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 Wireless Communication Evolution



What Is Beyond 5G

« The 51" generation mobile system aims at 1000 time
capacity increase and enables more connections and
new applications such as Internet of Things.

« However, 5G system is still ground based and its
coverage is limited.

« With the 5G system to be deployed within one or two
years by 2020, what will be the next move?
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The Moore's Law

* Moore's law Is the observation that the number of
transistors in a dense integrated circuit doubles about
every two years.
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The “Omnify” Principle

« Omnify stands for Order of magnitude increase every
five years. This means that demand for data
increases 10 times every 5 years.
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How to Achieve Tbps Data Rate?

 Terahertz (THz) band communication is envisioned
as a key wireless technology to satisfy this demand.

* The THz band is the spectral band that spans the
frequencies between 0.1 THz and 10 THz which is

still one of the least explored frequency bands for
communication.

* The THz band offers a much larger bandwidth, which
ranges from tens of GHz up to several THz
bandwidth, enabling Tbps data rate even with lower
level modulation.



Challenges of THz Band Communication

* One of the main challenges is imposed by the very
high path loss at THz band frequencies, which poses
a major constraint on the communication distance.

 Additional challenges:

 Implementation of compact high power THz band
transceivers

* Development of efficient ultra-broadband antennas at
THz band frequencies,

« Characterization of the frequency-selective path loss of
the THz band channel,

* Development of novel transmission schemes and
communication protocols



Application Scenarios of Thps Wireless

" ))) Thps Link v

.))) Thbps Link

-a) 5G cellular networks. (b) Terabit wireless local area networks.

})) Thps Link

)) ) Thbps Link

'c) Terabit wireless personal area networks. (d) Secure wireless communication for military applications.
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* Integrated Space and Terrestrial Networks



How to Extend Wireless for Coverage

* |n parallel with the
development of terrestrial
mobile systems such as 5G,
another major international
effort in wireless
communications is the
development of space
communications networks.

« Space communications
networks enable global BP0
wireless connectivity at any = . i
time and from anywhere...
on the sea, in rural and
remote areas, over the air
and space.




History of Space Network

* The concept of using various space platforms to
perform data acquisition, transmission and
information processing has been around for several
tens of years.

» Such space platforms include Geosynchronous Earth
Orbit (GEO) satellites, Medium Earth Orbit (MEO)
satellites, Low Earth Orbit (LEO) satellites, as well as
high-altitude platform stations (HAPSS).

 Evolution: Narrowband satellite communications
systems (lridium and Globalstar) — Wideband
satellite communications systems (not implemented)
— Space Internet (O3b Networks)



Integrated Space and Terrestrial Network

* Interconnecting
spaceborne, airborne
and ground based
transmission platforms
to form a global
seamless
communications
system.

* This will be one of the
future directions of
communications
technology research
and development.
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Importance of High-Speed Backbone

 Backbone communications networks consist of
various high-capacity links to interconnect the major
nodes of the information network and to handle the

aggregated voice, video, Internet, and enterprise data
flows.

 Conventional telecommunication infrastructure relies

heavily on single-mode optical fiber as the data
backbone.

« However, the air-space-ground integrated information
network can’t rely on a fixed infrastructure and
iInstead needs a means of projecting fiber-optic-
equivalent capacity anywhere and anytime.



Free-Space Optical (FSO) Links

A logical approach is to use FSO links to achieve the
required capacity.
* FSO links have been shown to have fiber-optic-

equivalent capacity at long ranges and are expected
to play a significant role in the airborne-based

backbone.
« However, FSO links can’t propagate through clouds,

which are present 40% of the time in some regions
and lead to unacceptable network availability.
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DARPA 100G RF Backbone Program

* The goals of 100 G RF Backbone program:

 To design, build and test an airborne-based
communications link with fiber-optic-equivalent capacity
and long reach that can propagate through clouds and
provide high availability.

 To provide 100 Gbps capacity at ranges of 200 km for
air-to-air links and 100 km for air-to-ground links from a
high-altitude (e.g. 60,000 ft.) aerial platform.

 To provide an all-weather (cloud, rain, and fog)
capability while maintaining tactically-relevant
throughput and link ranges.

 Size, weight, and power (SWaP) will be limited by the
host platforms, which will primarily be high-altitude,
long-endurance aerial platforms.



How to Achieve 100 Gbps Capacity

Capacity = M B log,(1 + S/N)

* Increase the system bandwidth, which usually
requires moving to higher frequencies where
atmospheric losses can reduce link performance.

* Apply spectrally-efficient modulation, such as
quadrature amplitude modulation, which requires
increasing the signal power in order to achieve the
S|gna: -to-noise ratio required to demodulate the
sigha

« Use multiple independent channels, such as spatial
multiplexing, polarization multiplexing, and/or orbital
angular momentum; some of which require multiple
antenna aperiures.

mm-Wave is the best choice
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 Millimetre Wave RF Backbone



A Natural Shift to Higher Frequencies

More bandwidth is available in upper microwave

frequency bands and millimeter wave (mm-Wave)
frequency bands.

However, larger path loss will reduce the
communication range.
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Atmospheric Absorption

« Within so-called atmospheric windows (35, 90, 140,
220 GHz and upwards), attenuation due to
atmospheric absorption is minimized, allowing
superior wireless transmission.
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Rain Attenuation

* The main factor that limits available communication
range at the upper microwave and mm-wave
frequencies is the rain attenuation.
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Total Loss Through Cloud
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DARPA’'s 100G Solution

* Phase 1 of the program has been completed, in

which the fundamental techniques and building
blocks are developed

Phase 2 of the program is the system design and
integration completed by the end of 2017.

Some highlights of Phase 1 achievements are

» Direct digital to RF conversion using Indium Phosphide (InP)

modulator at data rate in excess of 25 Gbps within 5 GHz
bandwidth




Some Highlights of Phase 1 Achievements

 Direct digital to RF conversion using Indium Phosphide (InP)
modulator at data rate in excess of 25 Gbps within 5 GHz
bandwidth

* Nyquist Cyclic Modulation with 32APSK and 64APSK to achieve
low PAPR

« 20 dBW power amplifier
* Photonic approaches to generate millimetre-wave signals
« ADC and DAC sampling rate in excess of 10 Gsps
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In-Band Full Duplex

 In-band full duplex (IBFD) can be used to further
improve the spectral efficiency in mm-Wave
frequencies.

« Among the various challenging issues which need to
be solved before the full duplex radio becomes a
reality, self-interference from the transmitter to the
co-located receiver is the most fundamental one.




Sources of Self-interference

« Internal Interference: quantization noise, phase noise, amplifier
distortion,

 Direct path self-interference or leakage
« Near field reflected path self-interference
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Novel SIC by ALMS Loop

» Weighting coefficients are
automatically adapted by
ALMS loop with simple RC

circuits.

* Implemented directly at RF
not baseband.

« We have proved that the
interference suppression
ratio (ISR) is determined by
the loop gain (including
LAN gain ) and transmitted
signal power (given the
multiplier dimensional
constants).

Xiaojing Huang and Y. Jay Guo, “Radio Frequency Self-Interference Cancellation with Analog Least Mean Square Loop,” IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 9, September 2017, pp. 3336 — 3350.




mm-Wave Hybrid Antenna Array

+ A full digital implementation of wideband antenna array at
mm-wave frequencies is unrealistic due to the space
constraint and digital signal processing cost.

« Advantages of hybrid array solution:
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LOS-MIMO

» Use Spatial Multiplexing, operating at or near the
Rayleigh Range to form multiple independent
channels
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Low Cost Analog-to-Digital Conversion

« UTS patented
technology called dual
ulse shaping (DPS)
ransmission

* |t enables a mm-wave
system with |
commercially available
and affordable data
conversion devices.

« With DPS, the system
can achieve full
Nyquist rate
transmission with only
half of the sampling
rate required by
conventional Nyquist
pulse shaping.
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UTS Track Record on High Speed Systems

 Our capabilities:
* Reconfigurable and multiband antennas
» Image radar and radio holography
* Full duplex wireless communication
« Coding, modulation, signal processing for wireless systems

* Real-time implementation of communication protocols and
standards

. PrototyFing of high speed microwave, millimetre wave and
terahertz systems
* Our track record:

« 10 Gbps microwave system using band and channel
aggregation

* 510 20 Gbps millimetre wave and terahertz systems

« Successful technology transfer to telecommunication industry
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Current 20 Gbps Modem: DSP Platform

- The platform has one 10 GbE
interface, a FPGA signal |

LDPC Encoding
and Modulation

LDPC Encoding
and Modulation

processing module and four o
D/As and A/Ds to ML e
generate/receive two 1/Q
baseband signals

: Q Channel 2

* D/A and A/D sampling rate =
2 ] 5 G S pS I Baseband DSP Platform L’—: g.aSmCIi)lipnsg e
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« Each 1/Q channel provides 5 ua=
Gbps data rate P e

» Total data rate = 20 Gbps in
two directions
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Current 20 Gbps Modem: |[F Module

« Two 1/Q channels in each DSP
platform are up-converted to 15.65 [ 1|
GHz IF (lower or upper sideband) =

0-3.75GHz

» The lower and upper sidebands are
combined to form a 12.5 GHz IF L
signal with center frequency 15.65 s O
GHZ LPF
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UTS 20 Gbps THz System Test Setup




UTS 20 Gbps THz System Live 16QAM Test




Current 50 Gbps E-band Project: System

* Digital Modem + RF Front-end
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Current 50 Gbps E-band Project: Challenges

« Higher bandwidth
 From 2.5 GHz to 5 GHz

« Higher sampling rate
 From 2.5 Gsps to 5 Gsps

« Higher modulation level
* From 16QAM to 640QAM

* Direct conversion RF front-end
* No IF stage

« Dual-polarization
« Cross-polarization Interference Cancellation (XPIC) is necessary

 Practical impairments
* |/Q imbalance compensation

« Current progress:
» Feasibility study completed
« Digital and RF system design underway



UTS Tbps Wireless Roadmap

2018 2020

2022

2024
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v 100 Gbps with 5 GHz
50 Gbps with 5 GHz  bandwidth in E-band
bandwidth in E-band  further using 2 x 2
(71-76/81-86 GHz) LOS-MIMO
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polarization
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1000 Gbps with 50 GHz
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400 Gbps with 20 GHz

bandwidth in D-band
(110-170 GHz)
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Conclusions

 Future wireless communications should achieve
global coverage while further increasing its capacity

* The integrated space and terrestrial network is a
ultimate goal of global communications technology
research and development, where high-speed aerial
backbone is of significant importance.

 Mm-wave communications combined with other
enabling technologies can achieve the Tbps data rate
required for the aerial backbone links.

* There are still a lot of technical challenges to be
solved, which requires research collaborations.
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