈
1

2πTs
∠

(
Nd−1∑
t=1

((Gt)`,·)((Gt+1)`,·)
∗

)
. (7)

The main advantage of the 1D algorithm is that it can
accurately estimate all the parameters when each multipath
is well separated in delay. Its complexity is also relatively
low. It is mostly suitable for systems with a large number of
subcarriers, but small number of antennas for AoA estimation
and packets for Doppler estimation.

2) 2D Kronecker Compressive Sensing: 2D Kronecker CS
can obtain direct estimation for any two parameters out of
delay, AoA and Doppler. Since we can have sufficient mea-
surements in the delay and AoA domain, the 2D CS algorithm
can provide good estimates for both delay and AoA directly
from Yt of (5) using each DMRS signal of 2D observations.
We construct two dictionaries for delay and AoA, Ψ1 and
Ψ2, being two partial overcomplete DFT matrices, approxi-
mating W and Arx, respectively. Interpolated overcomplete
dictionaries are used to improve resolution, given that the
signal to noise power ratio (SNR) is sufficiently large, at
an increased computational complexity. We can then obtain
estimates D̂t for the expanded matrix for Dt that corresponds
to the two overcomplete dictionaries, using any 2D Kronecker
CS algorithm, such as the 2D-OMP algorithm [16].

Note that 2D CS algorithm here can identify any pair of
{delay, AoA} with at least one different values. So D̂t will
not be a diagonal matrix anymore if one variable in the pair
has two identical quantized values.

After getting the estimate D̂t, we use a threshold to filter
out very small estimates which are likely caused by noise.



We can then get the delay and AoA estimates according to
the indexes of the non-zero values in D̂t, corresponding to
respective columns in the two dictionaries.

The Doppler shift is estimated via calculating the angle of
the cross-correlation values between the non-zero values of
D̂t obtained over two DMRS signals. This can be represented
as

fD,q,` ≈
1

2πTs
∠
(
D̂tD̂

∗
t+1

)
`,`
. (8)

Averaging can be taken over the correlation obtained from
multiple DMRSs before computing the angle, to improve the
accuracy of the estimates.

2D CS algorithm can achieve improved estimation accuracy
when there are multipath with repeated values in any one
domain, at the cost of increased complexity.

3) 3D Tensor Compressive Sensing: The Tensor-OMP CS
algorithm directly estimate parameters in a 3D domain, com-
bining measurements Yt over multiple DMRS signals. Three
dictionaries, Ψ1, Ψ2, and Doppler dictionary matrix, Ψ3, are
utilized. Since the accumulated Doppler shift is small over
the coherent time period, we have to use a portion of highly
overcomplete DFT matrix as Ψ3.

Absolute values of the estimated sparse coefficients provides
the amplitude values of multipaths. After applying a threshold,
each of indexes in the three dimensions corresponding to non-
zero estimates provides estimated values for delay, AoA and
Doppler shift.

3D CS algorithm has the highlight complexity, and in prin-
ciple provides the strongest capability in resolving multipath
with repeated parameter values. However, due to the small
value of Doppler shift, we will see that it does not work as
well as 1D and 2D algorithms.

IV. SIMULATION RESULTS

Next, we present simulation results for 1D to 3D CS using
channels with continuous-value (off-grid) sensing parameters.
We also show the results that obtained by directly applying
2D-FFT over delay-AoA and delay-Doppler domains for com-
parison, when all subcarriers are used. Of course, most of the
time, not all subcarriers are available for sensing. Estimated
values (typically shown in blue star) are placed with actual
ones (shown in red circle) to verify the accuracy of estimation.
Fig. 2 shows an exemplified CIR for QuaDRiGa channels
consisting of rich multipaths with 4 to 5 clusters.

A. Downlink Sensing

In downlink sensing, we use DMRS subcarrier configuration
type-1 slot wise, with every alternating subcarriers as inter-
leaved selection from a total of 252 subcarriers. Sub-interval
is 2 for type-1, so, in total 126 subcarrier indices (e.g. of layer
4) are used as DMRS subcarriers.

The simulation results for downlink sensing with Cluster-
Chl model are presented in Fig. 3 for 1D to 3D. For 1-D
CS, AoA-Distance and Speed-Distance result indicates that
the estimated points are well matched with three clusters with
few extra points due to residual in threshold setting. Off-grid

Fig. 2: CIR for QuaGRiGa channel.

estimation causes some missed detection. In 2D CS, AoA-
Distance and Speed-Distance results gives few mismatched
points for both AoA and speed. In 2D, there is an important
observation that interleaved subcarriers in this case actually
cause ambiguity in estimation. 3D estimation results is not as
good as 1D and 2D CS algorithms as in 3D estimation the
interleaved subcarriers cause near-singular matrix.

The ambiguity is caused by non-consecutive, but regularly
spaced samples, for example, usage of comb/interleaved sub-
carriers [18]. In this case, the actual value can be one of the
multiple integral times of a basic estimate. The simplest way
is to break such regularly spaced samples, for example, we can
randomly select samples from the total available ones such that
the indexes of these samples are not regular. This of course
reduces the samples used for estimation and may degrade
the estimation performance particularly when the number of
samples are small. Therefore, while using DMRS, alternative
methods can be based on exploiting other information to assist
the selection of the right estimate, for example, the magnitude,
or an integration of coarse and fine estimation methods. This
is in fact one of our future work to focus on how to solve
ambiguity problem that may be present in all domains, but
particularly for delay.

B. Uplink Sensing

In uplink sensing, only partial DMRS subcarriers are used.
The details of obtained results from non-line-of-sight (NLOS)
QuaDRiGa channel model are given here. We use DMRS
subcarrier configuration type-2 non-slot wise here, which
indicates several groups of subcarriers are selected from a total
of 252 subcarriers. Sub-interval is 3 for type-2, so, in total 84
subcarrier indices (of layer 4) are used as DMRS subcarriers.
We use QuaDRiGa model where clusters are generated with
continuous delay and AoA values for multipaths. Since the
QuaDRiGa model unable to provide actual Doppler shifts, the
estimates given here in all uplink sensing for speed is relative
only.
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Fig. 3: Observations in Cluster-Chl for downlink sensing.

1) Uplink Sensing with QuaDRiGa NLOS: Fig. 4 provides
simulation results for uplink sensing with QuaDRiGa NLOS
for 1D to 3D. In 1-D CS, AoA-distance results for the
estimated points fairly match with several clusters with few
extra points due to residual in threshold setting and off-grid
error.

2D CS AOA-distance results indicates that, estimated values
are in closer vicinity with actual clustered multipath values
(AoA) in comparison with 1D. Indeed, higher dimensional
sensing algorithm like the 2D kron CS eventually provide bet-
ter performance when there is enough measurements because
it can directly identify two parameters only if one is different
between any multipath channels. In both figures for 3D NOMP,
only estimated multipath channels with power within -15 dB
of the maximum are shown. In 3D, estimated values for AoA
are coarser, but remain within the close neighbouring of actual
values.

2) 2D FFT results for uplink Sensing: 2D-DFT simulation
results are presented in Fig. 5 for QuaDRiGa channels. It can
be observed that 2D-DFT provides reliable coarse estimates for
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Fig. 4: Observations in uplink sensing: QuaDRiGa NLOS channel.
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Fig. 5: 2-D DFT for uplink sensing.

uplink sensing, but the resolution is very low in comparison
with all results of 1D to 3D in Fig. 4. It is noted that here the
results are obtained by using all subcarriers. Such a 2D-FFT
method only works when either all or interleaved subcarriers
are available.
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Fig. 6: Uplink sensing with small PRB in 5G QuaDRiGa NLOS.

C. Sensing Using Small Number of PRB

Mainly in uplink direction, allocated PRB could be limited
by configuration. Therefore, we can only get small amount
of observations for the delay estimation, which could be even
less than the number of multipath. We test sensing with such
limited number of resources for QuaDRiGa NLOS channel
here. Assume that only 28 DMRS subcarriers (7 PRB) are
used in simulations for uplink sensing. Fig. 6 presents uplink
sensing for small PRB with QuaDRiGa NLOS for 1D to 3D.
In 1D CS, resolution ambiguity problem remains in the delay
domain. However, the shape still well maintained. Reasonable
estimation accuracy is found in AoA by 2D. Coarse estimation
in both AoA and speed is obtained by 3D. Further approaches
of increasing this accuracy in radio sensing from limited ob-
servations, especially in clustered multipath environment will
be studied in our future research, for example, by designing
better dictionaries and using filtering techniques.

V. CONCLUSION

We presented three preliminary sensing algorithms using
1D, 2D and 3D compressive sensing algorithms, and provided
simulation results, using channels generated from both our
own cluster model and 5G QuaDRiGa channel model. These
results indicate that reasonable sensing performance can be
achieved, and demonstrate respective advantages and disad-
vantages of these algorithms. Our work also disclosed some
interesting research problems to work on as future works, such
as the ambiguity problem due to interleaved subcarriers and
reduced resolution in 3D CS algorithms.
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