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Abstract 

In this paper, the main intention is to propose a new Multi-material Isogeometric Topology Optimization 

(M-ITO) method for the optimization of multiple materials distribution, where an improved multi-material 

interpolation model is developed using Non-Uniform Rational B-splines (NURBS), namely the “NURBS-

based Multi-Material Interpolation (N-MMI)”. In the N-MMI model, three key components are involved: 

(1) multiple Fields of Design Variables (DVFs): NURBS basis functions with control design variables are 

applied to construct DVFs with the sufficient smoothness and continuity; (2) multiple Fields of Topology 

Variables (TVFs): each TVF is expressed by a combination of all DVFs to present the layout of a distinct 

material in the design domain; (3) multi-material interpolation: the material property at each point is equal 

to the summation of all TVFs interpolated with constitutive elastic properties. DVFs and TVFs are in the 

decoupled expression and optimized in a serial evolving mechanism. This feature can ensure the constraint 

function is separate and linear with respect to TVFs, which can be beneficial to reduce the complexity of 

numerical computations and eliminate numerical troubles in the multi-material optimization. Two kinds of 

multi-material topology optimization problems are discussed, i.e., one with multiple volume constraints 

and the other with the total mass constraint. Finally, several numerical examples in 2D and 3D are provided 

to show the effectiveness of the M-ITO method. 
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1 Introduction 

Topology optimization has undergone significant developments in recent years, because of its capability to 

find the optimal distribution of materials in the conceptual design phase of products [1]. Up to now, many 

different methods with the specific characteristics are developed, like the homogenization method [2], the 

Solid Isotropic Material with Penalization (SIMP) method [3,4], the Evolutionary Structural Optimization 

(ESO) method [5] and the Level Set Method (LSM) [6–8]. Meanwhile, many complicated problems ranging 

from the mechanical discipline to other physical fields, have been discussed, e.g. [9–17]. One of them, the 

multi-material topology optimization provides a new window for the advanced structures, such as cellular 

composites [13,16,17] etc. 

Overall speaking, the multi-material topology optimization problems pose more challenges than the single-

material design. The first work might go back to [18], which used the homogenization technique to design 

a structure with one or two materials. A mixture rule for the interpolation of three-phase material properties 

was proposed in the framework of the SIMP method to design composites with extreme thermal expansion 

[19] and extreme bulk modulus [20], which has been also applied to the optimization design of multiphysics 

actuators [21] and reinforced concrete structures [22]. Stegmann and Lund [23] proposed a discrete material 

optimization (DMO) to optimize composite laminate shell structures. Then, Gao et al [24,25] extended the 

mixture rule and DMO to the multi-material problem with the total mass constraint, in which the recursive 

multiphase materials interpolation (RMMI) model and uniform multiphase materials interpolation (UMMI) 

model were studied in detail. Two multi-material interpolation schemes as generalizations of the SIMP and 

RAMP material interpolation schemes were discussed in [26], and the optimization of composite laminated 

lay-ups was also studied [27]. Later, many multi-material topology optimization methods were developed, 

such as the peak function to decrease design variables [28], the ordered SIMP interpolation [29], and the 

alternating active-phase algorithm [30]. [31] developed a continuum topology optimization framework for 

the multi-material compliance minimization considering arbitrary volume and mass constraints. The LSMs 

have been also applied to solve several multi-material problems [32,33]. 

In the multi-material topology optimization, a critical ingredient lies in how to develop an effective multi-

material interpolation model. Several challenges will be involved: (1) how to exactly capture each distinct 

material in a designable element or point; (2) no overlaps: a designable element or point only has a unique 

phase; (3) no redundant phases: the design domain should be occupied by all materials and the void phase. 

However, the developed multi-material interpolation models in the previously-mentioned works might not 
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be effective in some problems. For example, the RMMI model has no capability to ensure the multi-material 

optimization can seek the optimal design under the total mass constraint [24], where a set of design variables 

are defined to determine the existence of all materials and other sets work as topology variables to determine 

the selection of materials. The multi-material topology optimization with the UMMI model might produce 

the “mixed” materials [24], in which each set of design variables work as the set of topology variables to 

determine the layout of a unique material. Moreover, a specific feature that design variables and topology 

variables are expressed in the coupled manner and evolved in a parallel mechanism during the optimization, 

exists in the above multi-material interpolation models. The coupled expression and parallel evolving cause 

several numerical issues in the multi-material optimization, like the unrealistic designs with the “mixed” 

material or a local optimal design [24,34]. 

On the other side, the numerical analysis in the mentioned-above works are performed by the finite element 

method (FEM) [35]. Three main drawbacks of the FEM would constrain the effectiveness of the topology 

optimization: (1) the finite element mesh is only an approximation of the structure [36,37]; (2) the lower-

order (C0) continuity of the structural responses between adjacent finite elements; (3) the lower efficiency 

to obtain the high quality of the finite element mesh. Isogeometric analysis (IGA), proposed by Hughes and 

his co-workers [36,37], can be regarded as a logical extension and generalization method of finite element 

analysis. In IGA, the same basis functions are employed to model the structural geometry and construct the 

finite dimensional solution space. Hence, no matter how coarse the numerical discretization of the domain 

is, the structural geometry can be exactly represented. Recently, IGA has been accepted a great number of 

discussions among many researchers [38,39]. 

To the best of the authors’ knowledge, the first work of using IGA into the topology optimization might be 

performed by Seo et al [40], in which the trimmed spline surfaces were applied to represent the boundaries. 

A phase field model with IGA was developed for the compliance problem [41]. Then, an isogeometrical 

method to topology optimization was also developed, where the optimality criteria was used to evolve the 

design variables [42]. Later, Qian [43] constructed a B-spline space for topology optimization and provided 

a detailed discussion for the B-splines filter. In [44], a unified strategy is developed to simultaneously insert 

inclusions or holes of regular shape as well as redistribute the material to affect the optimal topologies of 

solids. IGA has been studied in the framework of LSMs, including an IGA-based parameterized LSM [45], 

the IGA-based LSM for stress problems [46] and flexoelectric materials [47]. Later, Gao et al [48] proposed 

a new Isogeometric Topology Optimization (ITO) method, where a density distribution function with the 
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desired smoothness and continuity was constructed to present the structural topology, and the ITO method 

with an energy-based homogenization was used to optimize auxetic metamaterials [49]. Hence, it is easily 

to see that a number of efforts have been devoted to the applications of IGA into topology optimization, 

but only for the single-material. In terms of the multi-material problems, Lieu and Lee [50] developed an 

IGA-based multi-material topology optimization method, where the alternating active-phase algorithm was 

directly used. Taheri and Suresh [34] developed an IGA-based topology optimization method for multiple 

materials and functionally graded structures, with the direct use of the DMO model. We can easily find that 

the above discussed numerical troubles of the multi-material interpolation models are still occurred in the 

optimization. Hence, it is of great importance to develop a more effective multi-material ITO method with 

the superior capability to seek for the optimal distributions of multiple materials. 

In this work, we intend to propose a Multi-Material Interpolation model using NURBS (N-MMI), and then 

apply it to develop a new Multi-material Isogeometric Topology Optimization (M-ITO) method. In the N-

MMI model, two kinds of variables are introduced, including Fields of Design Variables (DVFs) and Fields 

of Topology Variables (TVFs). TVFs and DVFs are expressed in the decoupled manner and optimized in 

a serial evolving mechanism, rather than the coupled and parallel manner. The decoupled expression and 

serial evolving of the DVFs and TVFs can make sure all constraint functions are separate and linear with 

respect to TVFs, which is beneficial to solve multi-material problems, particularly for the problem with the 

total mass constraint. Finally, the outline of the paper is provided as follows: a brief description about IGA 

is shown in Section 2 and the N-MMI model is given in Section 3. Two M-ITO formulations are developed 

in Section 4 using the N-MMI, and sensitivity analysis is derived. Several 2D and 3D numerical examples 

are performed in Section 5, and the paper ends with the concluding remarks in Section 6.
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2 A brief introduction about Isogeometric analysis (IGA) 

IGA aims to integrate the computer-aided design (CAD) model with the computer-aided engineering (CAE) 

analysis model in an integrated mathematical form [36,37]. NURBS, which is the standard computational 

geometry technology in industry [51], are employed in the current work. 

2.1 NURBS for geometrical model and spatial discretization 

The geometrical model of structures is constructed by a linear approximation of the NURBS basis functions 

with a set of control points, Given that a control net of points 𝐏𝐏𝑖𝑖,𝑗𝑗 ∈ ℝ2 (𝑖𝑖 = 1,2,⋯ ,𝑛𝑛; 𝑗𝑗 = 1,2,⋯ ,𝑚𝑚), 

the mathematical form of a tensor product NURBS surface 𝐒𝐒(𝜉𝜉, 𝜂𝜂) is defined as: 

𝐒𝐒(𝜉𝜉, 𝜂𝜂) = ��𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂)𝐏𝐏𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (1) 

where 𝑛𝑛 and 𝑚𝑚 are the numbers of control points in two parametric directions, respectively. 𝜉𝜉 and 𝜂𝜂 

are two normal parametric directions, respectively. 𝑝𝑝 and 𝑞𝑞  indicate the polynomial orders of basis 

functions, respectively. 𝑅𝑅  are the bivariate NURBS basis functions expressed by the B-spline basis 

functions: 

𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂) =

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉)𝑀𝑀𝑗𝑗,𝑞𝑞(𝜂𝜂)𝜔𝜔𝑖𝑖𝑖𝑖

∑ ∑ 𝑁𝑁𝚤̂𝚤,𝑝𝑝(𝜉𝜉)𝑀𝑀𝚥̂𝚥,𝑞𝑞(𝜂𝜂)𝜔𝜔𝚤̂𝚤𝚥̂𝚥
𝑚𝑚
𝚥̂𝚥=1

𝑛𝑛
𝚤̂𝚤=1

 (2) 

where 𝜔𝜔𝑖𝑖𝑖𝑖 is the positive weight assigned to the control point 𝐏𝐏𝑖𝑖,𝑗𝑗. 𝑁𝑁𝑖𝑖,𝑝𝑝 and 𝑀𝑀𝑗𝑗,𝑞𝑞 indicate the univariate 

B-spline basis functions in two parametric directions 𝜉𝜉 and 𝜂𝜂, respectively. The B-spline basis function 

is defined by the Cox-de-Boor formula [52], and the recursive formula in 𝜉𝜉  direction with a non-

decreasing knot vector Ξ = �𝜉𝜉1, 𝜉𝜉2,⋯ , 𝜉𝜉𝑛𝑛+𝑝𝑝+1� is defined, starting from 𝑝𝑝 = 0: 

𝑁𝑁𝑖𝑖,0(𝜉𝜉) = �1 𝑖𝑖𝑖𝑖 𝜉𝜉𝑖𝑖 ≤ 𝜉𝜉𝑖𝑖+1
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (3) 

For 𝑝𝑝 ≥ 1, the basis functions are defined by 

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) =
𝜉𝜉 − 𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖+𝑝𝑝 − 𝜉𝜉𝑖𝑖

𝑁𝑁𝑖𝑖,𝑝𝑝−1(𝜉𝜉) +
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉𝑖𝑖+1

𝑁𝑁𝑖𝑖+1,𝑝𝑝−1(𝜉𝜉) (4) 

It should be noted that the fractions with the form 0/0 in Eq. (4) are defined as zero. Similarly, the basis 

functions 𝑀𝑀𝑗𝑗,𝑞𝑞 in the 𝜂𝜂 direction are also defined by Eqs. (3) and (4). NURBS basis functions are featured 

with several important properties [36,51]: (1) Nonnegativity: 𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) ≥ 0; (2) Local support: The support 

of each basis function 𝑁𝑁𝑖𝑖,𝑝𝑝 is contained in the interval �𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖+𝑝𝑝+1�; (3) Partition of unity: For an arbitrary 

knot span [𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖+1], ∀𝜉𝜉 ∈ [𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖+1], ∑ 𝑁𝑁𝑗𝑗,𝑝𝑝(𝜉𝜉)𝑖𝑖
𝑗𝑗=𝑖𝑖−𝑝𝑝 = 1; (4) Continuity: 𝐶𝐶𝑝𝑝−𝑘𝑘, 𝑘𝑘 is the multiplicity of 

the knots. As an example shown in Fig. 1, a quarter annulus is constructed by the NURBS basis functions 
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with a set of the control points plotted by red dots, where the structural geometry is displayed in Fig. 1 (a). 

The NURBS-based geometrical model (CAD) and the discretized IGA mesh for numerical analysis (CAE) 

are shown in Fig. 1 (b) and (c), respectively. The final integration of CAD and CAE is illustrated in Fig. 1 

(g), and the corresponding basis functions in two parametric directions are indicated in Fig. 1 (d) and (e). 

The bivariate NURBS basis functions are displayed in Fig. 1 (f). 

 
Fig. 1. NURBS surface for a quarter annulus: Ξ = {0,0,0,0.15,⋯ ,0.90,1,1,1}, ℋ =

{0,0,0.25,0.5,0.75,1,1}; 𝑛𝑛 = 9,𝑚𝑚 = 5; 𝑝𝑝 = 2, 𝑞𝑞 = 1. 

2.2 Numerical discretization in IGA 

In IGA, the NURBS basis functions are firstly applied to model the structural geometry, and then construct 

the solution space for structural responses. The solution space is defined by a linear combination of NURBS 

basis functions and responses at control points. The corresponding equation is consistent with Eq. (1), but 

control coefficients correspond to responses of control points, expressed by: 

𝐔𝐔(𝜉𝜉, 𝜂𝜂) = ��𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂)𝐔𝐔𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (5) 

where 𝐔𝐔 denotes the field of structural responses in design domain, and 𝐔𝐔𝑖𝑖,𝑗𝑗 is the structural response at 

the control point 𝐏𝐏𝑖𝑖,𝑗𝑗. 

In the current work, the linear elasticity is considered here only for the sake of the numerical simplicity but 

without losing any generality. In the Galerkin IGA formulation, the system stiffness matrix and load vector 

are obtained by assembling the local stiffness matrix and local load vector, respectively. As shown in Fig. 
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2 (a), the quarter annulus is discretized by a series of IGA elements which correspond to knot spans in the 

parametric space. The IGA element stiffness matrix is computed by Gauss quadrature method, and the iso-

parametric formulation is applied to calculate the element stiffness matrix, given as: 

𝐊𝐊𝑒𝑒 = ���𝐁𝐁𝑇𝑇�𝜉𝜉𝑖𝑖, 𝜂𝜂𝑗𝑗�𝐃𝐃𝐃𝐃�𝜉𝜉𝑖𝑖, 𝜂𝜂𝑗𝑗��𝑱𝑱1�𝜉𝜉𝑖𝑖, 𝜂𝜂𝑗𝑗���𝑱𝑱2�𝜉𝜉𝑖𝑖, 𝜂𝜂𝑗𝑗��𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗�
3

𝑗𝑗=1

3

𝑖𝑖=1

 (6) 

where 𝐁𝐁 is the strain-displacement matrix calculated by the partial derivatives of the basis functions with 

respect to physical coordinates. As displayed in Fig. 2, a mapping 𝐗𝐗: Ω�𝑒𝑒 → Ω𝑒𝑒 from the parametric space 

to the physical space and an affine mapping 𝐘𝐘:Ω�𝑒𝑒  → Ω�𝑒𝑒 from the bi-unit parent element to the parametric 

element are defined. 𝑱𝑱1 and 𝑱𝑱2 are Jacobi matrices of these two mappings, respectively. 𝑤𝑤𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑗𝑗 are 

the corresponding quadrature weights. As shown in Fig. 2, all the Gauss quadrature points in the IGA mesh 

and a 3 × 3 quadrature points in an IGA element are shown. 

 
Fig. 2. Quarter annulus: IGA mesh with Gauss quadrature points 

3 NURBS-based Multi-Material Interpolation (N-MMI) 

In terms of a multi-material topology optimization problem, it is assumed that 𝛩𝛩 distinct materials need 

to be distributed in the design domain. we should introduce 𝛩𝛩 Fields of Topology Variables (TVFs) 𝜙𝜙𝜗𝜗 

(𝜗𝜗 = 1,2,⋯ ,𝛩𝛩), each of field determines the layout of a unique material. In order to define the TVFs, 𝛩𝛩 

Fields of Design Variables (DVFs) 𝒳𝒳𝜗𝜗 are introduced in the design domain, and each TVF is defined by 

a combination of all DVFs. 

3.1 The Field of Design Variables (DVF) 

The DVFs are employed to construct the TVFs, and two basic requirements should be maintained to ensure 

the justified topology variables: 1) Nonnegativity; 2) Strict bounds. we can see that two conditions are same 

as the introducing of nodal densities to define the topology in [53–55]. The DVF is constructed by NURBS 
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basis functions linearly combined with control design variables, and each control design variable is assigned 

to a control point. As shown in Fig. 3 (a), control points are plotted with the red color. Control design 

variables are varied in a strict bound [0, 1], given in Fig. 3 (b), and the DVF is shown in Fig. 3 (c). 

 
Fig. 3. The construction of the DVF 

3.1.1 Smooth control design variables using Shepard function 

As discussed in [48,49], the smoothness mechanism plays a significant but different role in the optimization 

compared to the filtering [56]. The smoothness of control design variables should be enhanced to make sure 

the DVF with the desired smoothness. The principle is that each control design variable is equal to the mean 

value of all design variables in the local support area of the current design variable, as shown in the circular 

area of Fig. 3 (a), explicitly expressed as: 

𝒢𝒢�𝜌𝜌𝑖𝑖,𝑗𝑗� = ��𝜓𝜓�𝜌𝜌𝑖𝑖,𝑗𝑗�𝜌𝜌𝑖𝑖,𝑗𝑗

ℳ

𝑗𝑗=1

𝒩𝒩

𝑖𝑖=1

 (7) 

where 𝒢𝒢�𝜌𝜌𝑖𝑖,𝑗𝑗� is the smooth design variable at the (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ control point, and 𝜌𝜌𝑖𝑖,𝑗𝑗 is the initial variable 

which needs to satisfy the nonnegative and range-bound [0, 1]. 𝒩𝒩 and ℳ denote the numbers of control 

design variables in the local support area with two parametric directions, respectively. 𝜓𝜓�𝜌𝜌𝑖𝑖,𝑗𝑗� is the value 

of the Shepard function [57] at the (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ control design variable, and given by: 

𝜓𝜓�𝜌𝜌𝑖𝑖,𝑗𝑗� = 𝜑𝜑�𝜌𝜌𝑖𝑖,𝑗𝑗� ��𝜑𝜑�𝜌𝜌𝚤̂𝚤,𝚥̂𝚥�
ℳ

𝚥̂𝚥=1

𝒩𝒩

𝚤̂𝚤=1

�  (8) 

where 𝜑𝜑�𝜌𝜌𝑖𝑖,𝑗𝑗� is the weight value of the (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ control design variable, and it can be defined by several 

functions. Here, the compactly supported RBFs with the C4 continuity are used here due to the compactly 

supported, high-order continuity and nonnegativity, as: 

𝜑𝜑(𝑟𝑟) = (1 − 𝑟𝑟)+6 (35𝑟𝑟2 + 18𝑟𝑟 + 3) (9) 
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where 𝑟𝑟 = 𝑑𝑑 𝑑𝑑𝑚𝑚⁄ . 𝑑𝑑 denotes the Euclidean distance between the current control design variable and the 

other variable in the local support area. 𝑑𝑑𝑚𝑚 is the radius of the local area. 

3.1.2 Construction of the DVF 

Assuming that the DVF is denoted by 𝒳𝒳(𝜉𝜉, 𝜂𝜂), and the mathematical formula is defined by: 

𝒳𝒳(𝜉𝜉, 𝜂𝜂) = ��𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂)𝒢𝒢�𝜌𝜌𝑖𝑖,𝑗𝑗�

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (10) 

We can find that Eq. (10) for the DVF has the same form of NURBS surface in Eq. (1). The difference lies 

in physical meanings of control coefficients. The NURBS surface is transformed into the definition of the 

DVF for the design domain. The properties 1 to 3 of NURBS basis functions can guarantee the DVF with 

the nonnegativity and Strict bounds from 0 to 1. The most important aspect is that the variation diminishing 

property of NURBS can ensure the non-oscillatory of the DVF [36,37]. 

3.2 The Field of Topology Variables (TVF) 

As already pointed out in Section 3, we need to introduce the DVFs with a number 𝛩𝛩 to describe the TVFs, 

and each TVF is expressed by a function of all DVFs 𝒳𝒳𝜗𝜗 (𝜗𝜗 = 1,2,⋯ ,𝛩𝛩), given as: 

𝜙𝜙𝜗𝜗 = �𝒳𝒳𝜆𝜆
𝜗𝜗

𝜆𝜆=1

� �1 −𝒳𝒳𝜆𝜆�
𝛩𝛩

𝜆𝜆=𝜗𝜗+1

 (11) 

If 𝛩𝛩 = 1,2,3, the detailed forms of the TVFs with respect to DVFs are expressed as: 

�
𝛩𝛩 = 1: 𝜙𝜙1 = 𝒳𝒳1

𝛩𝛩 = 2: 𝜙𝜙1 = 𝒳𝒳1(1 −𝒳𝒳2); 𝜙𝜙2 = 𝒳𝒳1𝒳𝒳2

𝛩𝛩 = 3: 𝜙𝜙1 = 𝒳𝒳1(1 −𝒳𝒳2)(1−𝒳𝒳3); 𝜙𝜙2 = 𝒳𝒳1𝒳𝒳2(1 −𝒳𝒳3); 𝜙𝜙3 = 𝒳𝒳1𝒳𝒳2𝒳𝒳3
 (12) 

 
Fig. 4. Multi-material topology description in the N-MMI model 
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A brief representation is shown in Fig. 4, in which 𝛩𝛩 TVFs are applied to describe the overall layouts of 

𝛩𝛩 distinct materials (𝛩𝛩 + 1 phases, including void) in the design domain. Each unique material plotted 

with a distinct color is presented by one TVF, namely material 1 with the black, material 2 with the red and 

material 3 with the green. Each TVF for the unique material is related to all DVFs, and we only need to 

change the value of a DVF every time to display the variation of the phase. 

3.3 Multi-material interpolation 

As already pointed out in [48,49], the densities at Gauss quadrature points are penalized with a parameter 

to form a power function, and then interpolated with constitutive elastic tensor to compute the IGA element 

stiffness matrix. In the current construction of the TVFs for all materials, the TVFs with the densities at any 

points in the design domain are iteratively evolved during the optimization. Based on material interpolation 

schemes [4], the Multi-Material Interpolation is expressed by a summation of all the interpolated functions 

of TVFs with the corresponding physical properties of materials, given by: 

𝐃𝐃 = ��𝜙𝜙𝜗𝜗�
𝑝𝑝

���
𝒲𝒲𝜗𝜗

𝐃𝐃0
𝜗𝜗

𝛩𝛩

𝜗𝜗=1

= ����𝒳𝒳𝜆𝜆�
𝜗𝜗

𝜆𝜆=1

� �1 −𝒳𝒳𝜆𝜆�
𝛩𝛩

𝜆𝜆=𝜗𝜗+1

�

𝑝𝑝

�������������������
𝒲𝒲𝜗𝜗

𝐃𝐃0
𝜗𝜗

𝛩𝛩

𝜗𝜗=1

 (13) 

where 𝐃𝐃0
𝜗𝜗 is the constitutive elastic property of the 𝜗𝜗𝑡𝑡ℎ distinct material, and 𝑝𝑝 is the penalty parameter. 

As already pointed out in the Introduction, The earlier works have developed many different multi-material 

interpolation, like the mixture rule [19,20] and the DMO scheme [23] with an extensive discussion. Later, 

Gao and Zhang [24] divided the DMO scheme into two branches, namely the RMMI and UMMI (UMMI-

1 and UMMI-2) models. Here, we present the details of the RMMI, UMMI-1 and UMMI-2 models to show 

the specific features of the N-MMI model, given in Table 1. Meanwhile, as far as three distinct materials, 

the corresponding formulas using four different multi-material interpolation models are listed in Table 2. 

It is noted that the symbol x denotes variables in the RMMI, UMMI-1 and UMMI-2 models. 

The specific features and functions of the RMMI, UMMI-1 and UMMI-2 models can refer to [23,24]. In 

the authors’ viewpoint, the similar feature of them is that both design variables and topology variables are 

coupled in a unified mathematical symbol, namely x. In the optimization, design variables and topology 

variables will be advanced in a parallel mechanism, presented in Fig. 5 (a). As already given in [23,24,34], 

several numerical troubles are occurred in the final designs, such as the unrealistic designs with the “mixed” 

materials, the local solution and etc. The main reason originates from the inseparability of design variables 

and topology variables, as well as the high nonlinearity of sensitivity analysis with variables. 
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Table 1. The formulas of three multi-material interpolation models 
Models Formulas 

RMMI 𝐃𝐃 = � (x0)𝑝𝑝 ���1 − �x𝜗𝜗≠𝛩𝛩�
𝑝𝑝
�

𝜗𝜗−1

𝜆𝜆=1

�x𝜆𝜆�
𝑝𝑝
�

���������������������
𝒲𝒲𝜗𝜗

𝐃𝐃0
𝜗𝜗

𝛩𝛩

𝜗𝜗=1

 

UMMI-1 𝐃𝐃 = ��x𝜗𝜗�
𝑝𝑝

���
𝒲𝒲𝜗𝜗

𝐃𝐃0
𝜗𝜗

𝛩𝛩

𝜗𝜗=1

 

UMMI-2 𝐃𝐃 = ��x𝜗𝜗�
𝑝𝑝
��1 − �x𝜆𝜆≠𝜗𝜗�

𝑝𝑝
�

𝛩𝛩

𝜆𝜆=1���������������
𝒲𝒲𝜗𝜗

𝐃𝐃0
𝜗𝜗

𝛩𝛩

𝜗𝜗=1

 

Table 2. The formulas of three distinct materials using different models 
Models Three distinct materials 

RMMI 𝐃𝐃 = (x0)𝑝𝑝[1 − (x1)𝑝𝑝]�����������
𝒲𝒲1

𝐃𝐃0
1 + (x0)𝑝𝑝(x1)𝑝𝑝[1 − (x2)𝑝𝑝]���������������

𝒲𝒲2

𝐃𝐃0
2 + (x0)𝑝𝑝(x1)𝑝𝑝(x2)𝑝𝑝�����������

𝒲𝒲3

𝐃𝐃0
3 

UMMI-1 𝐃𝐃 = (x1)𝑝𝑝���
𝒲𝒲1

𝐃𝐃0
1 + (x2)𝑝𝑝���

𝒲𝒲2

𝐃𝐃0
2 + (x3)𝑝𝑝���

𝒲𝒲3

𝐃𝐃0
3 

UMMI-2 

𝐃𝐃 = (x1)𝑝𝑝(1− (x2)𝑝𝑝)(1 − (x3)𝑝𝑝)�������������������
𝒲𝒲1

𝐃𝐃0
1 + (x2)𝑝𝑝[1 − (x1)𝑝𝑝][1 − (x3)𝑝𝑝]�������������������

𝒲𝒲2

𝐃𝐃0
2

+ (x3)𝑝𝑝[1 − (x1)𝑝𝑝][1 − (x2)𝑝𝑝]�������������������
𝒲𝒲3

𝐃𝐃0
3 

N-MMI 𝐃𝐃 = [𝒳𝒳1(1 −𝒳𝒳2)(1−𝒳𝒳3)]𝑝𝑝�����������������
𝒲𝒲1

𝐃𝐃0
1 + [𝒳𝒳1𝒳𝒳2(1 −𝒳𝒳3)]𝑝𝑝�������������

𝒲𝒲2

𝐃𝐃0
2 + [𝒳𝒳1𝒳𝒳2𝒳𝒳3]𝑝𝑝���������

𝒲𝒲3

𝐃𝐃0
3 

Hence, in the current work, the key intention is to develop an improved multi-material interpolation model 

using NURBS, namely the N-MMI model. The corresponding formula is shown in Eq. (13). We can find 

that the developed N-MMI can be viewed as a following branch of the initial DMO scheme, but with several 

improvements. Firstly, design variables and topology variables are decoupled, so that the latter optimization 

of them will be in a serial mechanism, shown in Fig. 5 (b). This basic feature will offer benefits for omitting 

some numerical troubles to some extent. Moreover, the separability between design variables and topology 

variables can be beneficial to lower the complexity degree of sensitivity analysis with respect to variables, 

and sensitivity analysis of the constraint functions is linear with respect to the topology variables. Hence, 

in the viewpoint of topology variables, the formula of the N-MMI is same as the UMMI-1 model, which is 

also analogous to the UMMI-2 model considering design variables. Overall speaking, the current N-MMI 

model has the following advantages: (1) All TVFs with the sufficient smoothness and continuity are applied 

to display the layouts of multiple materials, rather than a discrete form with a series of element densities; 

(2) Each TVF can exactly present the distribution of a unique material; (3) The combination of all DVFs 
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for the expression of the TVF can ensure no overlaps between multiple materials and no redundant phases 

in the design domain, and there is no need to introduce additional constraints for variables; (4) The explicit 

mathematical formula offers more benefits for the latter sensitivity analysis in the formulation. 

 
Fig. 5. The expression and evolving mechanisms of design variables and topology variables 

4 Multi-material Isogeometric topology optimization (M-ITO) 

4.1 M-ITO formulation to minimize the structural mean compliance 

The minimization of the structural mean compliance for linearly elastic structures will be studied to present 

the effectiveness of the proposed N-MMI model, and the M-ITO formulation for the problem with multiple 

volume constraints can be stated as: 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹: 𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗    (𝜗𝜗 = 1,2,⋯ ,𝛩𝛩;  𝑖𝑖 = 1,2,⋯ ,𝑛𝑛; 𝑗𝑗 = 1,2,⋯ ,𝑚𝑚)

𝑀𝑀𝑀𝑀𝑀𝑀: 𝐽𝐽(𝐮𝐮,𝝓𝝓) =
1
2
� 𝐃𝐃�𝝓𝝓�𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗 �� 𝜺𝜺(𝐮𝐮)𝜺𝜺(𝐮𝐮)
Ω

𝑑𝑑Ω

𝑆𝑆. 𝑡𝑡:

⎩
⎪
⎨

⎪
⎧ 𝑎𝑎(𝐮𝐮, 𝛿𝛿𝐮𝐮) = 𝑙𝑙(𝛿𝛿𝐮𝐮),𝐮𝐮|Γ𝐷𝐷 = 𝐠𝐠,∀𝛿𝛿𝐮𝐮 ∈ 𝐻𝐻1(Ω)

𝐺𝐺𝜐𝜐𝜗𝜗
� =

1
|Ω|�𝜙𝜙𝜗𝜗��𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗 �𝜐𝜐0

Ω
𝑑𝑑Ω − 𝑉𝑉0𝜗𝜗

� ≤ 0,   �𝜗̂𝜗 = 1,2,⋯ ,𝛩𝛩�

0 ≤ 𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗 ≤ 1,   𝝓𝝓 =  �𝜙𝜙𝜗𝜗�, (𝜗𝜗 = 1,2,⋯ ,𝛩𝛩)

 (14) 

where 𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗  is the (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ control design variable for the 𝜗𝜗𝑡𝑡ℎ DVF. 𝐽𝐽 is the objective function defined by 

the structural mean compliance. 𝐺𝐺𝜐𝜐𝜗𝜗
�  is the volume constraint for the 𝜗̂𝜗𝑡𝑡ℎ unique material, and 𝑉𝑉0𝜗𝜗

�  is its 

maximum material consumption, and 𝜐𝜐0 is the volume fraction of the solid. We can find that all the volume 

constraints have the separable and linear form with respect to the corresponding TVF 𝜙𝜙𝜗𝜗� . 𝜙𝜙𝜗𝜗�  is the 𝜗̂𝜗𝑡𝑡ℎ 

TVF to represent the layout of the 𝜗̂𝜗𝑡𝑡ℎ unique material. 𝐮𝐮 is the displacement field in the domain Ω, and 

𝐠𝐠 is the prescribed displacement vector on Γ𝐷𝐷, and 𝛿𝛿𝐮𝐮 is the virtual displacement field belonging to the 

space 𝐻𝐻1(Ω). 𝑎𝑎 and 𝑙𝑙 are the bilinear energy and linear load functions, given as: 
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⎩
⎪
⎨

⎪
⎧𝑎𝑎(𝐮𝐮, 𝛿𝛿𝐮𝐮) = � 𝐃𝐃�𝝓𝝓�𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗 �� 𝜺𝜺(𝐮𝐮)𝜺𝜺(𝛿𝛿𝐮𝐮)

Ω
𝑑𝑑Ω

𝑙𝑙(𝛿𝛿𝐮𝐮) = �𝐟𝐟𝛿𝛿𝐮𝐮
Ω

𝑑𝑑Ω + � 𝐡𝐡𝛿𝛿𝐮𝐮
Γ𝑁𝑁

𝑑𝑑Γ𝑁𝑁
 (15) 

where 𝐟𝐟 is the body force and 𝐡𝐡 is the boundary traction on Γ𝑁𝑁. In order to demonstrate the ability of the 

proposed M-ITO method to seek the optimum, a more practical problem with the total mass constraint is 

studied, and the alternative formulation is written as: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹: 𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗    (𝜗𝜗 = 1,2,⋯ ,𝛩𝛩;  𝑖𝑖 = 1,2,⋯ ,𝑛𝑛; 𝑗𝑗 = 1,2,⋯ ,𝑚𝑚)

𝑀𝑀𝑀𝑀𝑀𝑀: 𝐽𝐽(𝐮𝐮,𝝓𝝓) =
1
2
� 𝐃𝐃�𝝓𝝓�𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗 �� 𝜺𝜺(𝐮𝐮)𝜺𝜺(𝐮𝐮)
Ω

𝑑𝑑Ω

𝑆𝑆. 𝑡𝑡:

⎩
⎪
⎨

⎪
⎧ 𝑎𝑎(𝐮𝐮, 𝛿𝛿𝐮𝐮) = 𝑙𝑙(𝛿𝛿𝐮𝐮),𝐮𝐮|Γ𝐷𝐷 = 𝐠𝐠,∀𝛿𝛿𝐮𝐮 ∈ 𝐻𝐻1(Ω)

𝐺𝐺𝑚𝑚 = �𝐺𝐺𝜐𝜐𝜗𝜗
�𝛬𝛬0𝜗𝜗

�
𝛩𝛩

𝜗𝜗�=1

− 𝑀𝑀0 ≤ 0,    �𝜗̂𝜗 = 1,2,⋯ ,𝛩𝛩�

0 ≤ 𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗 ≤ 1,   𝝓𝝓 =  �𝜙𝜙𝜗𝜗�, (𝜗𝜗 = 1,2,⋯ ,𝛩𝛩)

 (16) 

where 𝛬𝛬0𝜗𝜗
�  is the mass density of the 𝜗̂𝜗𝑡𝑡ℎ unique material, and 𝑀𝑀0 is the maximal value of the structural 

mass in the constraint 𝐺𝐺𝑚𝑚. As we can see, the formulation 2 in Eq. (16) can simultaneously consider the 

influence of volume fractions and the structural mass on the selection of materials in the optimization. The 

total mass constraint is also featured with a separable-linear form of the TVF 𝜙𝜙𝜗𝜗� . This positive feature can 

lower the numerical troubles in the optimization to a great extent. It should be noticed that the formulation 

with multiple mass constraints are physically equivalent to the formulation 1 in Eq. (15), due to a fact that 

the volume constraint for each distinct material is separable and linear with respect to the TVF 𝜙𝜙𝜗𝜗�  of the 

𝜗̂𝜗𝑡𝑡ℎ material. Multiple volume constraints can be directly converted into mass constraints by multiplying 

the corresponding mass density on both sides. 

4.2 Sensitivity analysis of the objective function 

In Eqs. (14) and (16), the objective function is defined by the structural mean compliance. The first-order 

derivative of the structural mean compliance with respect to the TVF 𝜙𝜙𝜗𝜗�  can be derived as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙𝜗𝜗�

= �𝐃𝐃(𝝓𝝓)𝜺𝜺(𝐮̇𝐮)𝜺𝜺(𝐮𝐮)
Ω

𝑑𝑑Ω +
1
2
�
𝜕𝜕𝐃𝐃(𝝓𝝓)
𝜕𝜕𝜙𝜙𝜗𝜗�

𝜺𝜺(𝐮𝐮)𝜺𝜺(𝐮𝐮)
Ω

𝑑𝑑Ω,      �𝜗̂𝜗 = 1,2,⋯ ,𝛩𝛩� (17) 

where 𝐮̇𝐮 is the first-order derivative of the displacement field with respect to the TVF 𝜙𝜙𝜗𝜗� . According to 

the derivations in [48,49], we can obtain the following equation, given as: 

�𝐃𝐃(𝝓𝝓)𝜺𝜺(𝐮̇𝐮)𝜺𝜺(𝐮𝐮)
Ω

𝑑𝑑Ω = −�
𝜕𝜕𝐃𝐃(𝝓𝝓)
𝜕𝜕𝜙𝜙𝜗𝜗�

𝜺𝜺(𝐮𝐮)𝜺𝜺(𝐮𝐮)
Ω

𝑑𝑑Ω (18) 
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Substituting Eq. (18) into Eq. (17). The first-order derivative of the structural mean compliance with respect 

to the TVF 𝜙𝜙𝜗𝜗�  is obtained, explicitly expressed as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙𝜗𝜗�

= −
1
2
�
𝜕𝜕𝐃𝐃(𝝓𝝓)
𝜕𝜕𝜙𝜙𝜗𝜗�

𝜺𝜺(𝐮𝐮)𝜺𝜺(𝐮𝐮)
Ω

𝑑𝑑Ω,          �𝜗̂𝜗 = 1,2,⋯ ,𝛩𝛩� (19) 

Hence, the sensitivity of the objective function can be achieved by calculating the first-order derivative of 

the elastic tensor with respect to the TVF 𝜙𝜙𝜗𝜗� . According to the N-MMI model, the sensitivity analysis of 

the multi-material elastic tensor can be directly obtained, and a new form of Eq. (19) is given as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙𝜗𝜗�

= −
1
2
�𝑝𝑝�𝜙𝜙𝜗𝜗��

𝑝𝑝−1
𝐃𝐃0
𝜗𝜗�𝜺𝜺(𝐮𝐮)𝜺𝜺(𝐮𝐮)

Ω
𝑑𝑑Ω (20) 

In Section 3.2, the TVF 𝜙𝜙𝜗𝜗�  to display the layout of the 𝜗̂𝜗 unique material is expressed as a combination 

of all DVFs, and each DVF is developed by NURBS basis functions with control design variables 𝝆𝝆𝜗𝜗. we 

can firstly derive the derivative of the TVF 𝜙𝜙𝜗𝜗�  with respect to the DVF 𝒳𝒳𝜗𝜗, given as: 

𝜕𝜕𝜙𝜙𝜗𝜗�

𝜕𝜕𝒳𝒳𝜗𝜗 =

⎩
⎪⎪
⎨

⎪⎪
⎧

� 𝒳𝒳𝜆𝜆
𝜗𝜗�

𝜆𝜆=1,𝜆𝜆≠𝜗𝜗

� �1 −𝒳𝒳𝜆𝜆�
𝛩𝛩

𝜆𝜆=𝜗𝜗�+1

𝑖𝑖𝑖𝑖 𝜗𝜗 ≤ 𝜗̂𝜗

−�𝒳𝒳𝜆𝜆
𝜗𝜗�

𝜆𝜆=1

� �1 −𝒳𝒳𝜆𝜆�
𝛩𝛩

𝜆𝜆=𝜗𝜗�+1,𝜆𝜆≠𝜗𝜗

𝑖𝑖𝑖𝑖 𝜗𝜗 > 𝜗̂𝜗

         (𝜗𝜗 = 1,2,⋯ ,𝛩𝛩) (21) 

Then, the derivative of the DVF with respect to control design variables can be derived by: 

𝜕𝜕𝒳𝒳𝜗𝜗

𝜕𝜕𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗
=
𝜕𝜕𝒳𝒳𝜗𝜗

𝜕𝜕𝒢𝒢𝜗𝜗
𝜕𝜕𝒢𝒢𝜗𝜗

𝜕𝜕𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗
= 𝑅𝑅𝑖𝑖,𝑗𝑗

𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂)𝜓𝜓�𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗 � (22) 

where 𝑅𝑅𝑖𝑖,𝑗𝑗
𝑝𝑝,𝑞𝑞(𝜉𝜉, 𝜂𝜂) is the NURBS basis function at the computational point (𝜉𝜉, 𝜂𝜂). 𝜓𝜓�𝜌𝜌𝑖𝑖,𝑗𝑗𝜗𝜗 � is the Shepard 

function at the control point (𝑖𝑖, 𝑗𝑗). It is important to notice that the computational point (𝜉𝜉, 𝜂𝜂) is different 

from the control point (𝑖𝑖, 𝑗𝑗). In the formulation 1 and 2, the computational points correspond to the Gauss 

quadrature points. Hence, the derivative of the structural mean compliance with respect to the control design 

variables can be derived by Eqs. (20)-(22), and expressed as: 
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 (23) 

In Eq. (23), we can see that the sensitivity analysis of the objective function with respect to control design 

variables consist of the DVFs, elastic tensors, NURBS basis functions and Shepard function. The NURBS 

basis functions used in IGA keep unchanged, and the Shepard function only depends on the spatial locations 

of control points. They can be pre-stored without using the additional storage space, so that the sensitivity 

analysis is also cost-effective. 

4.3 Sensitivity analysis of constraint functions 

In formulations 1 and 2, two different constraints are defined, containing multiple volume fractions and the 

total mass constraint. As far as multiple volume constraints, the derivatives of all volume constraints with 

respect to control design variables can be derived, as: 
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 (24) 

The first-order derivative of the total mass constraint in formulation 2 can be derived by the summation of 

all derivatives of multiple volume constraints with mass densities in Eq. (24), expressed as: 
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 (25) 

Hereto, the sensitivity analysis for two formulations, including the objective and constraint functions, are 

derived in detail from Eqs. (17) to (25). Recently, several optimization algorithms have been proposed to 

solve the related problems [3,58–60]. The method of moving asymptotes (MMA) [60] is applied to evolve 

control design variables in the next numerical examples. 

5. Numerical Examples 

In this section, several numerical examples are performed to demonstrate the effectiveness of the proposed 

M-ITO method. All structures with the linear elasticity are considered, and 2D structures will be discretized 

with the IGA elements with unit edge thickness. In all examples, the magnitude of the loaded force is equal 

to unit, and 3×3 (2D) or 3×3×3 (3D) Gauss quadrature points are chosen to solve the IGA element 

stiffness matrix. The initial values of all control design variables 𝝆𝝆𝜗𝜗 (𝜗𝜗 = 1,2,⋯ ,𝛩𝛩) are defined as 0.5, 

and the penalty factor 𝑝𝑝 is set to be 3, which keeps consistent with the interpolation model for the single 

material [1,4]. The optimization will be terminated if the maximum change of the DVFs is lower than 1% 

in 300 iterations. Four “virtual” isotropic solid materials will be considered in next examples, and the details 

are provided in Table 3, including the Young’s modulus, Poisson’s ratio, Mass density and the stiffness-

to-mass ratio. 

Table 3. Four “virtual” isotropic solid materials 
𝑖𝑖 Materials Young’s modulus: 𝐸𝐸0𝑖𝑖  Poisson’s ratio 𝜐𝜐 Mass density: 𝛬𝛬0𝑖𝑖  Stiffness-to-mass ratio: ℛ𝑜𝑜

𝑖𝑖  
1 M1 10 0.3 2 5 
2 M2 10 0.3 5 2 
3 M3 5 0.3 2 2.5 
4 M4 3 0.3 2 1.5 

5.1 Messerschmitt-Bolkow-Blohm (MBB) beam 

The formulation 1 with multiple volume constraints is applied to optimize the MBB beam in this example. 

In Fig. 6, the MBB beam with the loads and boundary conditions is defined, and two indices L and H are 
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set as 18 and 3, respectively. The NURBS is applied to parameterize the MBB beam. The details are listed 

below Fig. 6, where the quadratic NURBS basis functions are used. 

 
Fig. 6. MBB beam: IGA elements 180×30; Ξ = {0,0,0,0.00565,⋯ ,0.99444,1,1,1}, ℋ =

{0,0,0,0.0333,⋯ ,0.9667,1,1,1}; 𝑛𝑛 = 182,𝑚𝑚 = 32; 𝑝𝑝 = 𝑞𝑞 = 2. 

5.1.1 Two-material design 

In this case, two distinct materials (M2 and M3) are available in the optimization of the MBB beam. Two 

TVFs need to be defined for M2 and M3 materials, respectively, denoted by 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2. In Eq. (14), the 

allowable material volume fractions for M2 and M3 are defined as 20% and 8%, respectively. As discussed 

in Sections 3 and 4.3, the Gauss quadrature points work as the computational ones to compute the stiffness 

matrix. In numerical results, we firstly show the TVFs at Gauss quadrature points (GQPs) and then display 

the TVFs in the design domain. As given in Section 3.1, the DVF corresponds to a NURBS surface with 

the strict physical meanings (densities) for the design domain, and each TVF is a combination of all DVFs. 

Hence, a TVF can be regarded as a density distribution function to represent the distribution of each distinct 

material in the design domain. The initial values of control design variables are 0.5, and the corresponding 

initial designs of the TVFs for two materials are shown in Fig. 7, including the TVFs at GQPs and in the 

design domain. It can be found that the TVFs at GQPs denote the discretized distribution of densities, and 

the TVFs in the design domain denote the continuous form of the density distribution. 

 
Fig. 7. Initial design of the MBB beam 
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As displayed in Fig. 8, the optimized design of the MBB beam with two distinct materials (M2 and M3) is 

provided, including the TVFs at GQPs and also in the design domain. As we can see, the TVFs are featured 

with the sufficient smoothness and continuity, resulting from the construction of DVFs using NURBS basis 

functions and the Shepard function. The former can make sure the continuity, and the latter guarantees the 

smoothness. Moreover, it can easily be seen that the densities of the optimized TVFs in the design domain 

are mostly distributed nearly the lower and upper bounds. 

 
Fig. 8. The optimized design of the MBB beam 

Based on the optimized design of the MBB beam displayed in Fig. 8, a simple but efficient heuristic scheme 

is introduced to define the structural topology, and the corresponding mathematical model is defined in Eq. 

(26), where 𝝓𝝓𝑐𝑐 is a constant. As we can see, the structural boundary of the MBB beam is expressed by the 

iso-contour of 𝝓𝝓. 𝝓𝝓 with the values higher than 𝝓𝝓𝑐𝑐 represents the solids in the design domain, and the 

values lower than 𝝓𝝓𝑐𝑐 describes voids. Hence, this scheme is very analogous to the implicit representation 

model in the LSM [6–8]. However, it is important to note that the heuristic scheme is just a post-definition 

criterion to obtain the structural topology from the optimized TVFs. 

�
0 ≤ 𝝓𝝓(𝜉𝜉, 𝜂𝜂) < 𝝓𝝓𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝝓𝝓(𝜉𝜉, 𝜂𝜂) = 𝝓𝝓𝑐𝑐 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝝓𝝓𝑐𝑐 < 𝝓𝝓(𝜉𝜉, 𝜂𝜂) ≤ 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (26) 

As discussed in [48,49] for the optimization of the single-material problems, the constant equal to 0.5 can 

ensure that the final volume fraction of the obtained topology is mostly identical to the prescribed allowable 

volume fraction. In [48], the extensive discussions about the definition of the constant are performed. Here, 

the post-definition scheme is applied to define the topology for the multi-material problems from the TVFs. 

The constant should be equal to 0.5 to guarantee no overlaps between different materials and no redundant 
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phases in the N-MMI model. For example, if the constant 𝝓𝝓𝑐𝑐 is equal to 0.2, it means that the densities at 

the structural boundaries of M2 and M3 materials are both equal to 0.2, and the summation of them is equal 

to 0.4, which cannot satisfy the summation of the densities of all materials in each designable point is equal 

to 1. Hence, the constant 𝝓𝝓𝑐𝑐 must be equal to 0.5 to guarantee the reasonable physical meanings of the N-

MMI model. As listed in Table 4, the optimized results of the MBB beam with two materials are provided, 

including the 2D-view of the TVF 𝜙𝜙1 with higher values than 𝝓𝝓𝑐𝑐 at GQPs, the topology of M2 material, 

the 2D-view of the TVF 𝜙𝜙2 with higher values than 𝝓𝝓𝑐𝑐 at GQPs, the topology of M3 material, the TVFs 

𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 at GQPs and in the design domain, the 2D-view of the TVFs 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 at GQPs, and the 

topology of two materials. The volume fraction of the topology of M2 material is equal to 19.8% (nearly 

20%), and the volume fraction of the topology of M3 material is equal to 7.9% (nearly 8%). Hence, the 

volume fraction of the topology of two materials in the MBB beam is equal to 27.7% (also nearly 28%). 

Additionally, each distinct material in the final two-material design can form the independent load-bearing 

structural members, as displayed in Table 4, due to a fact that the Young’s modulus is comparable between 

two materials (M2 with 𝐸𝐸02 = 10 and M3 with 𝐸𝐸03 = 5), also given in [1,33]. To this end, the optimized 

design in this example can present the effectiveness of the developed M-ITO method to seek for the layout 

of multiple materials in the design domain. A pure design, that each point only has one phase, demonstrates 

the effectiveness of the proposed N-MMI model. Finally, the iterative curves for the objective function and 

two volume fractions are shown in Fig. 9, which displays the stable convergence to arrive at the final design, 

and the volume fraction of each distinct material can be preserved. It is noted that the volume fractions in 

the iterative curves correspond to the TVFs 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 for two materials. However, the volume fractions 

in Table 4 of the topologies for two materials are defined by the TVFs with a slight modification, namely 

𝝓𝝓 ← 1 (𝑖𝑖𝑖𝑖 𝝓𝝓 ≥ 𝝓𝝓𝑐𝑐) and 𝝓𝝓 ← 0 (𝑖𝑖𝑖𝑖 𝝓𝝓 < 𝝓𝝓𝑐𝑐). 

Table 4. The optimized results of the MBB beam with two materials 

M2 material 
2D-view of the TVF 𝜙𝜙1 at GQPs The topology 

  

M3 material 
2D-view of the TVF 𝜙𝜙2 at GQPs The topology 

  

The TVFs 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 at GQPs The TVFs 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 in the design domain 
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2D-view of the TVFs 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 at GQPs The final topology 

  

 
Fig. 9. Convergent histories 

5.1.2 Three-material design 

This case will consider the three-material topology optimization for the MBB beam, and M2, M3 and M4 

materials will be available, and the corresponding volume fractions for three materials are set as 20%, 12% 

and 3%, respectively. The initial designs of the TVFs for M2, M3 and M4 materials are illustrated in Fig. 

10, including the TVFs at GQPs and in the design domain. 
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Fig. 10. Initial design of the MBB beam 

 
Fig. 11. The optimized design of the MBB beam 

The optimized designs of the TVFs for three materials are displayed in Fig. 11, consisting of the discretized 

distributions of the TVFs at GQPs, and the continuous distributions of the TVFs in the design domain. It 
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can be easily seen that three continuous distributions of the TVFs are featured with the enough continuity 

and smoothness. The heuristic scheme in Eq. (26) is employed here to define the structural topology of the 

MBB beam with three materials, shown in Fig. 11, and 𝝓𝝓𝑐𝑐 is still defined as 0.5. The numerical results of 

three materials in the MBB beam are listed in Table 5, including the 2D-views of the TVFs at GQPs with 

the values higher than 0.5, and the topologies of three materials in the design domain. We can easily find 

that the three-material topology of the MBB beam is featured with the distinct interfaces between multiple 

materials and voids. The necessary requirements discussed in Section 3 can be perfectly maintained in the 

final three-material topology, such as no overlaps, no redundant phases and so on. Hence, the effectiveness 

of the proposed N-MMI model in the optimization can be demonstrated clearly. Moreover, each distinct 

material is formed into the independent structural members to afford the load transmission in the design 

domain, due to the comparable values of Young’s modulus. 

Table 5. The optimized results of the MBB beam with three materials 

M2 material 
2D-view of the TVF 𝜙𝜙1 at GQPs The optimized topology 

  

M3 material 
2D-view of the TVF 𝜙𝜙2 at GQPs The optimized topology 

  

M4 material 
2D-view of the TVF 𝜙𝜙3 at GQPs The optimized topology 

  
The TVFs 𝜙𝜙1,𝜙𝜙2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙3 at GQPs The TVFs 𝜙𝜙1,𝜙𝜙2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙3 in the design domain 

  
2D-view of the TVFs 𝜙𝜙1,𝜙𝜙2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙3 at GQPs The optimized topology 

  

Additionally, the convergent histories of the objective function and volume fractions for three materials are 

displayed in Fig. 12. It can be easily seen that all the iterative curves are very smooth and the optimization 

for three materials is featured with the high stability. The volume fractions of three TVFs can quickly arrive 

at the prescribed values, namely 20%, 12% and 3%. The corresponding volume fractions of the achieved 

topologies in Table 5 are equal to 20.13%, 11.5% and 2.98%, respectively. Hence, we can confirm that the 

M-ITO method has the capability to seek the optimized distributions of three materials. 
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Fig. 12. Convergent histories 

5.2 Cantilever beam 

In this section, the cantilever beam will be optimized by the formulation 2 to study the effectiveness of the 

N-MMI model on the multi-material problem with the mass constraint. The structural design domain with 

the loads and boundary conditions is defined in Fig. 13, where the scales in two directions are 10 (L) and 5 

(H), respectively. The cantilever beam is also parametrized by the NURBS surface, and the corresponding 

numerical details are listed below Fig. 13. 

 
Fig. 13. Cantilever beam: IGA elements 100×50; Ξ = {0,0,0,0.01,⋯ ,0.99,1,1,1}, ℋ =

{0,0,0,0.02,⋯ ,0.98,1,1,1}; 𝑛𝑛 = 102,𝑚𝑚 = 52; 𝑝𝑝 = 𝑞𝑞 = 2. 

5.2.1 Two-material design 

Two distinct materials (M2 and M3) will be considered within the optimization of the cantilever beam. As 

defined in Table 3, M2 material has the larger Young’s modulus 𝐸𝐸02 = 10, but with a lower Stiffness-to-

mass ratio ℛ𝑜𝑜
2 = 2, compared to M3 material with 𝐸𝐸02 = 5 and ℛ𝑜𝑜

2 = 2.5 in Table 3. In formulation 2, 

the maximum consumption of the total mass 𝐺𝐺𝑚𝑚 is set as 30. Similar to Section 5.2, two different colors 
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(the black and red) are used to show the overall distributions of M2 and M3 materials within the optimized 

design, respectively. The initial designs of the TVFs for two materials has the same densities in Fig. 7. 

The optimized results of the cantilever beam with M2 and M3 materials are listed in Table 6. Firstly, the 

continuous distributions of the TVFs in the design domain are shown in the second row of Table 6. Similar 

to the above example in Section 5.1 for MBB beam, the distributions of the TVFs are also featured with the 

sufficient smoothness and continuity, which are beneficial to the latter definition of the structural topology. 

The heuristic scheme defined in Eq. (26) is applied to define the structural topology for multiple materials, 

where the constant is still set as 0.5. The topologies for two materials (M2 and M3) are shown in the last 

row of Table 6. As given in the last row and column of Table 6, we can easily observe that the optimized 

distribution for two materials have the distinct interfaces and smooth boundaries between solids and voids. 

Hence, we can confirm that the N-MMI model is effective on the optimization of multi-material structures 

with the total mass constraint. 

Table 6. The optimized results of cantilever beam with two materials 
𝜙𝜙1 in the design domain 𝜙𝜙2 in the design domain 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 in the design domain 

   
The topology of M2 material The topology of M3 material The topology of cantilever beam 

   

Meanwhile, M2 and M3 materials are formed into different structural members in the optimized topology 

to afford the loads, such as the black part filled with the strong M2 material and the color area occupied by 

the weak M3 material. Moreover, M2 material is mainly filled in the areas having the stress concentration, 

in order to provide the higher stiffness for the beam. However, the weak material M3 is dominant within 

the overall distribution, because the material has a larger stiffness-to-mass ratio. Hence, the formulation 2 

with the total mass constraint improves the structural performance considering two components, namely 

the stiffness and mass, simultaneously. Finally, the iterative histories of the structural compliance, the total 

mass and mass of each material are shown in Fig. 14 (a). Meanwhile, the iterative curves of the total volume 

fraction and the volume fraction for each material are displayed in Fig. 14 (b). It can be easily seen that the 
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optimization with the total mass constraint for multiple materials is featured with the superior stability to 

seek the distributions of multiple materials in the design domain. Moreover, the mass of each material has 

been gradually adjusted during the optimization to enhance the structural performance as much as possible, 

rather than in a monotonous way of the single-material optimization. 

 
Fig. 14. Convergent histories 

5.2.2 Influence of the stiffness-to-mass ratio 

In order to show the influence of the stiffness-to-mass ratio on the multi-material optimization, M1 and M3 

materials defined in Table 3 are available in this case. The Young’s modulus 𝐸𝐸01 = 10 and stiffness-to-

mass ratio ℛ𝑜𝑜
1 = 5 of M1 material are both larger than M3 material having 𝐸𝐸03 = 5 and ℛ𝑜𝑜

3 = 2.5. The 

total mass consumption is same as Section 5.2.1, namely 𝐺𝐺𝑚𝑚 = 30. M1 and M3 materials are respectively 

plotted with the black and red. The initial designs of the TVFs for M1 and M3 materials are also consistent 

with Section 5.2.1, and with same densities in Fig. 7. As provided in Table 7, the optimized results of the 

cantilever beam with M1 and M3 materials are shown, including the TVFs in the design domain, the final 

topologies of M1, M3 materials and the topology of the cantilever beam obtained by the heuristic scheme 

with the constant 0.5. It can be easily seen that the optimized topology of the cantilever beam with M1 and 

M3 materials is different from the solutions in Section 5.2.1. 

Table 7. The optimized results of cantilever beam with two materials 
𝜙𝜙1 in the design domain 𝜙𝜙2 in the design domain 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 in the design domain 

   
The topology of M1 material The topology of M3 material The topology of cantilever beam 
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In the current design, the cantilever beam only contains M1 material, even if M3 material is available in 

the optimization. As shown in Fig. 15, the mass of M3 material gradually decreases during the optimization, 

until it arrives at zero. Meanwhile, the mass of M1 material is equal to the total mass, and the corresponding 

curves coincide together. Hence, we confirm that the multi-material topology optimization formulation with 

the total mass constraint is more prone to choose the material with both the larger Young’s modulus and 

stiffness-to-mass ratio, to improve structural performance. Meanwhile, it can also reveal that the developed 

M-ITO method with the N-MMI model has the capability to seek for the design with only one material, if 

the Young’s modulus and stiffness-to-mass ratio are both larger compared with other available materials. 

The main reason originates from that the total mass constraint in formulation 2 is separate and linear with 

respect to topology variables, and also the N-MMI model has the decoupled and serial manner of design 

variables and topology variables. Moreover, the designs of the cantilever beam in above examples, like Fig. 

11, Table 4-7, do not have the “mixture” materials. Hence, the N-MMI model has more effectiveness for 

the multi-material topology optimization problems. 

 
Fig. 15. Convergent histories 

5.2.3 Three-material design 

In this sub section, we will present the effectiveness of the formulation 2 to find the three-material design 

of the cantilever beam (M2, M3 and M4). In Table 3, M2 material has the larger Young’s modulus and a 

larger Stiffness-to-mass ratio is featured by M3 material. Three materials (M2, M3 and M4) will be plotted 

with different colors, namely the black, red and green colors, respectively, in the optimized distributions. 



APM-D-19-00307R2 

27 

The maximum value of the total mass constraint is defined as 35. The initial designs of the TVFs for three 

materials have the same densities of the TVFs shown in Fig. 10. 

The optimized results of the cantilever beam with three materials considering the total mass constraint are 

provided in Table 8. The continuous distributions of the TVFs in the design domain, the topologies of three 

different materials (M2, M3 and M4) and the topology of the cantilever beam are all included. It can be 

found that the optimized topology is featured with the smooth boundaries and distinct interfaces between 

solids and voids. Each material can constitute the independent structural members in the optimized topology 

to afford the imposed loads and boundary conditions, which shows the effectiveness of the M-ITO method 

to solve the multi-material problem with the total mass constraint. M2 material is also mainly filled in some 

regions with the occurrence of the stress concentration. 

Table 8. The optimized results of cantilever beam with three materials 

𝜙𝜙1 in the design domain 𝜙𝜙2 in the design domain 𝜙𝜙3 in the design domain 

   

The topology of M2 The topology of M3 The topology of M4 

  
 

𝜙𝜙1,𝜙𝜙2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙3 in the design domain The topology of cantilever beam 

  

Finally, the iterative histories of the objective function, the total mass and mass of each material are shown 

in Fig. 16 (a), and Fig. 16 (b) displays the iterations for the total volume fraction and the volume fraction 

of each distinct material. We can find that the masses for M2, M3 and M3 materials are equal to 13.6, 8.2 

and 13.2, respectively, and the volume fractions for them are 5.44%, 8.2% and 13.2%. Observed from the 

iterative curves, all the masses and volume fractions for three materials are changed in a non-monotonous 
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manner, and each of them is evolved to seek for an appropriate value in the optimization process, until the 

objective function arrives at 𝐽𝐽 = 34.73. 

 
Fig. 16. Convergent histories 

5.3 Quarter annulus 

In this section, we intend to show the utility of the M-ITO formulation with multiple volume constraints on 

the optimization of the curved structures. In Fig. 17, a quarter annulus with loads and boundary conditions 

is defined, and two indices r and R are defined as 5 and 10, respectively. NURBS is used to construct the 

geometrical model and numerical analysis model of the quarter annulus. It should be noted that this example 

uses the cubic NURBS basis functions to model the structural geometry and construct the solution space, 

which is more beneficial to improve the numerical precision [48]. Meanwhile, this example will be studied 

in two cases. Case 1 performs the two-material design (M2 and M3) and case 2 considers three materials 

(M2, M3 and M4). In case 1, the maximum volume fractions for M2 and M3 materials are defined as 25% 

and 12%, respectively. In case 2, the maximum consumptions of M2, M3 and M4 materials are respectively 

set to be 25%, 10% and 5%. Three materials are plotted with the black, red and green colors, respectively. 

The initial designs of cases 1 and 2 have the same densities shown in Fig. 7 and Fig. 10, respectively. 

 
Fig. 17. Quarter annulus: IGA elements 100 × 50; Ξ = {0,0,0,0,0.01,⋯ ,0.99,1,1,1,1}, ℋ =

{0,0,0,0,0.02,⋯ ,0.98,1,1,1,1}; 𝑛𝑛 = 103,𝑚𝑚 = 53; 𝑝𝑝 = 𝑞𝑞 = 3. 
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The optimized results of the quarter annulus with M2 and M3 materials in case 1 are listed in Table 9, and 

which also provides the optimized results of the quarter annulus with M2, M3 and M4 materials. As we 

can see, the distributions of the TVFs in the design domain, the topologies for multiple materials and the 

topology of the quarter annulus are both presented. It can be easily found that the optimized topologies of 

the quarter annulus in cases 1 and 2 are both featured with the smooth structural boundaries and distinct 

interfaces between the solids and voids. No overlaps are occurred in the optimized topologies of the quarter 

annulus, which shows the effectiveness of the N-MMI model. Multiple materials can be formed into the 

independent parts of the topologies to play the respective roles to afford the imposed loads. The appropriate 

distributions of the distinct materials can demonstrate the effectiveness and utility of the developed M-ITO 

method on the optimization of the curved structures with multiple materials. 

Table 9. The optimized results of quarter annulus in cases 1 and 2 

𝜙𝜙1 in the design domain 𝜙𝜙2 in the design domain 𝜙𝜙1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙2 

   
The topology of M2 The topology of M3 The topology of M2 and M3 

   
𝜙𝜙1 in the design domain The topology of M2 𝜙𝜙2 in the design domain The topology of M3 

 
 

 
 

𝜙𝜙3 in the design domain The topology of M4 𝜙𝜙1,𝜙𝜙2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙3 The topology 

 
 

 
 

5.4 3D Michell structure 

This section will discuss the effectiveness of the M-ITO method on the optimization of 3D structures with 

multiple materials. As displayed in Fig. 18, a 3D Michell structure with the loads and boundary conditions 
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is defined. The quadratic NURBS basis functions are used to construct the NURBS solid and the numerical 

analysis model for the 3D Michell structure. The knot vectors and IGA elements are listed below Fig. 18. 

Meanwhile, this example will be also discussed in two cases, in which case 1 considers the optimization of 

two materials (M2 and M3 materials are available) in the design domain and case 2 intends to optimize the 

3D Michell structure with M2, M3 and M4 materials. In case 1, the allowable material consumptions for 

M2 and M3 are defined as 14% and 6%, respectively. The maximum volume fractions of M2, M3 and M4 

materials in case 2 are set as 16%, 3.5% and 2.5%, respectively. M2, M3 and M4 materials are also shown 

with the black, red and green colors, respectively. Additionally, the initial designs of cases 1 and 2 have the 

same densities of the TVFs shown in Fig. 7 and Fig. 10, respectively. 

 
Fig. 18. 3D Michell structure: IGA elements 30 × 30 × 18; Ξ = ℋ = {0,0,0,0.0333,⋯ ,0.9667,1,1,1}, 

𝒵𝒵 = {0,0,0,0.0556,⋯ ,0.9444,1,1,1}; 𝑛𝑛 = 𝑚𝑚 = 32, 𝑙𝑙 = 20; 𝑝𝑝 = 𝑞𝑞 = 𝑟𝑟 = 2. 

In Table 10, the optimized results of the 3D Michell structure with M2 and M3 materials are provided, and 

the optimized results of the 3D Michell structure with three materials (M2, M3 and M4) are also listed. As 

far as the 3D optimization, the DVFs and the TVFs correspond to the 4D functions, and it is hard to display 

the 4D data in a figure. Hence, we present the 3D-view of the TVFs with the higher values than the constant 

0.5, and the corresponding topologies of M2, M3 and M4 materials. It can be easily seen that the optimized 

topologies of the 3D Michell structure with two materials and three materials are both featured with the 

smooth structural boundaries and distinct interfaces between different materials and void phases. The 

appropriate distributions of M2, M3 and M4 materials can be beneficial to afford the imposed loads and 

boundary conditions, which can constitute the independent structural members in the design domain. We 

also provide different views for the optimized topologies in two cases to present the geometrical features. 

Hence, the effectiveness of the developed M-ITO method with the N-MMI model for solving the 3D multi-

material optimization can also be demonstrated. 

Table 10. The optimized results of 3D Michell structure in two cases 
M2 material M3 material The topology 
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View 1 of the topology View 2 of the topology View 3 of the topology 

 

 

 

M2 material M3 material M4 material The topology 

 

  

 
View 1 of the topology View 2 of the topology View 3 of the topology 

 

 

 

6 Conclusions 

In this paper, a more effective M-ITO method with the N-MMI model is proposed for the optimization of 

multiple materials distribution in structures. Firstly, the N-MMI model with the decoupled expression and 

serial evolving for design variables and topology variables is developed using NURBS, mainly involving 

the DVFs, TVFs, and the multi-material interpolation. Secondly, two M-ITO formulations are developed 

using the N-MMI model for two problems with multiple volume constraints and the total mass constraint, 

respectively, where IGA is applied to solve structural responses. 



APM-D-19-00307R2 

32 

In numerical examples, two different M-ITO formulations are discussed in detail to demonstrate the more 

effectiveness of the N-MMI model in the multi-material optimization. The formulation considering multiple 

volume constraints is studied using the optimization of MBB beam with two and three materials, and the 

optimization of cantilever beam with two and three materials is applied to address the effectiveness of the 

M-ITO method on the problem with the total mass constraint. According to the numerical results, we can 

see that the proposed N-MMI model can effectively offer more benefits for the multi-material optimization, 

such as lower the numerical complexity and remove several numerical troubles. The M-ITO method also 

has more capability to solve the problems with more materials phase. Moreover, the effectiveness and utility 

of the M-ITO method on the rectangular and curved structures in 2D and 3D are also presented. Finally, in 

the developed M-ITO method, NURBS work as a basis to develop the IGA model and the N-MMI model, 

where the Lagrange polynomials will be ineffective in the current work. 
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