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Abstract—This paper introduces a novel and effective image
prior, i.e., gamma correction prior (GCP), which leads to an
efficient image dehazing method, i.e., IDGCP. A step-by-step
procedure of the proposed IDGCP is as follows. First, an input
hazy image is preprocessed by the proposed GCP, resulting in
a homogeneous virtual transformation of the hazy image. Then,
from the original input hazy image and its virtual transformation,
the depth ratio is extracted based on atmospheric scattering
theory. Finally, a “global-wise" strategy and a vision indicator
are employed to recover the scene albedo, thus restoring the hazy
image. Unlike other image dehazing methods, IDGCP is based
on the “global-wise" strategy, and it only needs to determine
one unknown constant without any refining process to attain a
high-quality restoration, thereby leading to significantly reduced
processing time and computation cost. Each step of IDGCP
is tested experimentally to validate its robustness. Moreover, a
series of experiments are conducted on a number of challenging
images with IDGCP and other state-of-the-art technologies,
demonstrating the superiority of IDGCP over the others in terms
of restoration quality and implementation efficiency.

Index Terms—Atmospheric scattering theory, gamma correc-
tion prior (GCP), global-wise strategy, haze removal, processing
time, vision indicator.

I. INTRODUCTION

H IGH quality images with rich information are crucial for
computer vision applications, such as object detection

[1], aerial imagery [2], and image classification [3]. However,
low visibility due to hazy weather condition or other factitious
reasons can significantly deteriorate the quality of images
captured by cameras. These low-quality images can seriously
impair the proper functioning of a computer vision system
that needs high-quality inputs. Image dehazing is the key
technology to recover hazy images and remove adverse visual
effects.

Traditionally, image haze removal was realized by enhanc-
ing the global contrast or local contrast of blurred images
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[4]–[8]. This is the simplest and most intuitive way to re-
call visibility. However, these methods neglect the degrading
mechanism of hazy images, thereby limiting the recovery
performance. To address the shortcomings of these traditional
methods, a fusion-wise strategy was recommended in [9],
[10]. This fusion-wise strategy first uses several traditional
techniques to preprocess a hazy input image, and then blends
the preprocessed results into one image by using a Laplacian
pyramid representation. However, when the hazy images are
dark or the haze is dense, this strategy exhibits limited
dehazing performance because of the inappropriate weighting
of the dark objects.

Another kind of solutions advocated in [11], [12] is capable
of generating better results. These solutions are based on
atmospheric scattering theory and require multiple sources or
other external information. Narasimhan et al. [11] used two
images taken in different atmospheric conditions and Kopf
et al. [12] exploited the given geo-referenced digital terrain,
to derive the depth map and the other unknown parameters
that are required to recover the image. However, in reality,
the requested external information is usually not available or
needs high cost prerequisites, thus these methods have limited
practicability in many applications.

The recently emerged image prior knowledge provides
an alternative kind of solutions which leads to a series of
single image haze removal algorithms. These methods can
be further divided into following categories, including pixel-
wise [13]–[18], patch-wise [19]–[29], scene-wise [30]–[32],
and nonlocal-wise strategies [33]–[35], depending on their
approaches of finding the transmission map of input images.
The working mechanisms of these strategies are sketched in
Figs. 1(a) to 1(d), respectively.

As illustrated in Fig. 1(a), in the pixel-wise strategy, the
transmission map is obtained by acquiring the minimum
channel information from each pixel in an image. The main
advantage of the pixel-wise strategy is its high implemen-
tation efficiency, but a single pixel does not have sufficient
information to determine the transmission. Meanwhile, the
transmission map computed via pixel-wise strategy is bound to
contain a lot of unreasonable texture details, thus subsequent
blurring procedure is required. Typically, Tarel and Hautiere
[13] estimated the atmospheric veil associated with minimum
channel to achieve haze removal. This method can recover
most of the scenic details. However, the over-enhancement
problem might exist in mist scenes, and a small amount of
mist might still remain in the discontinuous areas due to the
employed mean filter (MF).
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Fig. 1. Working mechanisms of different image dehazing strategies for estimating transmission map. (a) Pixel-wise strategy. (b) Patch-wise strategy. (c)
Scene-wise strategy (region with same color represents an independent scene). (d) Nonlocal-wise strategy (pixels with same color represent the clustered
haze-line). (e) Global-wise strategy.

The patch-wise strategy shown in Fig. 1(b) determines the
transmission map by extracting local information from each
patch. This strategy can overcome the limitation of pixel-wise
strategy to some extent since a patch has richer information
than a pixel. However, the computed transmission map still
has a large number of estimation errors, and the complex
edge-guided tools are needed to eliminate the halo artifacts
introduced by this strategy. For example, He1 et al. [19]
proposed the patch-based dark channel prior (DCP) to directly
detect the rough haze thickness of a hazy image, and then
the realistic haze-free images can be obtained by refining
the initial transmission map using soft matting (SM) [37].
Unfortunately, DCP approach cannot well handle the regions
where the brightness of scene targets is inherently similar
to the atmospheric light. In [20], Bui and Kim developed
a novel single image dehazing method based on the color
ellipsoid prior. This method can generate the transmission
map by maximizing the contrast of recovered pixels while
avoiding the over-saturation. However, this method misjudges
the close-range area with high-bright as dense haze, and the
fuzzy segmentation process used for suppressing halo artifacts
would reduce the dehazing efficiency.

To attain more information for transmission map estimation,
more robust scene-wise strategy was advocated in [30]–[32].
The scene-wise strategy utilizes a cluster operator to segregate
the input images, as shown in Fig. 1(c). The core idea
is to expand the transmission estimation range from patch
to scene, thus the restoration performance can be improved
for most cases. However, clustering technique used in these
methods lacks the ability to accurately segment all scenes
in an input image, which introduces transmission estimation
errors in depth discontinuities. Although guided total variation
model (GTV) [30] and guided filter (GF) [36] were introduced
to repair such discontinuity interference, scene-wise strategy
based methods still suffer from adverse visual effects in the
scene depth with vague classification features.

Nonlocal-wise strategy is based on a key assumption that

a hazy image must contain approximated colors [33], [34]
or repeated patches [35]. Takeing color-based nonlocal-wise
method [34] shown in Fig. 1(d) as an example, the first
step of this method is to recognize each set of distinct
colors termed as haze-line via spherical coordinates. Then,
by combining these haze-lines and bound regularization (BR),
the transmission map can be directly estimated according to
atmospheric scattering theory. This method exhibits a very
promising performance. However, as the hazy level increases,
the classification accuracy decreases, thus causing the haze-
line method lose its efficacy in addressing heavy haze. Another
drawback of this strategy is that it also fails in scenes where
the airlight is significantly brighter than the scenes.

Recently, deep learning theory has attracted significant in-
terests and has been successfully used in image dehazing [26]–
[29]. Powerful image dehazing systems can be obtained after
training with numerous samples. For example, a trainable end-
to-end system developed in [26] employs convolutional neural
networks (CNN) to estimate scene transmission by merging
some existing image priors. In subsequence, a multi-scale
CNN (MSCNN) to learn effective features for determining the
transmission was proposed in [27]. In [28], a dehazing model
built with the CNN, called All-in-One Dehazing Network
(AOD-Net) was proposed. The main advantage of AOD-Net
is that it can directly obtain the haze-free result from a
single hazy image through a light-weight CNN. Actually, this
strategy is also based on the processing of local patches in
single images, thus it can also be regarded as the “advanced"
patch-wise strategy illustrated in Fig. 1(b). Although these
learning-wise strategy based deep dehazing methods are ca-
pable of merging or learning the haze-relevant features to
relieve the limitations of the patch-wise strategy, they also
have some drawbacks, e.g., unable to deal with dense haze,
needs numerous training samples.

Overall, due to the similarity of spatial structure, these ex-
isting dehazing techniques that deploy the strategies of pixel-
wise, patch-wise, scene-wise, nonlocal-wise, and learning-
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Fig. 2. Visual observation of hazy images I (top row) and the inverted results accordingly (1− I) (bottom row).

wise all require redundant computation, and the transmission
refining tools (MF, SM, GTV, GF, BR, CNN, and MSCNN)
employed by the strategies mentioned above lead to additional
processing times, thus degrading the execution efficiency of
haze removal. Moreover, although the aforementioned priors
all have some advantages, they are not able to handle all
practical situations, which might result in vulnerable images
and visual inconsistency.

In this paper, a novel dehazing method named IDGCP
employing a global-wise strategy is proposed. As schemati-
cally illustrated in Fig. 1(e), when acquiring the transmission
information, the input image is considered as a whole block
rather than dividing the image into several pixels, patches,
scenes, or approximate objects. A gamma correction prior
(GCP) for single image dehazing is proposed. Using GCP,
the input image is transformed into a virtual image. Based on
the atmospheric scattering model (ASM) and by combining
the obtained virtual image and the input hazy image, the
depth ratio information can be determined for image dehazing.
Different from existing techniques, IDGCP only estimates one
unknown constant by extracting the depth ratio from the two
images (original input image and virtual image), which leads
to a significantly reduced processing time. Moreover, IDGCP
also achieves a better restoration of object colors and target
details.

The remainder of the paper is organized as follows. Follow-
ing introduction, Section II revisits the atmospheric scattering
model and theory. The models of GCP and IDGCP are
developed in Sections III and IV, respectively. Section V
evaluates the performance of IDGCP by conducting a series of
comparisons between IDGCP and state-of-the-art techniques.
Finally, Section VI concludes the paper.

II. ATMOSPHERIC SCATTERING MODEL (ASM)
The image dehazing in this work is based on the ASM

proposed by Narasimhan and Nayar [11] to describe the
formation of hazy images. This model is widely used in
computer vision and computer graphics and can be expressed
as

I(x, y) = A · ρ(x, y) · t(x, y) +A · (1− t(x, y)), (1)

where I represents the observed hazy image, A is the global
atmospheric light, ρ is scene albedo or the expected haze-
free image, and t is the medium transmission. When the

atmospheric particle distribution is homogeneous, i.e., the at-
mospheric medium is evenly distributed throughout the whole
image, the transmission t can be obtained as

t(x, y) = e−β·d(x,y), (2)

where d is the distance between the target scene and the
camera (or scene depth), β is the scattering coefficient assumed
to be constant. In this model, the first term on the right side of
Eq. 1 is used to describe the direct impact of scene reflection
light A · ρ from suspended particles. This term is named as
Direct Attenuation which decays exponentially with the scene
depth d. The second term called Airlight, on the contrary,
increases with the scene depth d.

It is commonly known that single image haze removal
is a highly under-constrained problem since the number of
unknowns is much greater than the number of available
equations. Although some works have been done to address
this problem, there are still two key issues remain unsolved.
The first one is that the proposed image priors or assumptions
cannot work well in all cases as illustrated in Section I.
The other issue is the long processing time attributed to the
involved refining tools and redundant computations.

The next section will introduce a robust gamma correction
prior (GCP), which is one of the two key contributions of
this work. It is able to get a virtual misty result under
homogeneous atmosphere from the original input. Based on
the obtained virtual image and the original image, the depth
ratio information can be directly extracted.

III. GAMMA CORRECTION PRIOR (GCP)

A. Motivation

In [38], gamma correction (GC) strategy was proposed by
Liu et al. to preprocess hazy input image. Despite the fact
that this valuable strategy can improve the overall brightness
of images, it suffers from a problem that the haze cover in
hazy image is also processed by GC without considering the
scene depth information [17]. In specific, the preprocess can
be expressed by

Icp = (Ic)Γ, (3)

where c ∈ {R,G,B} is the color channel index, Ic is the color
channel of the input I , 0 < Γ < 1 is the correction factor,
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Fig. 3. Illustration of the GC and GCP processes on two example images. (a) Ground truth images. (b) Depth maps. (c) Synthesized images via SMP with
Ac = 1 and β = 1. (d) Obtained virtual results using GC with Γ = 0.5. (e) Obtained virtual results using GCP with Γ = 0.5. (f) The scattering values of
all pixels in (d). (g) The scattering values of all pixels in (e).
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Fig. 4. Robustness evaluation of GCP with different values of Γ. Top row: Sample image. Middle row: Virtual results using GCP with different Γ. Bottom
row: Corresponding scattering coefficient values for all pixels.

and Ip is the preprocessed result. Assuming that Ip meets the
premise of using ASM, Eq. 3 can be transformed into

Ac
p·((ρc(x, y)− 1) · e−βp·d(x,y) + 1)

= (Ac)Γ · ((ρc(x, y)− 1) · e−β·d(x,y) + 1)Γ,
(4)

where βp andAc
p are the scattering coefficient and atmospheric

light, respectively, of the color channel Icp. Obviously, the
location of atmospheric light in a given image should remain
the same before and after the GC preprocess. Therefore, we
let Ac

p = (Ac)Γ and subtract (Ac)Γ from each side of Eq. 4,
which yields

(ρc(x, y)− 1) · e−βp·d(x,y)

= {(ρc(x, y)− 1) · e−β·d(x,y) + 1}Γ − 1.
(5)

Considering the fact that (ρc(x, y)− 1) · e−β·d(x,y) is close to
0 in general, especially for dense hazy regions, Eq. 5 is then
simplified according to the equivalent infinitesimal theorem.

(ρc(x, y)− 1) · (e−βp·d(x,y) − Γ · e−β·d(x,y)) ≈ 0

⇒ βp ≈ β − ln(Γ)
d .

(6)

Since the correction constant Γ is a constant and [ln(Γ) < 0],
the obtained scattering coefficient of the preprocessed image
βp decreases with scene depth d. This indicates a fact that the
GC preprocess turns the homogeneous input image into an
inhomogeneous virtual output image, i.e., the spatial distribu-
tion of the atmospheric medium varies throughout the image.
In close-range regions with small d, βp is higher, which leads
to a brighter result than the homogenous case. In contrast,
in long-range regions, the preprocessed results will appear to
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Fig. 5. Statistics of the index Ψ. (a) Values of Ψ over 200 test samples. (b) Statistical histogram corresponding to the left statistics.

Fig. 6. Example images and the estimated depth ratio maps. Top row: Input hazy images. Bottom row: Scene depth ratio maps obtained using Eq. 12.

be darker. This problem increases the complexity of the haze
removal. Even with a known scene depth, one would need to
estimate the spatially variable scattering values to achieve a
high performance image dehazing.

B. GCP model

In this paper, a modified preprocessing method called
gamma correction prior (GCP) is proposed. The main dif-
ference between GC [38] and GCP is the fact that their
outputs are inhomogeneous and homogeneous, respectively.
The proposed GCP model is described as

Ics = 1− (1− Ic)Γ, (7)

where Is is the virtual result. In this process, the hazy image I
get inverted first into 1−I . Then it is processed by the GC and
inverted back to get the virtual result. The inverse strategy was
firstly proposed in [39] and used in image enhancement [40],
[41] based on an observation that the inverted low-light images
look similar to hazy images. In this work, we made a further
assumption that the inverted hazy image 1−I is also visually
very similar to low-light images (see Fig. 2). By inverting the
image, the brighter regions and the darker regions are swapped.
Since the inverse strategy and the GC have adverse effects
on the scattering coefficient β with different scene depth, the
GCP has a potential to compensate the nonlinearity in GC and
stabilize the scattering coefficient β.

A large amount of experiments were conducted to investi-
gate the GCP’s ability to stabilize β. In the experiments, the
input I in Eq. 1 was replaced by Is to compute the scattering
values βs for each pixel in Is. Therefore, we have

βs(x, y) = − log(
(1− (1− Ic(x, y))Γ −Ac

s)

Ac
s · (ρc(x, y)− 1)

)/d, (8)

where Ac
s is the atmospheric light of the virtual results Ics .

There are various methods [14], [19], [42], [43] can be used to
locate the atmospheric light. With the overall consideration of
performance and efficiency, the quad-tree subdivision method
proposed in [14] was selected since it can accurately locate
the atmospheric light from the most haze-opaque region by
combining the average grays and gradients based assessment
criteria and quad-tree subdivision. Here we remark that one
can also use other methods to estimate the atmospheric light
depending on the main concerns. As illustrated in Eq. 8,
the ground depth information (d) is required to calculate βs.
However, it is very hard to get the depth information from real
world images. Therefore, in this work, the image samples were
synthesized using the depth maps and ground truth images in
Middlebury Stereo Datasets [44]–[46] according to Eq. 1. This
synthesis procedure is named as SMP in the following sections
for the ease of clarify.

Fig. 3 shows the simulated results of two samples using
GC and GCP with Γ = 0.5, as well as the computed
scattering coefficients. According to Fig. 3(f) and 3(g), GCP
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demonstrates a significantly enhanced ability of stabilizing
the scattering coefficients compared to that of GC. Fig. 4
illustrates the GCP process on a third sample with different Γ
values. It is observed that scattering coefficients of the outputs
of the GCP always have a high level of stability which is
independent to Γ values. Moreover, to quantitatively evaluate
the robustness of GCP, a statistic indicator is defined as

Ψ =

√√√√ 1

|Ω|
∑

(x,y)∈Ω

(βs(x, y)− βs)2, (9)

where βs is the average value of βs, Ω and |Ω| are the
image index set and image resolution, respectively. Generally,
the smaller the value of Ψ is, the more stable the scattering
coefficients, which indicates that the GCP is more reliable.
The calculated Ψ values of 200 different samples processed
by GCP are shown in Fig. 5(a), and the statistic histogram is
shown in Fig. 5(b). It is observed that 90% of the samples
have small Ψ values ≤ 0.3, which validates the reliability of
the proposed GCP. It can be summarized that the proposed
GCP process overcomes the limitation of the GC since the
homogeneity of input images is well maintained in the output
images.

It should be noted that, although the proposed GCP is
a modification of GC, they have different targets. GC can
and is only used to increase the contrast of a hazy image,
whereas GCP allows us to obtain a virtual misty image from
a single hazy image. Combining the input hazy image with
the obtained virtual image, single image dehazing problem
can be converted into multiple image haze removal. The main
benefit is to ease the uncertainty of depth information, which
significantly facilitates the subsequent image dehazing process
based on ASM.

IV. IMAGE DEHAZING BASED ON GCP (IDGCP)

In this section, based on the ASM proposed in [11] and the
GCP described in the previous section, a fast image dehazing
method called IDGCP is developed based on a global-wise
strategy. The proposed method can extract the depth ratio
efficiently by fully leveraging the latent relation of the image
structure, thereby attaining haze-free results. Only two major
modules are utilized in IDGCP, i.e., the depth ratio extraction
module and the image recovery module.

A. Extracting Depth Ratio

The fundamental idea of IDGCP is to mine the depth
structure information from the two hazy images: one is the
hazy input and the other is the virtual hazy image obtained
from GCP. The first step is to utilize GCP to get the virtual
image Is from the original input I . Then, two imaging
equations for Is and I are obtained based on the ASM and
the structure invariance principle described in [11].

Ic(x, y) = Ac · ρ(x, y) · e−β·d(x,y) +Ac · (1− e−β·d(x,y))
Ics(x, y) = Ac

s · ρ(x, y) · e−βs·d(x,y) +Ac
s · (1− e−βs·d(x,y)).

(10)

By solving this equation set, we get

d =
− ln max(Ac−Ic,ε1)

max(Ac
s−Ics ,ε2) − ln

Ac
s

Ac

β − βs
, (11)

where ε1 and ε2 are very small positive constants, ε1 is intro-
duced to avoid the numerator to exceed the function definition
field, and ε2 is introduced to make sure the denominator is not
zero. It is further assumed that the weather condition does not
change spatially, thus we have

d =
1

β − βs
· d0 ∝ d0 = − ln

max(Ac − Ic, ε1)

max(Ac
s − Ics , ε2)

− ln
Ac
s

Ac
.

(12)
Note that the depth ratio d0 is a known component since Ac

s

and Ac can be easily obtained [14]. In this work, we selected
the blue channels IB and IBs for the calculation of d0. We
remark that similar results can also be obtained by adopting
the red channels or the green channels. Several examples of the
calculated depth ratios are illustrated in Fig. 6, demonstrating
a fact that the depth ratio maps obtained are sharp and exactly
in consistence with our intuition.

B. Scene Albedo Recovery Using Global-wise Strategy

The dehazed image ρc can be obtained by substituting Eqs.
2 and 12 into Eq. 1, which yields

ρc =
Ic −Ac

Ac · e−
β

β−βs ·d0
+ 1. (13)

To avoid pixel overflow, it is set that 0 ≤ ρc ≤ 1. Therefore,
the final expression used for restoring the scene albedo can be
rewritten as

ρc = dehaze(θ, Ic,Ac, d0)

= min(max(
Ic −Ac

Ac · e−θ·d0
) + 1, 0), 1),

(14)

where dehaze(·) is the abbreviation of albedo restoring func-
tion. Note that dehaze(·) is a function of four parameters,
where Ic is the input, Ac can be easily calculated according
to [14], d0 is the depth ratio obtained in the previous sub-
section, and θ = β/(β − βs) is the only unknown parameter.
Determining the right value of θ to get the transmission map
t = e−θ·d0 is critical to the dehazing quality. To estimate the
value of θ with low complexity but high accuracy, a global-
wise optimization function is designed as

θ = argmin{
∑
c

f(dehaze(θ, (Ic) ↓n,Ac, (d0) ↓n))}, (15)

where f(·) represents a vision indicator designed via single or
multiple image prior, and ↓n is a down-sampling operator with
coefficient n. Numerous experiments show that generally a
down-sampled image with an approximate size of [100 × 100]
is good enough to determine the value of θ since it still holds
the original important features of the input image. Therefore,
in this work, the coefficient n is adaptively defined as

n =
max(w, l)

100
, (16)

where w and l are the width and length of input image,
respectively. Considering that the goal of image dehazing
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Fig. 7. IDGCP robustness evaluation of the pre-set parameter Γ on an example hazy images. Top: Curves of f with respect to θ using different values of
Γ. Bottom: Results of IDGCP with different values of Γ.

is to improve the visual contrast of the degraded image
while avoiding excessive loss of information [43], the vision
indicator is defined as

f(In) = −
∑
c

φ(5(Inc)) + λ ·
∑
c

ϕ(Inc), (17)

where In is the image to be evaluated, 0 ≤ λ < 1 is the
regulation parameter, φ(·) is the mean operator, and ϕ(·)
is an operator to compute the percentage of pixels that are
completely black or white. In Eq. 17, the first term ensures
the image In has rich texture information, and the second term
is used to measure the lost information cost.

Note that Eq. 15 is a one-dimensional optimization function.
In this work, Fibonacci method (FM) is adopted to solve Eq.
15 since it is able to gradually narrow the search interval
for one-dimensional optimization problem until convergence
condition is satisfied. In specific, the initial interval and the
final interval length are defined as [a1, a2] and ε, respectively.
Once the coefficient θ is determined, the scene albedo can be
directly recovered by Eq. 14. For clarity, the entire procedure
of IDGCP is outlined in Algorithm 1.

Algorithm 1 IDGCP
Input: Hazy Input I
Pre-set parameters: ε1 = ε2 = 10−5, λ = 0.5, Γ = 0.5,
[a1, a2] = [0, 6], ε = 0.1
Do the job:

1. Simulate the virtual image using GCP (Eq. 7).
2. Locate the atmospheric lights of the original input and

the virtual image via quad-tree subdivision method [14].
3. Extract the rough depth ratio d0 via Eq. 12.
4. Determine the constant θ via Eq. 15 with FM.
5. Restore the scene albedo via Eq. 14.

Output: Recovery result ρ.

It should be pointed out that all the other dehazing methods
are based on pixel-wise, patch-wise, scene-wise, nonlocal-
wise, and learning-wise strategies. The proposed global-wise

strategy is the second key contribution in this paper, which
enables us to attain a high-quality restoration by only deter-
mining one unknown constant.

V. PERFORMANCE EVALUATION

To demonstrate the superiority of IDGCP and to better
understand where the superiority comes from, a series of
experiments were conducted and comparisons were made
between IDGCP and the state-of-the-art technologies. All the
experiments were implemented in MATLAB2010 environment
on a PC with Intel(R) Core(Tm) i5-4210U CPU@ 1.70GHz
8.00 GB RAM. The parameters used in the compared dehazing
methods were also optimized according to the corresponding
references.

A. Initial parameter setup and robustness evaluation

As listed in Algorithm 1, there are several parameters that
are initialized manually in the proposed IDGCP. They are
the positive constants ε1 and ε2, the correction factor Γ, the
regulation constant λ, the FM’s initial interval [a1, a2], and the
FM’s final interval width ε. Note that the pre-set parameters
illustrated in Algorithm 1 is an optimized combination which
works for all kinds of hazy inputs, which can be validated
by the subsequent experiments. Once their values are deter-
mined, it can be used on all images straightforwardly. In this
subsection, how the values of the parameters are chosen will
be described and their effects on the performance will be
discussed.

The parameters ε1 and ε2 are introduced only to ensure
that Eq. 11 remains valid. As long as they are small positive
constants, their values have no effect to the final results. In
this work, both ε1 and ε2 are set to be 10−5.

The correction factor Γ is a parameter of the proposed GCP
(see Eq. 7). According to the previous analysis in Section
III-B and the experiment results illustrated in Fig. 4, the
scattering coefficients βs of the output virtual image always
exhibit a high level of stability throughout the image, which
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Case 1: 
Haze-free Image

 λ=0

 λ=0.25

 λ=0.5

 λ=0.75

 θ =0.995

 θ =0.140

 θ =0.043

 θ =0.00

Case 2: 
Misty Image

 λ=0

 λ=0.25

 λ=0.5

 λ=0.75

 θ =2.455

 θ =1.823

 θ =1.463

 θ =1.047

Case 3: 
Dense Haze Image

 λ=0

 λ=0.25

 λ=0.5

 

λ=0.75

 θ =5.685

 θ =5.030

 θ =4.642

 θ =4.126

Fig. 8. IDGCP robustness evaluation of the pre-set parameter λ on three example images.

is independent to Γ values. As long as βs can be seen as a
constant, the GCP is valid. Although different values of Γ leads
to different scattering coefficients βs (see Fig. 4), it almost
has no effect on the quality of the final dehazed results. Fig. 7
shows the IDGCP dehaze results on an example images with
different Γ values. During the experiment, the other parameters
were fixed at the values illustrated in Algorithm 1. As shown in
the figure, there is barely any difference between the dehazed
results when Γ has different values. However, different values
of Γ lead to different values of θ (Eq. 15) and affect the
processing time. The processing time is slightly different with
different values of Γ because the FM used to determine the
value of θ needs different numbers of iterations. For example,
as shown in Fig. 7, when Γ = 0.6, the number of iteration to
find θ is 8; when Γ = 0.8, the number of iteration to find θ
is 9. However, the Γ value’s effect on the processing time is
minor. In this work, Γ is set to be 0.5.

The regulation constant λ is introduced in the vision in-
dicator (Eq. 17) to correctly determine the value of θ. To
investigate how λ affects the recovery performance, a recovery
quality test was conducted with different values of λ. Fig.
8 shows the results restored via IDGCP from three different
types of hazy images with different values of λ when other
parameters are fixed at the values listed in Algorithm 1. As
shown in the figure, too small λ results in over-saturation in the
mist image, whereas too large λ can not completely uncover
the scene content in the image with dense haze. As a tradeoff,
λ = 0.5 is selected.

Experiments on numerous sample images demonstrate that
once Γ and λ are fixed, the resultant θ values of the images
will always lie in a specific confidence interval. When Γ = 0.5
and λ = 0.5, the confidence interval is [0, 6]. For example, as
shown in Fig. 8, the θ values of the three typical images are
0.043, 1.463, and 4.64. More test results can be found on the
authors’ website1. Therefore, to reduce the processing time of
IDGCP, the initial interval and final interval width used in FM
are set to be [a1, a2] = [0, 6] and ε = 0.1, respectively.

B. IDGCP Performance Demonstration

1) Evaluation of IDGCP on different sample images:
First, several sample images were selected from [21] to test
the performance of IDGCP. The original sample images, the
restored results, and the transmission maps are depicted in
Fig. 9 to intuitively demonstrate the capability of IDGCP.
As observed in the figure, the proposed IDGCP thoroughly
removes the haze and unveils reasonable scene details in
hazy regions, while the transmission maps are quite consistent
with the objective reality of the real world. Although these
estimated transmission maps seem to have a few undesirable
or illogical texture details, the visual quality of the recovered
results shown in Fig. 9 is already more than sufficient for most
cases. Here we remark that further blurring the texture details
in transmission maps can improve the restoration quality.
However, in this work, the blurring step is omitted as the

1https://www.researchgate.net/profile/Mingye_Ju
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Fig. 9. Image restoration results using the proposed IDGCP.

(a)

(b)

(g)

(c) (d) (e) (f)

(h) (i) (j) (k)

β= 1 β= 1.2 β= 1.4 β= 1.25

θ = 2 θ = 2.5 θ = 3 θ = 3.28

CAP

GCP

Fig. 10. Comparison of the scene depth obtained by the widely used CAP proposed in [24] and by the proposed GCP. (a): Input hazy image. (b): Depth
map obtained via CAP. (c)-(f): Recovered images with different scattering coefficients of β =1, 1.2, 1.4, and 1.25, respectively. β = 1.25 was determined via
the proposed vision indicator. (g): Depth map obtained via GCP. (h)-(k): Recovered images with different constants of θ = 2, 2.5, 3, and 3.28, respectively.
θ = 3.28 was determined via the proposed global optimization strategy.

quality is already satisfactory and the efficiency is the main
concern.

2) Evaluation of the GCP: The first step of IDGCP is
to obtain the depth ratio using GCP. A sharp depth ratio is
the premise of the final accurate restoration. In Fig. 10, we
compare the obtained scene depth from GCP and that from the
widely used color attenuation prior (CAP) [24]. According to
the figure, although CAP has a better local-constant feature
than GCP (owing to the abandoned blurring step and the
ignored locally constant assumption in IDGCP), it is not able
to achieve a balance between the over-saturation problem in
close-range regions and a complete haze removal in long-range
regions by changing the scattering coefficient settings (see the
zoom-in patches in Figs. 10(c) to 10(f)). In contrast, GCP is
able to solve this problem and achieve satisfactory results by
selecting an appropriate value of constant θ (see the zoom-in
patches in Fig. 10(k)).

3) Evaluation of the global-wise strategy: The pixel-wise,
patch-wise, scene-wise, and nonlocal-wise strategies that are
designed for haze removal, as aforementioned, involve enor-
mous redundant computations due to the spatial similarity

in natural image. Fig. 11 illustrates the dehazing procedure
and the associated time cost of the proposed IDGCP (global-
wise) and other recently published works, including FID
[15] (pixel-wise), DCP [19] + GF [36] (patch-wise), DIM
(scene-wise) [30], and NID (nonlocal-wise) [33]. For fairness
of comparison, the redefined scene luminance of DIM was
replaced by the atmospheric light, and the atmospheric light
of FID, DCP, DIM, NID, and IDGCP were set to have the same
value in initialization. As observed in Fig. 11, it is noticed that
the transmission maps (or depth maps) estimated via pixel-
wise, patch-wise, scene-wise, and nonlocal-wise strategies
fail to preserve the edge structure of the original depth or
contain many unreasonable texture details, which means that a
subsequent refine-transmission step is required. In comparison,
IDGCP utilizes the global-wise strategy, which only needs to
estimate one unknown constant. This leads to a significant
reduction in processing time and computation cost. More
importantly, since an entire image has more information than
a part of the image, the global-wise strategy can get a more
visually comfortable result (as highlighted by red circles in
Fig. 11).
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Hazy Image Minimum Channel Map Transmission Map Scene Albedo

Time Cost: 12.4s

Pixel-wise Strategy
Median Filtering and Guided 

Joint Bilateral Filtering   FID

Hazy Image Rough Transmission Map Refined Transmission Map Scene Albedo

Time Cost: 2.4s

Patch-wise StrategyGuided Image Filtering   

DCP

Hazy Image Rough Transmission Map Refined Transmission Map Scene Albedo

Time Cost: 10.8s

Scene-wise Strategy
Guided Total 

Variation Filtering   DIM

Estimate Unknown 

Constant θ 

Hazy Image Depth Ratio Transmission Map Scene Albedo

Time Cost: 0.32s

Global-wise StrategyIDGCP

Hazy Image Rough Transmission Map Refined Transmission Map Scene Albedo

Time Cost: 1.9s

Nonlocal-wise Strategy
Transmission Bound Regularization 

and Smooth  Filtering   NID

Fig. 11. Overview of image dehazing procedures using FID, DCP + GF, DIM, NID, and the proposed IDGCP. (Note that the atmospheric light is regarded
as a known constant here).

C. Qualitative Comparison

1) Comparison with state-of-the-art dehazing techniques on
challenging real-world images: Almost all the mainstream
dehazing techniques are able to get satisfactory restoration
results from general outdoor hazy images as discussed in
[24], [26]. Sometimes it is hard to tell the differences of
the restoration quality using different techniques. In this
work, we adopted five widely used challenging real-world
benchmark images (collected in [24], [26], [30]) with large
white or gray scenes to facilitate the comparison as shown

in Fig. 12. The selected pictures are challenging to dehaze
because most of the algorithms are sensitive to the gray-
white color. The five hazy images are given in Fig. 12(a).
The dehazed results using DEFADE (fusion-wise) [10], FVR
(pixel-wise) [13], BCCR (patch-wise) [22], IDAET (scene-
wise) [32], IDHL (nonlocal-wise) [34], MSCNN (learning-
wise) [27], DehazeNet (learning-wise) [26], and the proposed
IDGCP (global-wise) are illustrated in Figs. 12(b) to 12(i),
respectively. Some zoom-in detailed are shown in Fig. 12(j)
for a clearer comparison.
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      (j) Zoom-in details

(i) 

IDGCP

(h) 

DehazeNet

(g) 

MSCNN

(f) 

IDHL

(e) 

IDAET

(b) 

DEFADE

(d) 

BCCR

(c) 

FVR

(a) 

Hazy Image

Fig. 12. Qualitative comparison between the proposed IDGCP and other state-of-the-art techniques on five benchmark images.

In Fig. 12(b), it is observed that DEFADE can recognize
rough haze regions and increase visual visibility for most
of the hazy samples, but its performance is deteriorated
when dealing with dark regions (highlighted in the zoom-
in subfigure). This is attributed to the fact that the severe
dark aspects of the preprocessed images play a dominate role
when performing the multi-scale fusion operation. As shown
in Fig. 12(c), FVR is able to recover the hidden details of
hazy regions, whereas the restoration scenes are quite deviate
from the real ones that expected. The reason is that the
atmospheric veil used in FVR is a particular case of DCP, and
the overestimation transmission problem gets more severe. In
addition, for the third picture, halo artifact appears near the
depth jumps (see the corresponding zoom-in part in Fig. 12(j)).

This is due to the poor structure-preserving performance of the
median filter. Similarly, we notice that BCCR has the same
drawback, as shown in Fig. 12(d), because of the fact that
the inherent defect of DCP is not addressed and the noise
amplification phenomenon still exists in the white regions of
the images (as highlighted in Fig. 12(j)). For IDAET as shown
in Fig. 12(e), it fails to attain promising results for the dense
regions. The reason is that the dense regions are misjudged as
“sky" by the transmission compensation module used in this
method. IDHL avoids the haze residue for the dense regions
by introducing the lower bound of transmission, as seen in
Fig. 12(f). However, the over-saturation was unfortunately
introduced in recovered result (see the purple patch in Fig.
12(j)). This may be caused by the detection failure of similar
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Traffic

Festival

City

Building

Gugong

Road

(a) (b) (c) (g) (h)(d) (e) (f) (i) (j)

Hazy Image FVR BCCRDEFADE IDAET IDHL MSCNN DehazeNet IDGCP Ground Truth

Fig. 13. Qualitative comparison between the proposed IDGCP and other state-of-the-art techniques on synthetic images.

colors. Although MSCNN and DehazeNet can avoid the over-
enhancement problem to some extent (see Fig. 12(g) and
Fig. 12(h)), haze residue can be found in their dehazed
results (detailed in the yellow and green patches). This is
mainly attributed to the fact that the training samples for
the deep dehazing methods are usually artificially synthesized
images rather than real-world images, thus limiting the perfor-
mance of the learning-wise dehazing methods. Compared with
these state-of-the-art techniques, IDGCP is free from over-
enhancement, halo effect, and over-saturation problems that
degrade the image quality. As displayed in Fig. 12(i), the sky
regions and the clouds in the recovery images are very natural,
and the texture details of the targets are well enhanced.

2) Comparison with state-of-the-art dehazing techniques
on synthesized images: Assessing dehazing techniques is a
very tricky task since it is difficult to get haze-free reference
images from real-world. The comparisons between IDGCP
and state-of-the-art techniques were further conducted on
the Realistic Single Image Dehazing (RESIDE) dataset [47]
consisting of both hazy images and the corresponding haze-
free images. Figs. 13(a) and 13(j) give the hazy images and the
corresponding ground truth images, respectively. Figs. 13(b)
to 13(i) show the recovered results based on the synthesized
hazy images using DEFADE, FVR, BCCR, IDAET, IDHL,
MSCNN, DehazeNet, and IDGCP, respectively.

In Figs. 13(b) to 13(d), the restored results using DEFADE,
FVR, and BCCR can clearly indicate the target contour for
the given examples, but their restored colors are generally
over-saturated (see the festival image and the building image).
As shown in Figs. 13(e) and 13(f), the over-enhancement
still exists in the festival images after the dehazing process
of IDAET and IDHL. According to Figs. 13(g) and 13(h),

MSCNN and DehazeNet are capable of producing the haze-
free results with vivid color and necessary details for mist
scenes. However, they lack the ability to uncover the details for
the scenes with dense haze (see the city image). In comparison,
IDGCP’s results do not show any negative effects and can
maintain the original tones of most scene targets as shown in
Fig. 13(i).

D. Quantitative Comparison on Synthetic Images

In order to guarantee the fairness of the qualitative compar-
ison in Fig. 13, quantitative comparisons were made on four
commonly used evaluation indexes. The selected performance
indexes are fog aware density evaluator (FADE) [10], edges
newly visible after restoration (e) [48], structural similarity
(SSIM) [49], and mean square error (MSE). The calculated
values of these indexes for the four images shown in Fig.
13 are summarized in Table I. Note that a larger e or a
smaller FADE represents a lower perceptual haze density; a
larger SSIM means a better structure similarity between the
dehazed result and the ground truth image; a lower MSE
indicates that the recovered image is more acceptable. It can
be concluded from the table that the proposed IDGCP has the
highest average value of SSIM and the lowest average value
of MSE among all the methods, which means that IDGCP’s
results are more similar to the ground truth compared with
the results obtained by other methods. Although IDGCP has
a higher average value of FADE and a lower average value
of e than FVR, BCCR, and IDHL, the results produced by
these methods appear to be over-saturated and too dark. This
could further reduce the perceptual fog density of the dehazed
images and increase the pseudo-edge of scene targets.



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 13

TABLE I
QUANTITATIVE COMPARISON OF DEHAZED IMAGES SHOWN IN FIG. 13 USING FADE, e, SSIM, AND MSE

Test Criterion Image DEFADE FVR BCCR IDAET IDHL MSCNN DehazeNet IDGCP

FADE

Gugong 0.4201 0.5012 0.3947 0.6571 0.5983 0.7556 1.1620 0.5655
Road 0.4514 0.6388 0.4344 0.6524 0.5879 0.8593 0.5460 0.5201

Traffic 1.6470 0.6795 0.7824 1.1191 1.0212 2.1235 1.5703 1.1876
Festival 0.2656 0.3636 0.3702 0.6231 0.4159 0.5160 0.7604 0.6313

City 0.9992 0.4355 0.3906 0.6948 0.3916 1.1996 0.8427 0.5231
Building 0.2592 0.2892 0.3412 0.4891 0.3904 0.7444 0.2901 0.4580

FADE mean value 0.6738 0.5816 0.4522 0.7059 0.5675 1.0331 0.8619 0.6476

e

Gugong 0.4210 0.6115 0.8995 0.4738 0.5727 0.4249 0.4186 0.5208
Road 1.5946 2.2091 1.8563 1.1783 1.1941 0.6083 1.6055 1.3358

Traffic 0.6102 1.4777 1.9566 1.7857 1.6927 0.4664 1.4089 1.0192
Festival 0.2172 0.5007 0.2724 0.1104 0.2033 0.1522 0.0887 0.0455

City 2.1011 2.8050 3.7393 2.2515 3.5591 1.5653 2.4471 3.4696
Building 0.6383 0.7569 0.8233 0.5159 0.8672 0.1910 0.2310 0.3393

e mean value 0.9304 1.3935 1.5912 1.0526 1.3482 0.5680 1.0333 1.1217

SSIM

Gugong 0.8396 0.8399 0.8572 0.8451 0.9030 0.9069 0.9474 0.9270
Road 0.8593 0.8137 0.8548 0.8339 0.9124 0.8941 0.8923 0.9538

Traffic 0.9097 0.7467 0.8929 0.8658 0.9358 0.8384 0.9615 0.9332
Festival 0.6828 0.8844 0.9158 0.8934 0.9229 0.8909 0.9829 0.9724

City 0.3964 0.3292 0.2796 0.3161 0.2712 0.3993 0.3913 0.3713
Building 0.8357 0.7455 0.8053 0.8305 0.7510 0.8534 0.8543 0.9192

SSIM mean value 0.7539 0.7266 0.7676 0.7641 0.7827 0.7972 0.8383 0.8462

MSE

Gugong 0.0343 0.0345 0.0200 0.0470 0.0088 0.0080 0.0041 0.0072
Road 0.0084 0.0201 0.0201 0.0197 0.0138 0.0087 0.0106 0.0052

Traffic 0.0096 0.0517 0.0286 0.0097 0.0090 0.0208 0.0025 0.0061
Festival 0.0747 0.0199 0.0242 0.0437 0.0163 0.0156 0.0025 0.0036

City 0.0378 0.0782 0.0654 0.0526 0.0651 0.0479 0.0309 0.0340
Building 0.0140 0.0335 0.0531 0.0471 0.0535 0.0147 0.0159 0.0083

MSE mean value 0.0298 0.0397 0.0352 0.0366 0.0278 0.0193 0.0111 0.0107

Fig. 14. Comparison of the processing time of dehazing two example images with tunable resolutions using the proposed IDGCP and other states-of-the-art
techniques.

E. Comparison of the Processing Time

Except the high restoration quality, the most significant
advantage of the proposed IDGCP is the low computation
complexity thus reducing processing time. Eqs. 7, 12, 14
and the quad-tree subdivision method [14] used in IDGCP
are all simple operations, and the main calculation cost of
IDGCP is the gradient operation to determine the unknown
constant θ (see Eq. 15 and Eq. 17). Therefore, given an image
of size l × w, the theoretical complexity of IDGCP is only
O( 100·l·w

max(w,l) ). To demonstrate the efficiency of IDGCP, a com-
parison of the processing time between different techniques

dealing with images with different resolutions is shown in Fig.
14. To ensure the fairness of the comparison, two pictures (the
“road" and “festival" images shown in Fig. 13) with tunable
resolutions were used in comparison and all the tests were
performed five times to get the average time cost. It can be
easily concluded from Fig. 14 that IDGCP is significantly
faster than all the other techniques regardless of the resolution
of the images.

Overall, the comparison results shown in Figs. 9 to 14 and
Table I demonstrate that the proposed IDGCP outperforms
most of the state-of-the-art methods in terms of haze removal,
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color restoration, and processing time while avoiding almost
all of the negative effects.

VI. CONCLUSION

In this paper, a very simple yet powerful gamma correction
prior (GCP) was proposed, leading to an extremely efficient
single image dehazing method called IDGCP. The proposed
GCP allows us to approximately simulate a homogeneous
misty image from an input hazy image. Based on this prior and
atmospheric scattering model, IDGCP was developed. Unlike
previous works, IDGCP converts single image dehazing into
multiple images haze removal task. The benefit is to ease the
uncertainty of depth information, so that the haze removal
task can be redefined as a global-wise optimization function
to determine only one unknown constant. IDGCP can obtain
a high-quality transmission map without any refining process,
which significantly reduces the processing time. A series
of experimental results demonstrate that IDGCP achieves
noticeably higher efficiency and outstanding dehazing ability
compared to the state-of-the-art techniques.
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