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Abstract—We propose a novel joint quantization scheme for
hybrid antenna array systems using the two-phase-shifter (2-PS)
structure, where two phase shifters are combined to represent one
beamforming weight. Conventional quantization using a single
phase shifter for each beamforming weight cannot represent the
magnitude. We propose a new codebook design that combines
the two codebooks of the two phase shifters in the recently
proposed 2-PS structure. We also study the scaling problem of
the beamforming vector and propose a low-complexity searching
algorithm for finding a near-optimal scalar based on element-
wise quantization. The mean squared quantization error and
signal-to-noise ratio (SNR) degradation are derived analytically.
Simulation results validate the accuracy of the analytical results
and the effectiveness of the proposed quantization methods.

I. INTRODUCTION

Millimeter wave (mmWave) hybrid array systems are re-

garded as a promising solution in 5G [1], [2]. Hybrid arrays

involve baseband digital and analog Radio Frequency (RF)

precoding/combining. Analog phase shifters are often used

in the RF domain, with discrete phase shifting values and

constant modulus. Hence RF precoding/combining practically

use quantized values for the beamforming (BF) vectors.

Various quantization methods have been studied for code-

book design in MIMO systems [3]–[5] and mmWave hybrid

array [1], [6]. Although digital precoder can mitigate the

performance degradation due to the quantization error in the

RF beamforming [6]–[8], the RF beamforming forms part

of the equivalent channel and quantization error still has

a notable impact on the overall system performance. The

quantized phase shifts and lack of amplitude adjustment for

precoders/combiners can cause significant degradation in array

gain and output signal-to-noise ratio (SNR), as pointed in [9],

[10].

Different to conventional phase shifter structures where only

one phase shift is used to represent one beamforming weight,

a two-phase-shifter (2-PS) structure was recently proposed and

analyzed in [10], [11]. The 2-PS structure uses two phase

shifters either serially or in parallel to represent one beamform-

ing weight. Using the 2-PS structures, RF precoder/combiner

can potentially represent any precoding coefficients with very

small quantization error, when the number of quantization

bits is sufficiently large. Basic performance analysis for this

method can be found in [10], implicitly considering quantiza-

tion for each phase shifter separately in the 2-PS structure.

Such separated quantization can lead to large quantization

error unless the number of quantization bits in each phase

shifter is very large.

In this paper, we propose a novel joint quantization method

for the 2-PS structure, which can achieve small quantization

error with only more than 2 quantization bits for each phase

shifter. This method uses a new codebook generated by

combining the codebooks of the two phase shifters. We also

introduce a fixed phase shifting value into one codebook which

can double the number of different codes in the combined

codebook. Based on this new codebook, we propose low-

complexity element-wise quantization methods with refined

scaling of the beamforming vector. We propose a simple

one-dimensional searching algorithm for finding the optimal

scaling factor based on the improved golden section search

(IGSS) method [12]. We also characterize the performance of

the proposed methods and compare them with the results in

[10]. We analytically evaluate the mean squared quantization

error (MSQE) as well as the precoder’s SNR degradation due

to quantization. These analytical results are shown to match

the simulated results well.

Notations: (·)H , (·)∗, (·)T , (·)−1, and (·)† denote the Her-

mitian transpose, conjugate, transpose, inverse, and pseudo-

inverse, respectively. | · · · |, ‖ · · · ‖, and ‖ · · · ‖22 denote the

element-wise absolute value, the norm, and the Euclidean

norm, respectively. E(·) denotes the expected value. IN is

the N ×N identity matrix.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we first present the precoding system and

the channel model, and then introduce the 2-PS structures for

quantizing RF precoding vectors.

A. System and Channel Model

We consider a narrow-band hybrid precoding system with

Nt transmit and Nr receive antennas carrying Ns data streams.

Using the uniform linear array (ULA) where antenna elements

are spaced at an interval of d, the array steering vector is

at(θt) = [1, ejk sin(θt), · · · , ejk(Nt−1) sin(θt)]T

ar(θr) = [1, ejk sin(θr), · · · , ejk(Nr−1) sin(θr)]T ,
(1)

where k = 2πλ/d with λ being the wavelength, θt and

θr are the angle of departing (AoD) and angle of arriving



(AoA), respectively. A typical channel model with L multipath

signals is used in this paper. The quasi-static physical channels

between the transmitting and receiving antennas can then be

represented as

H = r

L∑
�=1

b�δ(t− τ�)e
j2πfD,�tar(θr,�)a

T
t (θt,�), (2)

where for the �-th multipath, b� is its amplitude of complex

value, τ� is the propagation delay, and fD,� is the associated

Doppler frequency.

Let the Ns× 1 transmit signal be s and E[ssH ] = INs
. Let

FtRF, FrRF be the RF precoder and combiner. In this paper, we

will mainly focus on the quantization methods of FRF, hence

a simplified model is considered where a single RF chain is

used, i.e., Ns = NRF = 1. In this case, the received signal can

be represented as

y =
L∑
�=1

b�e
j2πfD,�t(frRF

Har(θr,�))(a
H
t (θt,�)f

t
RF)s(t− τ�) + z(t),

where frRF and f tRF are the Nr × 1 and Nt × 1 beamforming

vectors, and z(t) is AWGN with mean 0 and variance σ2
n. Let

the singular value decomposition of the channel matrix be

H = UΣVH,

where U and V are unitary, of sizes Nr ×Nr and Nt ×Nt,
respectively, Σ is a diagonal matrix whose elements are in non

increasing order, i.e., λ0 ≥ λ1 ≥ · · · ≥ λM−1, where M =
min{Nr, Nt}. Let v0 and u0 be the first column vector of V
and U, respectively. The optimal BF vectors for precoding and

combining are ft = v0 and fr = u0, respectively. Therefore,

the optimal SNR can be given as

SNR0 =
|frRF

HHf tRF|2
‖frRF‖2‖f tRF‖2

σ2
s

σ2
n

=
λ20σ

2
s

σ2
n

, (3)

where σ2
s and σ2

n the power of signal and noise, respectively.

B. Quantization with the 2-PS Structure

For conventional precoders using a single phase shifter to

represent each BF weight, only values with unit magnitudes

can be represented. The magnitude mismatches can cause

inaccurate beam steering and notable sidelobe growth [9] even

using phase shifters with infinite number of quantization bits.

This problem can be solved by using an active array which

uses a power amplifier with each phase shifter. Alternatively,

it is shown in [10] that two phase shifters can be used to

represent each BF weight, achieving negligible performance

loss when the quantization step is sufficiently large. There are

two optional structures for realizing this, as shown in Fig. 1.

A complex value fi can be represented by

fi = |fi|ejψi = ejβ
(i)
1 + ejβ

(i)
2 , (4a)

and

fi = |fi|ejψi = ejβ
(i)
1 (1 + ejβ

(i)
2 ). (4b)

(a) Option 1: parallel structure (b) Option 2: serial structure

Fig. 1. Optional parallel and serial structures with two phase shifters.

for the parallel and serial structures, respectively. Thus, the

ideal non-quantized phase values for the parallel and serial

structures can be derived as

β
(i)
1 = ψi + arccos(|fi|/2), β(i)

2 = ψi − arccos(|fi|/2),
(5a)

β
(i)
1 = ψi − arccos (

|fi|
2

), β
(i)
2 = 2arccos (

|fi|
2

), (5b)

respectively.

Let b be the number of quantization bits in each phase

shifter. Assume that the discrete phase values are equally

spaced over the interval of 2π with a quantization step of Δ =
2π2−b. Hence each phase shifter has a codebook of 2b codes.

For the 2-PS options, [10] implemented a straightforward way

for quantization - separately deciding the quantized precoding

values through quantizing each phase shifters referring to (5).

This method does not fully exploit the quantization potentials

of the 2-PS structure, and can lead to large quantization error

when the number of quantization bits is small. Next, we

propose a novel codebook design method for the 2-PS scheme,

employing quantization values jointly generated by the two

phase shifters.

III. JOINT QUANTIZATION USING COMBINED CODEBOOK

In this section, we first introduce a combined codebook

method for generating quantization values from the 2-PS struc-

ture, and then propose a quantization algorithm for quantizing

the BF vector using this combined codebook.

A. Generation of Combined Codebook

We consider a pair of generalized codebooks containing the

quantized phase values

B1 = {0,Δβ1
, 2Δβ1

, . . . , (2b1 − 1)Δβ1
},

B2 = {φ, φ+Δβ2 , . . . , φ+ (2b2 − 1)Δβ2},
(6)

where φ, 0 ≤ φ ≤ Δβ2/2, is a constant for any fixed phase

shifter. Such a constant phase shift can be realized easily by,

e.g., using a fixed length of the delay line in the circuit for

either structure in Fig. 2.

A combined codebook can be generated from these two

codebooks. Let β̂1 and β̂2 be any quantized phase shifts in B1

and B1, respectively. A combined codebook C is generated by

ĉ = ejβ̂1 + ejβ̂2 or ĉ = ejβ̂1(1 + ejβ̂2), c ∈ C, (7)

corresponding to Fig. 2(a) or 2(b). The codes in C do not

have unit magnitude anymore. Note that the parallel and serial
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/2.

structures generate the same codebooks, and the two options

are essentially equivalent when using the combined codebook.

This phase shift φ can influence the number of codes in

C as well as the distribution of the constellation plot, as

shown in Fig. 2. If φ = 0, there will be 2b repetitive values

out of the total 22b codes in C. Reduced number of distinct

codes will lead to increased quantization errors. It can also be

observed that when φ = Δβ2
/2, the constellation is uniformly

and symmetrically distributed over the complex plane, which

can be a beneficial feature in generating a random precoding

coefficient.

Besides, if the quantization bits of the two phase shifters are

different, the constellations of the codebook C will be quite

different. Fig. 3 plots the constellation for various options

with b1 + b2 = 6 and φ = π/4. It is discovered that when

b1 �= b2, the values of ĉ tend to gather at some specific

regions on the complex plane. In comparison, ĉ has a more

uniform distribution when b1 = b2. In this paper, we study

two exemplified codebooks: C1 with φ = 0 and C2 with

φ = Δβ2
/2, both having b1 = b2 = b. The number of

different codes in C1 and C2 are nc1 = 22b−1 and nc2 = 22b,
respectively.

Since the RF precoding vectors are often normalized to

‖fRF‖ = 1, the codebooks C1 and C2 are normalized by

h1 =

√√√√ N

2b−1

2b−1∑
i=1

ĉ2k,i =
√

2 + 22−b
√
N, (8)

and

h2 =

√√√√N

2b

2b∑
i=1

ĉ2k,i =
√
2N, (9)

respectively. So E[|ĉk,i|2] = 1/N , where ĉk,i is the i-th
element in Ck.

B. Quantization Algorithm

In this paper, we focus on studying element-wise quan-

tization for the RF precoder vector fRF for its simplicity

and efficiency. As we will see from the simulation results

in Section V, our element-wise quantization algorithm to be

presented can already achieve sufficiently good performance

at small number of quantization bits.

Although the codebook Ck is normalized to hk, directly

finding the quantization value from Ck for the element in

fRF may not be the best option considering the vector level

quantization. This is because hk are approximated values

calculated from the statistical aspect and hence cannot guar-

antee the optimality for quantizing a particular RF precoder

fRF. Therefore, with the goal of finding a better solution,

we propose the improved golden section search-quantization

(IGSS-Q) algorithm as described in Algorithm 1. It is based

on the IGSS algorithm [12], which is an effective linear

one-dimensional search method that relaxes the unimodal

requirement for the classic golden-section search method. The

IGSS-Q method solves the following problem

νopt = argmin
ν

‖νfRF − q̂(ν)‖22 (10)

recursively, where q̂(ν) is achieved by the scalar quantization

with C̃k and the i-th element of q̂(ν) is obtained by

q̂i = arg min
ĉ∈Ck

|νfi − ĉk,i|2, (11)

where i ∈ {0, 1, · · · , NRF}. For a fixed ν and values of q̂i
obtained in (11), the quantization error function e(ν) can be

expressed as

e(ν) =

N∑
i=1

|νfi − q̂i|2. (12)

The IGSS-Q method starts with seting the initial searching

interval ν ∈ [a1, a2] and then define interior points x1 and

x2 to divide the golden section in this interval. In each

iteration, the IGSS-Q method finds the corresponding quan-

tized values and compute the errors via (11) and (12) for

ν = a1, a2, x1, and x2. By comparing e(a1), e(a2) with e(x1)
and e(x2), the searching interval is updated and narrowed

gradually. Repeat this process until e(x1) − e(x2) is smaller

than a preset tiny positive threshold ε0 or the maximal iteration



Algorithm 1 IGSS-Q Algorithm

Input: a1, a2, Lmax, ε0, ρ =
√
5−1
2 .

1) l = 0, a
(0)
1 = a1, a

(0)
2 = a2, d(0) = a

(0)
2 − a

(0)
1 ,

x
(0)
1 = a

(0)
1 + (1− ρ)d(0), x

(0)
2 = a

(0)
1 + ρd(0); to 2).

2) d(l) = a
(l)
2 − a

(l)
1 ; If l ≤ Lmax & |d(l)| > ε0, go to 3);

else, go to 5).

3) Calculate e(a
(l)
1 ), e(x

(l)
1 ), e(x

(l)
2 ) and e(a

(l)
2 ) through (12);

Then [I
(l)
min, emin] = min{e(a(0)1 ), e(x

(0)
1 ), e(x

(0)
2 ), e(a

(0)
2 )},

where I
(l)
min is the index value and I

(l)
min ∈ {1, 2, 3, 4}. Go to

4);

4) With the results in 3), update the values of a
(l)
1 , a

(l)
2 , x

(l)
1 ,

x
(l)
2 , and l, through the IGSS method in [12], (11) and (12).

Go to 2);

5) νmin = argmin
x
(l)
i

{e(x(l)i )}, i = 1 or 2, break.

6) Compute q̂i via (11) and νmin.

Output: νmin, q̂ = [q̂1, q̂2, · · · , q̂N ]T

times Lmax is reached. The detailed process of the IGSS-Q

method is provided in Algorithm 1.

The algorithm’s computation complexity is relatively small,

as it implements scalar quantization on top of an efficient

one-dimensional search method. With the output q̂ from the

algorithm, we can get the quantized precoder by

f̂RF =
q̂

‖q̂‖ , q̂ = [q̂1, q̂2, · · · , q̂N ]T . (13)

IV. ANALYSIS OF QUANTIZATION ERROR AND SNR

DEGRADATION

In this section, we first analyze the element-wise quantiza-

tion error for two codebooks C1 and C2. The mean squared

quantization error (MSQE) used in [10] is inherited as the

performance metric. Then, with the results of MSQE, we

analyze the SNR degradation caused by quantization of RF

precoders.

A. Quantization Error Analysis

The MSQE metric is defined as

ε = E[
1

N

N∑
i=1

(|νminfi − q̂i|2)].

To derive a closed-form MSQE expression, we approximate

the quantization error |δc| for each BF weight as a variable

following a uniform distribution over [0, δc,max]. On the com-

plex plane, δc,max can be computed as the maximum of all the

distances between any point aejα to its nearest constellation

points ĉ. For simplicity, when analyzing δc,max, we only

consider the case when a ≤ |ĉ|max since the probability of

a > |ĉ|max is low.

1) MSQE for Codebook C1: For the normalized codebook

C1 with φ = 0, δc,max is the distance between (0, 0) to the

nearest points, and is given by δc,max =
√
2−2 cosΔ
h1

. Thus, the

(a) Constellation and the sector
selected for analysis.

(b) Key points in the
sector.

Fig. 4. Constellation plot used for analyzing dmax for Codebook 2 (b = 3).

MSQE in this case is

εc1 = [E(|δc|)]2 + Var(|δc|) = 2− 2 cosΔ

3h21
. (14)

2) MSQE for Codebook C2: Now we analyze δc,max for

codebook C2. Because the constellation of C2 is symmetry,

we can select a circular segment (the shaded region in Fig.

4(a)) for analyzing δc,max.

In this segment, the points that can achieve the maximal

distance between two adjacent constellation points are marked

as Oi, i = 1, 2, · · · , 2b−1, as shown in Fig. 4(b). Obviously,

every Oi locates on the y-axis. Note that for simplicity, in the

following analysis, we temporarily let h2 = 1, as its value is

independent of the position relationship between constellation

points. According to (4), it can be easily derived that for the

constellation points Ai,

|AiO| = ri−1 =

√
2− 2 cos [(i− 1)Δ +

Δ

2
], i = 1, 2, · · ·

(15)

Assume that there exists O1, making |A1O1| =

|A′
2O1| = |A1O| = r0 =

√
2− 2 cos Δ

2 . Then |A′
2O| =

|OM1| + |A2M |. According to the cosine rule, |OM1| =
2|A1O| cos2 (Δ4 ). Thus, |A′

2O| = |OM1| + |A2M | =
|OM1| + (|OM1| − |A1O|) = 4r0 cos

2 (Δ4 ) − r0 =√
2− 8 cos3 (Δ2 ) + 6 cos (Δ2 ) = |A2O| =

√
2− 2 cos ( 3Δ2 ).

Therefore, we can find that A′
2 overlaps with A2. This implies

that in the sector A2OB2, d ≤ δc,max = r0.

According to the Cosine law, if Oi(yie
j2π) satisfies

|AiOi| = |Ai+1Oi|, that is

r2i + y2i − 2riyi cos (
Δ

4
) = r2i+1 + y2i − 2ri+1yi cos(

Δ

4
).

Solving this equation, we get yi =
ri+1 + ri

2 cos (Δ4 )
. Therefore,

|AiOi|2 =
r2i+1 + r2i − 2riri+1 cos (

Δ
2 )

2 cos(Δ2 ) + 2
. (16)

Assuming |AiOi|2 = r20 = 2− 2 cos (Δ2 ), we have

r2i+1 + r2i − 2riri+1 cos (
Δ

2
) = 2− 2 cosΔ. (17)



According to the Cosine law again, the left part of (17)

can be seen as |AiBi+1|. Because of the symmetry of the

constellation, |AiBi+1| equals to the distance between two

constellation points with similar positional relationship:

|AiBi+1| = |(1 + ej(
Δ
2 +iΔ))− (1 + ej(

Δ
2 +iΔ+Δ))|

= |ejΔ − 1| = 2− 2 cosΔ.
(18)

Therefore, |AiOi|2 = r20 is proven. In summary, for a aejα

satisfying a ≤ r2b−1 , the maximal error distance δc,max =

r0 =

√
2−2 cos Δ

2

h2
.

Thus, the MSQE in this case can be obtained as

εc2 =
2− 2 cos (Δ2 )

3h2
. (19)

When Δ is small, 1−cosΔ ∼ Δ2

2 and 1−cos Δ
2 ∼ Δ2

8 , hence

(14) and (19) can be approximated as

εc1 ≈ Δ2

3h21
=

Δ2

3(2 + 22−b)M
, (20)

and (21)

εc2 ≈ Δ2

3h22
=

Δ2

24M
,

respectively.

From (8), we can find that for b ≥ 2,
√
2M < h1 ≤ √

3M .

Therefore, εc1 satisfies

Δ2

9M
≤ εc1 <

Δ2

6M
.

From [10], we can find the MSQE for using separate

codebooks as: ε1 = Δ2

6 and ε2 = (1+E[|fi|2])Δ2

12 , where ε1
and ε2 are the MSQE for the two options shown in Fig. 1.

For large arrays with more than, e.g., M = 8 antennas, it can

be readily verified that

εc2 < εc1 < ε2 < ε1. (22)

This indicates that the proposed joint quantization method

using the codebook C2 achieves the smallest quantization error.

B. SNR Degradation

Now we will compare the SNRs for the original BF vector

fRF and the quantized one q̂. For fRF, the SNR is given in

(3). Assume q̂r = νminf
t
RF + dtRF and q̂t = νminf

t
RF + dtRF, the

overall SNR is given by

SNR = |q̂Hr Hq̂Ht |2 · λ
2
0σ

2
s

σ2
n

,

where dtRF and drRF are the quantization error vectors. Follow-

ing [10], define the SNR degradation as

D =
SNR0

SNR
=

λ20
q̂Hr |H|q̂Ht

, (23)

and the mean D can be approximated as

D ≈ 1 + E[‖dtRF‖2] + E[‖drRF‖2]. (24)
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Fig. 5. Variation of e(ν) and the output SNR with ν when b = 4.

where E[‖drRF‖2] = Nrε and E[‖dtRF‖2] = Ntε, and ε can be

obtained through (14) and (19) for C1 and C2. From (22), it

can be found that

D1 > D2 > Dc1 > Dc2 (25)

V. SIMULATION RESULTS

We provide simulation results to verify the analytical re-

sults in this section. Consider the system where ULAs with

Nt = Nr = 16 omnidirectional antennas (d = λ/2) are

used for the transmitter and receiver. Note that our methods

can also be applied to non-uniform antenna arrays. Assume

there is a dominating LOS multipath between the transmitting

and receiving nodes. All the L = 8 multipaths are uniformly

distributed within a direction range of 14 degrees centered

at the LOS direction. The mean power ratio between the

LOS and the rest multipath signals is 10dB. The AoD of the

LOS multipath is assumed to be uniformly distributed over

[−60◦, 60◦]. In this paper, the results are averaged over 105

realizations.

Fig. 5 displays the relationship between the quantization

error function e(ν) in (12) and the output SNR when b = 4,

where e(ν) is calculated for the beamforming vector f tRF . By

comparing Fig. 5(a) and Fig. 5(b), we can see that e(ν) and

the output SNR vary consistently, in the opposite direction,

with the scaling value ν. This validates the reliability of the

searching method used in this paper.

In Fig. 6, the output SNR for different quantization methods

are presented. For comparison, we also present results for

the fast block noncoherent decoding (FBND) method [5],

denoted as “FBND”, which is a low-complexity 1-PS vector

quantization method. The method in [10] using the serial

structure is denoted as “Lin2017-S2” in the legend. “Codebook

1” and “Codebook 2” denote the joint quantization method

using the initial f̂RF with codebook C1 and C2 respectively,

without searching for the optimal ν, while “Codebook 1-

IGSS” and “Codebook 2-IGSS” represent their counterparts

employing the proposed IGSS-Q searching algorithm. For the

IGSS-Q method, ε0 = 10−6 and Lmax = 100 is chosen. The

figure shows that the joint quantization method proposed in

this paper can significantly improve the SNR compared with

the method in [10]. We can also observe that: 1) C2 can

obtain larger SNR than C1 since nc2 = 2nc1 ; 2) The IGSS-

Q algorithm can lead to an improved SNR , at the cost of
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increased computation complexity (around 0.01s per iteration

in MATLAB�). The gap is quite small when the number of

quantization bits is larger than 3.

Fig. 7 demonstrates how MSQE varies with the number of

quantization bits for the proposed joint quantization methods.

The values of fi = |fi|ejψi in f tRF are generated randomly

with |fi| following a uniform distribution over [0, 2) and with

ψi following a uniform distribution over [0, 2π). The vector

of f tRF is then normalized so that its norm is 1. When b > 2,

the simulated εc1 deviates from the analytical εc1 derived in

Section IV-A1. This is because, for Codebook 1, many of the

largest distances between any two nearest constellation points

are smaller than δc,max. Therefore, the uniform distribution

assumption in Section IV-A2 is not accurate enough. This may

be improved via reducing δc,max to the second largest value

for Codebook 1.

In Fig. 8, we show the simulated D and the analytical ones

in (24) for the codebooks C1 and C2. In accordance with (24)

and (25), a smaller D is achieved by codebook C2.

VI. CONCLUSIONS

We presented a novel and highly effective joint quantization

method for hybrid arrays with the two-phase-shifter struc-

ture. By combining the codebooks of the two phase shifters,

we developed the element-wise quantization method for this

combined codebook, as well as an iterative IGSS-Q method

for refining the normalization factor for the BF vector before
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Fig. 8. Mean SNR degradation D versus quantization bits.

quantization. Both methods are shown to achieve negligible

performance loss compared to the non-quantized one in terms

of BF gain, when the number of quantization bits is larger than

3. We also provided quantitative analysis for the quantization

error and the degradation in SNR due to quantization, which

are validated by simulation results. The work in this paper can

be further improved by combining the baseband precoding [7]

and vector quantization methods [13].
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