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Abstract—Locating reinforcement rods embedded inside con-
crete wall–like structures, as well as locating subsurface features
such as voids, cracks, and interfaces is an essential part of
structural health monitoring of concrete infrastructure. The
Ground Penetrating Radar (GPR) technique has been commonly
used as a means of Non–destructive Testing and Evaluation (NDT
& E) which suits the purpose. In the recent past, the interest of
using GPR to assess the crowns (i.e., top) of concrete sewers
has been rising. Moisture is well known to be a challenge for
GPR imaging as moisture tends to influence GPR waves. This
challenge becomes more common and persistent inside sewers
since sewer walls contain considerable surface and subsurface
moisture as a result of the humid environment created by the
waste water flowing through sewers as well as the bacteria and
gas induced acid attacks. Forming a part of sewer condition
assessment–related research with the objective of assessing moist
concrete, this paper presents some preliminary results which
demonstrate how some simple scale transformations and con-
volution can help in enhancing GPR images in grey–scale. A set
of raw GPR signals captured on a moist concrete block inside a
laboratory environment is considered. The effect of enhancement
is demonstrated against a benchmark image constructed by
mapping the raw signals directly onto grey–scale.

Index Terms—concrete, GPR, NDT, NDE, radar, sensor, sewer

I. INTRODUCTION

Ground Penetrating Radar (GPR) is a rapidly growing
geophysical sensing method [1] that has seen tremendous
progress in the development of theory, technique, technology,
and range of applications over the past three decades [2].
Applications of this method range from geology–related and
geotechnical studies [2], ground water–related studies [2, 3, 4],
sedimentalogy [2, 5], glaciology [2], archaeology [2], and
Non–Destructive Testing and Evaluation (NDT&E) [2, 6].

In the domain of NDT&E—which is the interest of this pa-
per, concrete inspection becomes a common target application
of GPR [6, 7, 8]. With the recent interest in research relating to
concrete sewer condition assessment [9, 10, 11, 12, 13, 14, 15],
interest towards the use of GPR to assess the crown (i.e.,
top) of concrete sewers has also increased [16, 17]. How-
ever, sewer walls are understandably quite moist due to the
humid atmosphere prevalent inside sewers, which is caused
by the waste water flow and the influence of bacteria and gas
induced acid attacks. As a result of this moisture, it can be
challenging to obtain good quality GPR data inside sewers,

as moisture is known to influence the amplitude of GPR
waves [6]. This added challenge with moisture for example,
is an instance which demands for additional techniques in the
signal processing front to enhance GPR images through some
post–processing applied on raw GPR signals.

Conventionally, GPR imaging is done using Synthetic
Aperture Radar (SAR) [18, 19] and Migration techniques
[20, 21, 22]. Some further GPR signal enhancement tech-
niques include the likes of seismic analysis techniques [23],
non–linear data processing techniques [24], wave–equation
redatuming [25], sliding–window space–frequency matrices
[26], and deep learning–based techniques [17, 27].Moreover,
some other research have focused on using GPR for detect-
ing chloride and evaluating the moisture content in concrete
[28, 29].However, work that closely relate to applications
such as sewer condition assessment and focus on detecting
objects (e.g., reinforcements rods) or physical anomalies such
as voids, cracks, and interfaces through enhancing GPR waves
adversely impacted by any moisture present in concrete are
rare. Therefore, this paper makes a contribution by focusing on
enhancing GPR images to better visualize subsurface objects
and defects embedded inside moist concrete, with the target
application of concrete sewer condition assessment in mind.

The paper is structured as follows: Section II presents the
fundamental principles related to the work of this paper; sec-
tion III describes the experimental set–up used; the GPR image
enhancement techniques experimented along with results are
presented in section IV, and section V concludes the paper
while discussing implications of results and avenues for future
work.

II. RELEVANT PRINCIPLES

GPR acquires data by emitting radar waves into a test piece
and recording echo waves reflected by sub–surface objects,
defects, or changes of certain material properties. References
[1, 2] will be useful to gain in–depth understanding about
GPR. The primary output produced by a GPR device is known
as the A–Scan matrix, which is a collection of time domain
reflected echo waves. Fig. 1 illustrates the standard scenario
of operation of a GPR antenna.



A. GPR A–Scan Matrix

When a sample distance dx(∈ <+) is specified and a GPR
antenna is moved on the surface of a test piece along a straight
line for a distance X(∈ <+, X > dx) as shown in Fig. 1, at
every spatial point denoted as xi (1 ≤ i ≤ n; i, n ∈ Z+) along
the straight line such that xi+1 − xi = dx ∀i, the antenna
records a time domain echo wave Si(t). All Si(t) waves can
be considered row vectors of the same length (assume vector
size to be 1×m, m ∈ Z+) as all waves will have equal signal
duration and sampling frequency. An example for an Si(t)
wave is shown in Fig. 2. The A–Scan matrix (denoted herein
as A, a matrix of size m × n) is constructed by arranging
all Si(t) waves captured along a straight line in the following
manner:

A = [S1(t)
T , S2(t)

T , ...., Si(t)
T , ...., Sn(t)

T ] (1)

B. GPR B–Scan Image

B–Scan images can be constructed by applying a variety of
migration techniques on A–Scans, after A–Scan waves have
gone through some signal processing and conditioning steps
[20, 21, 22]. Fig. 3 shows an example for the construction
of a B–Scan image, and Fig. 4 shows an example real–world
B–Scan image captured as part of this work.

For the work of this paper, migrating of processed A–Scan
matrices to B–Scan images is done simply by mapping the
processed A–Scan matrices to grey–scale images. The values
in a processed A–Scan matrix are quantized to 256 equal
levels and the quantized level corresponding to each cell in

Fig. 1. Standard operation scenario of a GPR antenna.

Fig. 2. An example real–world GPR echo wave found in an A–Scan.

Fig. 3. Example B–Scan image construction.

Fig. 4. An example for a real–world B–Scan image.

the processed A–Scan matrix is then mapped as a pixel in
grey–scale generating the B–Scan image, where the highest
quantization level corresponds to white and the lowest level
corresponds to black.

C. Probability Density Function (PDF) of Normal Distribu-
tion

For a continuous random variable x ∈ < (note that the
x notation here is used for a random variable, and does



not coincide with the x,X notations used before to denote
distance), the standard definition of the PDF of the normal
distribution comes as:

P (x) =
1

σ
√
2π
e−(x−µ)

2/2σ2

, (2)

where µ and σ are the mean and standard deviation respec-
tively, of the distribution.

D. 2D Convolution

When a 2D matrix g and a 2D kernel h are available,
the standard definition of the discrete 2D convolution output
matrix y with indices denoted by a, b comes as:

y[a, b] = g[a, b] ∗ h[a, b] (3)

g[a, b] ∗ h[a, b] =
∞∑

j=−∞

∞∑
i=−∞

g[i, j]h[a− i, b− j] (4)

III. EXPERIMENTAL SET–UP

Fig. 5 shows the experimental set–up used for the
work of this paper. GPR data were captured using the
MALA CX12©Concrete Scanner 2.6 GHz antenna (http://
www.malagpr.com.au/—date of last visit: December 29, 2018)
shown in Fig. 5(c). A cross section of the test piece along
the GPR antenna’s direction of travel is shown in Fig. 5(d).
The test piece is mimicking a concrete sewer wall; it has
steel reinforcement rods embedded within perpendicular to the
direction of travel of the antenna, and has a top layer made
of Gypsum—mimicking a layer of corroded concrete on the
outer surface. The Gypsum layer was made to have a slope
with the expectation of it being more obvious to identify form
GPR B–Scans. To mimic moisture inside sewer walls, the test
piece was left immersed in water for 48 hours as shown in
Fig. 5(a), and was allowed to dry at room temperature for 24
hours as shown in Fig. 5(b) before taking GPR measurements.
After 24 hours, when the test piece was moist to an extent
closely comparable with a sewer crown, GPR measurements
were recorded by moving the antenna as shown in Fig. 5(c).

IV. METHODOLOGY AND RESULTS

A. Pre–processing

When the GPR A–Scan matrix captured after the test piece
dried for 24 hours was directly mapped to a grey–scale image
as explained in subsection II-B, the resulting B–Scan image
happened to be the one in Fig. 6(a). At the top of Fig. 6(a),
some horizontal lines are visible. These lines are a result of
the initial reflection (or the background reflection) caused by
the interface where the antenna touches the top of the Gypsum
layer, and this reflection is not necessary for analysis and is
undesired as what we are interested in are subsurface features.
Therefore, it is good practice to remove this background
reflection. Subtracting the background reflection was done by
performing the following operation on the A–Scan matrix:

Abr = A−

[
1

n

n∑
i=1

Si(t)
T

]
[1, ..., 1, ..., 1]1×n, (5)

Fig. 5. Experimental set–up: (a) Test piece immersed in water for 48 hours;
(b) Test piece drying at room temperature for 24 hours; (c) Antenna movement
for capturing GPR measurements; (d) Cross section of the test piece along
the direction of travel of the GPR antenna.

where Abr is the background removed A–Scan matrix and
A, i, n and Si(t) are consistent with eq. 1. When Abr was
converted to its B–Scan, what resulted was the image in
Fig. 6(b) which does not have the horizontal lines at the
top unlike in Fig. 6(a). This B–Scan image in Fig. 6(b)
obtained from Abr is considered the benchmark, or the default
B–Scan image for the remainder of the work of this paper.
The objective of the remainder of the work is to investigate
whether an A–Scan matrix A∗br can be achieved by performing
some transformation to Abr, so that A∗br produces an enhanced
B–Scan image having more contrast and/or detail, than the
benchmark B–Scan image in Fig. 6(b) which was produced by
Abr. Several experiments were performed on Abr to investigate
this matter, and they are detailed in the remainder of this
section.

http://www.malagpr.com.au/
http://www.malagpr.com.au/


Fig. 6. Benchmark B–Scan image: (a) B–Scan from raw signal (generated
from matrix A); (b) B–Scan from background subtracted signal (generated
from matrix Abr).

B. Experiment 1: Absolute A–Scan

The first experiment was taking the absolute value of the
background removed A–Scan. This was done as follows by
taking the absolute value of every element of Abr:

A∗br = |Abr| (6)

The resulting B–Scan is shown in Fig 7(b) along with the
benchmark B–Scan in Fig. 7(a). It is evident when comparing
Fig 7(b) with Fig 7(a), that the Absolute A–Scan transfor-
mation has not been successful in enhancing the benchmark
B–Scan.

C. Experiment 2: Exponential of A–Scan

In the second experiment the B–Scan image was generated
after taking the exponential value of every element of the
background removed A–Scan matrix. The operation is denoted
as follows:

A∗br = exp(Abr) (7)

The B–Scan that resulted from A∗br generated in this manner
is shown in Fig 7(c). It is evident when comparing Fig 7(c)
with Fig 7(a), that the Exponential of A–Scan transformation
too has not been successful in enhancing the benchmark
B–Scan.

D. Experiment 3: Exponential of Normalized A–Scan

In the third experiment the B–Scan image was generated
after taking the exponential value of every element of the nor-
malized background removed A–Scan matrix. The operation
is denoted as follows:

A∗br = exp

[
1

max(Abr)
×Abr

]
(8)

It should be noted that the operation max(Abr) in eq. 8
extracts the maximum value present in Abr. The B–Scan
that resulted from A∗br generated in this manner is shown
in Fig 7(d). Unlike the results from Experiments 1 and 2,
the Exponential of Normalized A–Scan transformation has
produced a fair B–Scan. When comparing Fig 7(d) with
Fig 7(a), one might observe that the B–Scan in Fig 7(d)
has more clarity and contrast than Fig 7(a), with the slant
Gypsum–Concrete interface and the parabolas considerably
visible. Thus, one might argue that the Exponential of Normal-
ized A–Scan transformation has produced a slightly enhanced
B–Scan image.

E. Experiment 4: Convolution of A–Scan with Normal Distri-
bution PDF

To generate A∗br under Experiment 4, we first define the
following: Suppose a row vector C = [c1, c2, ..., ci, ...ck]
exists such that 1 ≤ i ≤ k; i, k ∈ Z+; and ci ∈ < ∀i, where
c1 = −n/2 and ck = n/2, where n ∈ Z+, and ci+1 − ci = 1
∀i. Now suppose we specify a row vector C as such, along
with an arbitrary value each for µ(∈ <+

0 ) and σ(∈ <+) of
eq. 2. Hence, we define a row vector–shaped kernel P (C) as
follows:

P (C) = [P (c1), P (c2), ..., P (ci), ..., P (ck)], (9)

where P (ci) is computed in a sense of probability mass using
eq. 2 ∀i. Thereon, we generate A∗br as in eq. 10 following
discrete 2D convolution as presented in eq. 3 and 4.

A∗br = Abr ∗ P (C) (10)

To generate A∗br as in eq. 10, the parameters n(∈ Z+), µ,
and σ need to be defined. For simplicity, we set µ = 0 and
σ = n. Fig 7(e) shows the B–Scan which results from A∗br
computed by setting n = 5. When comparing with B–Scans
in Fig 7(a) and Fig 7(d), one might argue that the Convolution
of A–Scan with Normal Distribution PDF operation done in
this experiment has achieved quite superior enhancement of
the B–Scan.

Since the final B–Scan produced by this method depends on
the value of n, a further experiment was done to evaluate the
performance of this method by varying the value of n. Fig. 8
shows the obtained results for some n values (i.e., n = 1, 5, 10
and 100), along with the benchmark B–Scan for comparison.
It can be seen from Fig. 8 that the results are quite positive
for the low values of n (e.g., n = 1 and 5 while n = 5 being
the best) while the B–Scan loses quality as n gets larger (e.g.,
n = 10 and 100).

F. Experiment 5: Convolution of A–Scan with Exponential of
Normal Distribution PDF

The manner in which A∗br is generated through this method
is quite similar to that of Experiment 4. The difference from
Experiment 4 lies in the kernel for convolution in this method
being the exponential of P (C) (i.e., exp[P (C)])—meaning the
exponential value of each element of P (C) is computed and
assigned to the kernel as opposed to the kernel being P (C)
in Experiment 4. The operation can be expressed as:

A∗br = Abr ∗ exp[P (C)] (11)

Fig 7(f) shows the B–Scan which results from A∗br computed
by setting n = 5. When comparing with B–Scans in Fig 7(a)
and Fig 7(d), one might argue that the Convolution of A–Scan
with Exponential of Normal Distribution PDF method too
has achieved quite superior enhancement of the B–Scan and
appears quite identical in performance to the Convolution of
A–Scan with Normal Distribution PDF method executed in
Experiment 4.

Since the final B–Scan produced by this method too (like in
Experiment 4) depends on the value of n, a further experiment



Fig. 7. Comparison of results: (a) Benchmark B–Scan; (b) B–Scan from
Absolute A–Scan (Experiment 1); (c) B–Scan from Exponential of A–Scan
(Experiment 2); (d) B–Scan from Exponential of Normalized A–Scan (Exper-
iment 3); (e) B–Scan from Convolution of A–Scan with Normal Distribution
PDF (Experiment 4); (f) B–Scan from Convolution of A–Scan with Exponen-
tial of Normal Distribution PDF (Experiment 5).

was done to evaluate the performance of this method by
varying the value of n. Fig. 9 shows the obtained results
for some n values (i.e., n = 1, 5, 10 and 100), along with
the benchmark B–Scan for comparison. It can be seen from
Fig. 9 that the results are quite positive for the low values
of n (e.g., n = 1 and 5 while n = 5 being the best) while
the B–Scan loses quality as n gets larger (e.g., n = 10 and
100)—almost identical to what was observed with the results
from Experiment 4.

V. DISCUSSION AND CONCLUSIONS

Enhancement of GPR B–Scan (grey–scale) images achiev-
able through some convolution and scale transformations ap-
plied on A–Scans was investigated. The effect of enhance-
ment was demonstrated against a benchmark B–Scan image
created by mapping A–Scan wave amplitudes directly to
grey–scale. Convolution–based methods were able to produce
superior enhancement. The reason behind this could be the
row vector–shaped kernels defined in this paper, being able to
make use of adjacent A–Scan waves to good effect. Results
suggest that through careful selection of such kernels and
their parameter values, some enhancement in GPR images
can be achieved even when the waves are affected by un-
desired factors such as moisture. Comparing the performance
of such kernels against other techniques available for GPR
image enhancement, and investigating on more kernels that
may be effective on different applications, and prescribing
protocols to tune their parameters could create interesting
avenues for further research. Developing GPR–based robotic
condition assessment tools, similar to those based on other

Fig. 8. Influence of n on the results of Experiment 4: (a) Benchmark B–Scan;
(b) B–Scan (n = 1); (c) B–Scan (n = 5); (d) B–Scan (n = 10); (e) B–Scan
(n = 100).

Fig. 9. Influence of n on the results of Experiment 5: (a) Benchmark B–Scan;
(b) B–Scan (n = 1); (c) B–Scan (n = 5); (d) B–Scan (n = 10); (e) B–Scan
(n = 100).

sensing techniques done for water pipe assessment [30, 31],
could also be an interesting avenue, especially for challenging
applications such as sewer condition assessment.
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