
Elsevier required licence: © <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/        
The definitive publisher version is available online at https://doi.org/10.1016/j.biortech.2020.122926



1 
 

Application of artificial neural network and multiple linear regression in 

modeling nutrient recovery in vermicompost under different conditions 

 

 

Ahmad Hosseinzadeha, Mansour Baziarb, Hossein Alidadic, John L. Zhoua*, Ali Altaeea, Ali 

Asghar Najafpoorc, Salman Jafarpourc 

 

 

a Centre for Green Technology, School of Civil and Environmental Engineering, University of 

Technology Sydney, NSW 2007, Australia 

 

b Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, 

Birjand, Iran 

 

c Social Determinants of Health Research Center, Department of Environmental Health 

Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran 

 

 

 

*Correspondence author: 

Prof John L. Zhou, email: Junliang.zhou@uts.edu.au 

  



2 
 

Abstract 

The recovery of nutrients from solid waste is of global significance. Vermicomposting is one 

of the best technologies for nutrient recovery from solid waste. This study aims to assess the 

efficiency of Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) 

models in predicting nutrient recovery from solid waste under different vermicompost 

treatments. Seven chemical and biological indices were studied as input variables to predict 

total nitrogen (TN) and total phosphorus (TP) recovery. The developed ANN and MLR 

models were compared by statistical analysis including R-squared (R2), Adjusted-R2, Root 

Mean Square Error and Absolute Average Deviation. The results showed that 

vermicomposting increased TN and TP proportions in final products by 1.5 and 16 times.  

The ANN models provided better prediction for TN and TP with R2 of 0.9983 and 0.9991 

respectively, compared with MLR models with R2 of 0.834 and 0.729. TN and carbon 

nitrogen ratio were the most important factors for TP and TN prediction by ANN with 

percentages of 17.76 and 18.33.  

 

Keywords: Nutrient recovery; Vermicompost; Nitrogen; Phosphorus; Municipal solid waste; 

Modeling 
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1. Introduction 

Nutrients such as nitrogen (N) and phosphorus (P) are essential for life, and their recovery 

from waste is a globally significant issue. At the current rate of mining, phosphorus extraction 

will result in the depletion of the phosphorus reserves in the next 50-300 years (Van Vuuren 

et al., 2010; Ye et al., 2019; Ye et al., 2017; Zabaleta and Rodic, 2015). According to the 

reports (Tao et al., 2019; Zabaleta and Rodic, 2015), 90% of this phosphorous is applied for 

the production of chemical fertilizers. Besides, artificial and nonorganic fertilizers provide 

50% of the required nitrogen for agricultural purposes. The excessive input of anthropogenic 

nitrogen has increased global nitrogen burden, which in turn has disrupted the global nitrogen 

cycle, causing environmental problems such as global acidification, increased emission of the 

greenhouse gas N2O, and eutrophication in aquatic systems (Zheng et al., 2013). In addition, 

these synthetic phosphorus and nitrogen fertilizers adversely affect the quality of the human 

food chain and health (Asif et al., 2018; Kakar et al., 2019; Sazvar et al., 2018, Zhai et al., 

2017), as these chemical fertilizers are regarded as one of the most important causes of human 

cancers (Stokes and Brace, 1988). In addition, it is estimated that 1% of the world energy 

supply is consumed to synthesize these chemical fertilizers (Smith, 2002; Zabaleta and Rodic, 

2015). Whilst such nutrients are provided from energy intensive, unhealthy and non-

renewable resources, renewable resources such as municipal solid wastes (MSW) are often 

neglected. Thus, nitrogen and phosphorus recoveries from wastes are recently receiving 

increasing attention as a promising option instead of abstracting phosphorus fertilizer from 

phosphate rocks and synthesizing nitrogen fertilizers by the Haber Bosch process (Alidadi et 

al., 2016; Tao et al., 2019; Zabaleta and Rodic, 2015). 

The production of MSW is increasing considerably with different characteristics by virtue 

of ever-growing human population and related activities (Chang et al., 2020). MSW 

management is often performed unscientifically and non-systematically in many societies like 

MSW dumping in the countryside. Currently, the two most extensively applied technologies 

file:///C:/Users/13371784/Desktop/Manuscript%20revised.docx%23_ENREF_34
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for MSW management are landfill and incineration, although agricultural use of sewage 

sludge is a major route in Australia, the US, China, Norway, France, Spain and the UK 

(Chang et al., 2020). Although highly developed, landfill and incineration have their 

limitations such as leachate production from landfill sites hence causing soil and groundwater 

pollution, emission of toxic gases and particles from combustion causing air pollution, and 

very little nutrient recovery. In comparison, biological stabilization like composting and 

vermicomposting convert solid waste such as MSW to organic soil fertilizers efficiently, as 

bioconversion of organic matter to fertilizers is regarded as one of the best recycling 

technologies (Biruntha et al., 2019; Boruah et al., 2019). However, there are some 

disadvantages for MSW compost such as fewer micro and macronutrients and having more 

electrical conductivity than agricultural soils, which can prevent seed germination 

(Hargreaves et al., 2008; Iqbal et al., 2010). As MSW compost through different composting 

process cannot meet the quality requirement for improving the fertility and amendment of 

agricultural soils based on the guidelines, MSW compost is more widely used as a soil 

conditioner rather than soil fertilizer, and even known as a secondary waste by some 

researchers (Gomez, 1998; Hargreaves et al., 2008; Stonehouse, 2013; Alidadi et al., 2016). 

Vermicomposting, compared with composting, can increase the nutrients and other significant 

properties of the fertilizers produced, and appropriately improve the microbial diversity of the 

soils which is a key factor for the health of the soils and consequently the food produced 

(Alidadi et al., 2016). Because the more the soil microbial species, the greater amendment of 

soil will happen through higher nutrient recovery. Thus, enhancement of soil microbial 

community structure is essential to maintain soil fertility and healthiness (Wang et al. 2014). 

With respect to the fact that the fertilizers produced should provide essential needs of the 

agricultural soils, and total nitrogen (TN) and total phosphorus (TP) are two of the most vital 

elements which can enhance the growth and metabolic reactions of plants; therefore, 
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optimization and augmentation of these elements in organic fertilizers should be carefully 

considered (Davidson and Howarth, 2007; Alidadi et al., 2016; Zhang et al., 2018b). 

Regarding the fact that the nature of biological processes like composting and 

vermicomposting is so complex, there is a lack of sufficient understanding regarding such 

processes. Therefore, mathematical models can provide insights into the process operation, 

performance prediction as well as its optimization (Petric and Mustafić, 2015). Different 

studies have been performed regarding the process modeling of wastes bioconversion. In 

studying the changes of N, temperature and carbon in sewage sludge during composting 

process, Kabbashi (2011) reported that there were some simple patterns which can be used for 

the modeling of composting process of sewage sludge. In another study (Gutiérrez et al., 

2017) to model the odor emissions and oxygen demand of various substrates in composting 

process, a nonlinear exponential model along with a four-parameter Gaussian model was 

successfully fitted to the variations of oxygen demand and odor emissions with time. The 

obtained R2 for these two models were 0.93 and 0.90 (P-value < 0.05) correspondingly. Petric 

and Mustafić (2015) used a mathematical model to study the composting process of the 

mixture wheat straw and poultry manure using the initial values of the five state variables 

including moisture content, temperature, concentrations of CO2 and O2, and organic matter 

conversion along with some stoichiometric and kinetic coefficients. Based on the results 

obtained, the developed model predicted very good performance of the composting process. 

Besides, different studies have been conducted to improve the proportions of TN and TP in 

organic fertilizers including mixing MSW with wastewater sludge and adding some additives 

to the raw material of fertilizers (Petric et al., 2015; Zhang et al., 2018a; Iqbal et al., 2010). 

However, the investigation of different MSW treatments is expensive and time consuming. In 

comparison, simulating and modeling the effects of various conditions on nutrient recovery 

can be more cost effective, reduce the operation times and lead to better outcomes more 

quickly (Xue et al., 2019). Up to now, various models have been developed to study the 

file:///C:/Users/13371784/Desktop/Manuscript%20revised.docx%23_ENREF_10
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composting and other biological processes for environmental remediation such as biological 

wastewater treatment (Giwa et al., 2016; Kaiser, 1996; Loan et al., 2019; Nadiri et al., 2018; 

Najafi and Ardabili, 2018). However, most of such models are too complex and need 

extensive set of input data. In addition, based on the bibliographic research, there is a paucity 

of study and information regarding vermicomposting process modeling especially in relation 

to nutrient recovery by this process. 

Multiple Linear Regression (MLR) is a statistical method that uses several independent 

variables to predict the outcome of a dependent variable. MLR can formulate the effects of 

different independent variables on dependent ones. Although there are some restrictions 

associated with MLR such as the presence of genotype-environment interaction, significant 

non-linear relationships and multiple collinearity among independent parameters, and 

observing regression assumptions necessity, the results of different studies indicated that the 

output of this model was highly dependent on the application (Astuti et al., 2015; Du et al., 

2020; Zaefizadeh et al., 2011). In addition, Artificial Neural Network (ANN) is regarded as an 

influential, flexible, fast and accurate modeling procedure, which is advantageous than 

traditional ones. Not only can ANN model processes without considering the nature and 

mathematical background of phenomenological mechanisms, but also may master nonlinear 

and linear relationships amongst various parameters from a number of cases (Hosseinzadeh et 

al., 2018). There are some studies comparing these two models in various applications 

(Hoang, 2019; Kim et al., 2018; Park et al., 2018; Xu et al., 2014). However, there is a lack of 

information regarding the relative effects of different operating parameters on nutrient 

recovery from wastes by vermicomposting, yet the application of mathematical models can 

aid in the experimental design and modelling. Therefore, this study aims to develop both 

MLR and ANN models to simulate and predict TN and TP recovery in vermicomposting 

process. The most important indices of vermicomposting process including dehydrogenase 
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(DEH) enzyme, water soluble carbon (WSC), NH4/NO3 ratio, pH, electrical conductivity 

(EC), carbon/nitrogen (C/N) ratio, TN and TP are fully considered. 

 

2. Materials and methods 

2.1. Experimental design and analytical methods 

In this study, four treatments with three replicates were prepared from different ratios of 

MSW compost to carbonaceous organic materials (COMs) including cardboard, boxwood 

leaves and sawdust. The ratios of MSW compost and COMs used were 1) 50%/50%, 2) 

70%/30%, 85%/15%, and 100%/0% respectively. Then the wastes were processed over 100 

days during which the proportions of different chemical and biological indices were measured 

on day 0, 25, 50, 75 and 100. More details were described in a previous study (Alidadi et al., 

2016). 

2.2. Data processing and model performance assessment 

Before the development of ANN models, the obtained experimental results from all of the 

treatments were randomly divided into 3 sub-groups of training, validation and testing 

datasets with the ratios of 70%, 15% and 15% respectively. Then they were normalized in the 

range of 0.2 to 0.8 according to equation 1 (Hosseinzadeh et al., 2018): 

Normalized value of 𝑥𝑖  =   
𝑥𝑖−minimum value of data

maximum value of data−minimum value of data
× (0.8 − 0.2) + 0.2     (1) 

The segmentation of data into 3 sub-groups was carried out in order to hinder over-training 

problem during the model development. Furthermore, the data was normalized due to the 

reduction of the computational issues in the process of ANN model training.  

2.3. Artificial neural network approach  

ANN, as one of the computational methods in artificial intelligence, is a new computing 

system and technique, which is inspired by the human nervous system and process data or 

information. The key part of this computing system is its information processors which are 

called neurons. The ANN system is made up of a large number of interconnected neurons that 
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work together to solve a problem. It is set up to perform specific tasks with learning from a 

given example (Elmolla et al., 2010) such as prediction of TN and TP in this study.  

In this work, the Toolbox of Neural Network which is included in MATLAB R2015b was 

applied to predict the TN and TP concentrations for the produced vermicomposts. For this, a 

large number of 3 layered ANN models were built to select the best predictive model. The 

applied transfer functions for hidden and output layers of developed ANN models were 

tangent sigmoid functions. The training of ANN models was carried out by the algorithm of 

Levenberg–Marquardt. The algorithm iteratively modifies the weights (input and output layer 

weights) and biases of an ANN model to the extent that the ANN outputs are close to the 

actual values (Hagan and Menhaj, 1994). 

2.4. Multiple linear regression analysis 

 MLR refers to the regression models with a dependent variable and two or more independent 

variables. In this case, the values of a dependent variable (e.g. TN) are obtained from the 

values of independent variables (pH, EC, C/N, NH4/NO3, WSC, DEH enzyme and TP), by 

constructing a general linear relationship as shown in equation 2 (Ghaedi et al., 2015): 

y = 0 + 11 +22 +33 ∙∙∙ nn    (2) 

where y is a dependent variable describing the predicted values of TN; 1, 2, 3, and n are 

independent variables; 0 to n are the linear regression coefficients. 

2.5. Comparison of MLR and ANN models 

The TN and TP values were predicted, together with R-squared (R2), Adjusted-R2, Root Mean 

Square Error (RMSE) and Absolute Average Deviation (AAD), which were compared with 

the actual values of TN and TP in order to assess, validate and test the goodness of fit and the 

prediction accuracy of the models. In general, a model that contains the lowest error values 

(RMSE, AAD) and the highest values of correlation coefficients (R2, adjusted R2) is 

considered as the best model. The required formulae for the calculation of relevant statistical 

indices are presented in Table 1 (Hosseinzadeh et al., 2018).  
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Table 1. The statistical indices used for assessment of developed models 

Index Equation 

 

 

Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝐴𝑐𝑡,𝑖)

2
𝑁

𝑖=1

 

 

 

 

Determination coefficient  

 

 

𝑅2 = 1 −
∑ (𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝐴𝑐𝑡,𝑖)

𝑁
𝑖=1

∑ (𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝑚)𝑁
𝑖=1

 

 

 

Absolute Average Deviation (AAD)  𝐴𝐴𝐷 = (
1

𝑁
∑ (

𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝐴𝑐𝑡,𝑖

𝑦𝐴𝑐𝑡,𝑖

)

𝑁

𝑖=1

) × 100 

 

  

Adjusted determination coefficient  

 

𝑅2𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 −
(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1
 

N is the total number of data points; 𝑦𝐴𝑐𝑡,𝑖 is the actual value of TN or TP; yprd,i is the predicted value of TN or 

TP; and ym is the mean of actual values of TN or TP. 
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3. Results and discussion 

3.1. TN modeling by ANN  

To develop a robust model of ANN which is able to capture the behavior of TN, several ANN 

models were designed using pH, EC, C/N, NH4/NO3, WSC, DEH enzyme and TP as inputs 

and TN as output of ANN models. First, these different neurons of ANN hidden layer were 

studied from 1 to 20. Judgment on the best structure of ANN model was based on the highest 

value of correlation coefficient (R) and the least amount of Mean Square Error (MSE) for 

testing, validation and training datasets. The results demonstrated that a network with seven 

neurons of hidden layer provides the greatest performance. Therefore, a 7-7-1 topology was 

selected for the developed ANN model for TN (Fig. 1). Fig. 2 shows the scatter plots of 

forecasted TN values (ANN output) versus the actual TN values in the training, validation, 

testing and all datasets. As observed in Fig. 2, the R values of training, validation and testing 

datasets in the developed ANN models for TN were 0.9993, 0.9999 and 0.9993 respectively, 

and the obtained proportions of MSE (for normalized data) were in order 0.000066, 0.000009 

and 0.000197 correspondingly. In this topology, the first and last numbers represent the 

number of input and output variables of ANN model respectively, and the middle number 

represents the number of hidden layer neurons.  



12 
 

 

Fig. 1. Topology of developed ANN model for TN prediction. 
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Fig. 2. Scatter plots of forecasted TN values versus the actual values in the training, 

validation, testing and overall datasets. 
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The best linear fit, determination coefficient (R²) and equation related to the developed 

ANN model for all data are shown in equations 3-5 respectively: 

𝑦 =  0.9731𝑥 +  0.0158          (3) 

𝑅2 = 0.9983                                  (4) 

𝐴𝑁𝑁 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝐿𝑊 × 𝑡𝑎𝑛𝑠𝑖𝑔 (𝐼𝑊 × [𝐷𝐸𝐻; 𝑊𝑆𝐶;
𝑁𝐻4

𝑁𝑂3
; 𝑝𝐻;  𝐸𝐶;

𝐶

𝑁
; 𝑇𝑃] + 𝑏1) + 𝑏2)    (5) 

The R² value of 0.9983 confirms that the developed ANN model with topology of 7-7-1 can 

explain 99.83% variability between the real and predicted values of TN. Fig. 3 shows the 

residual errors between real and predicted value for all datasets, which varied between the two 

models. The residual errors were very low and close to zero for ANN model, while in 

comparison, the residual errors fluctuated and were significantly larger for MLR model. The 

results demonstrate an excellent compatibility among the ANN outputs and actual values. 

Also, (George et al. 2018) developed an ANN model to simulate the gasification process of 

biomass according to the gained experimental results. Their developed model with topology 

of 7-1-4 could satisfactorily model the process with a regression coefficient (R) of 0.987 and 

MSE of 0.71. Furthermore, in another study the transmembrane pressure in an anoxic-aerobic 

membrane bioreactor was simulated using ANN model. The developed model could well 

mimic this response variable behavior in process with R2 = 0.850 (Schmitt et al., 2018). 

Therefore, the developed models in the present study benefit from higher accuracies. 
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Fig. 3. Distribution of residual errors in prediction of total nitrogen (real scale) by ANN and 

MLR approaches. 
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3.2. Total phosphorus modeling by ANN 

To model TP by ANN method, various topologies (hidden layer neuron from 1-20) were 

investigated. ANN model was developed using pH, EC, C/N, NH4/NO3, WSC, DEH enzyme 

and TN as inputs and TP as output (equation 6). The decision on the best structure of ANN 

model was based on the approach as for TN modeling. The results show that an ANN model 

with 7 hidden layer neurons provides the best performance. Fig. 4 shows the scatter plots of 

forecasted TP values versus the actual values, where the R values of training, validation and 

testing datasets in the developed ANN model were 0.9999, 0.9998 and 0.9992 respectively 

and the obtained amounts of MSE (for normalized data) were 4.2 × 10-6, 1.6 × 10-5 and 1.7 × 

10-4. Therefore, the topology of developed ANN model for TP is also 7-7-1. The best linear fit 

and R² of developed ANN model for all data are presented in Fig. 4. The R² value of 0.9991 

in prediction of TP confirms that the developed ANN model can explain 99.91% variations 

between the real and predicted values of TP. 

𝐴𝑁𝑁 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝐿𝑊 × 𝑡𝑎𝑛𝑠𝑖𝑔 (𝐼𝑊 × [𝐷𝐸𝐻; 𝑊𝑆𝐶;
𝑁𝐻4

𝑁𝑂3
; 𝑝𝐻;  𝐸𝐶;

𝐶

𝑁
; 𝑇𝑁] + 𝑏1) + 𝑏2)    (6) 
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Fig. 4. Scatter plots of forecasted total phosphorus values versus the actual values. 
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Fig. 5 shows the distribution of residual errors in prediction of TP, where the residual 

error distribution was close to the zero error. Therefore, it can be concluded that the 

developed ANN model can well mimic the behavior of TP in the vermicompost system.  

 

Fig. 5. Distribution of residual errors in prediction of total phosphorus (real scale) by ANN 

and MLR models. 
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In another study, Uzun et al. (2017) developed and applied an ANN model to predict 

the high heating value of solid biomass fuel, and demonstrated that the model was able to 

successfully predict the response variable with correlation coefficient of 0.963 and RMSE of 

0.375. However, the developed ANN model by Xu et al. (2014) did not satisfactorily predict 

the methane yield of different biomasses with R2 of 0.528. They attributed the unsatisfactory 

prediction to the existence of possible overfitting owing to use of too many parameters 

associated with various observations. 

3.3. MLR modeling  

At this step of the study, an MLR code was written in the MATLAB R2015b software to 

model the TN and TP. It is noted that the data used in MLR approach were same as the data 

used for ANN models. Equations 5 and 6 were proposed by the software as the result of MLR 

modeling for TN and TP respectively. The P-values of the developed model for TP and TN 

were 0.0102 and 0.0007 respectively. These results confirm that the developed models are 

statistically significant (p-value < 0.05). Also, Huang et al. (2011) used MLR to model some 

nutrients in composting of chicken manure and concluded that the developed MLR models 

have good performance, which is same with the present study. 

𝑻𝒐𝒕𝒂𝒍 𝑵𝒊𝒕𝒓𝒐𝒈𝒆𝒏  =  − 𝟎. 𝟎𝟐𝟐𝟔 (𝑝𝐻) −  𝟎. 𝟏𝟏𝟖𝟗 (𝐸𝐶) −  𝟏. 𝟕𝟒𝟎𝟗 (
𝐶

𝑁
)  +  𝟏. 𝟔𝟏𝟑𝟕 (

𝑁𝐻4

𝑁𝑂3
)  − 𝟎. 𝟒𝟗𝟗𝟔 (𝑊𝑆𝐶) +

 𝟎. 𝟐𝟔𝟐𝟓 (𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠) +  𝟎. 𝟏𝟓𝟓𝟑 (𝐷𝐸𝐻. 𝐸𝑛𝑧) +  𝟎. 𝟔𝟗𝟖𝟐                                                                          (5)    

𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒐𝒖𝒔  =   − 𝟎. 𝟐𝟏𝟏𝟖 (𝑝𝐻)  − 𝟎. 𝟑𝟏𝟖𝟏 (𝐸𝐶)  − 𝟎. 𝟎𝟎𝟖𝟐 (
𝐶

𝑁
)  +  −𝟎. 𝟏𝟔𝟎𝟓 (

𝑁𝐻4

𝑁𝑂3
)    −

𝟎. 𝟔𝟓𝟓𝟗 (𝑊𝑆𝐶) +  −𝟎. 𝟐𝟗𝟒𝟐(𝐷𝐸𝐻. 𝐸𝑛𝑧)  +   𝟎. 𝟒𝟎𝟑𝟏  (𝑇𝑜𝑡𝑎𝑙 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛) +  𝟎. 𝟗𝟎𝟒𝟐                (6)    
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Fig. 6. Trend of actual total nitrogen and its mimic by ANN and MLR methods. 
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Fig. 7. Trend of actual total phosphorus and its mimic by ANN and MLR methods. 

 

In another study (Zhu et al. 2010) applied MLR to predict the digestibility of some different 

biomasses. They concluded that MLR could be applied to predict digestibility. However, the 

R2 obtained was lower than the R2 of the present study. Also, Sharon Mano Pappu et al. 

(2013) studied the application of MLR in prediction of Spirulina platensis growth in outdoor 

cultures. This can grow under heterotrophic, autotrophic and mixotrophic conditions under 

subtropical and tropical conditions, and has different applications in the environment. Light 

intensity, temperature, pH, time, dissolved oxygen, nitrate, phosphate, bicarbonate and 

biomass concentrations were taken into account as the input variables. Finally, the developed 

MLR models had various correlation coefficients (R2) ranging from 0.87 to 0.97 which are 

higher than the obtained ones in the present study.  
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3.4. Comparison of ANN and MLR models in TN and TP prediction 

The prediction strength of ANN and MLR models was investigated to predict the 20 data 

points of TN and TP which were obtained from the experiments. The predicted TN and TP 

values were then compared with the real results. The R2 value, RMSE and AAD as statistical 

indices were employed to determine and compare the performance of ANN and MLR models. 

The trend of actual and forecasted data points of TN and TP nutrients by ANN and MLR 

methods shows that ANN models mimic the trend of TN and TP better than MLR models 

(Figs 6 and 7). The details of prediction, the input variables along with their values for TN 

and TP are presented in Tables 1 and 2 respectively. Table 3 presents the obtained values of 

statistical indices (R2, adjusted- R2, RMSE, AAD) in this work. The R2 value for the ANN and 

MLR in prediction of TN is 0.9983 and 0.8340, the adjusted-R2 is 0.9982 and 0.7371, the 

RMSE is 0.013 and 0.092, and the AAD is 0.241 and 1.533 correspondingly. Also, the R2 

value for the ANN and MLR in prediction of TP is 0.9991 and 0.729, the adjusted-R2 is 

0.9991 and 0.571, the RMSE is 4.3 and 71.49, and the AAD is 2.85 and 22.8. (Boniecki et al., 

2012) constructed various models of ANN to predict and model the emissions of ammonia 

released from composting process of sewage sludge. For the best-developed model, the R2 

value was 0.981 demonstrating that the developed models in the present study benefits from 

higher accuracy. In another study (Qdais et al., 2010), different ANNs were designed to 

model and control the methane production from anaerobic process operated under various 

(Organic Loading Rates) OLRs. The obtained R2 value for the best model was 0.8703, which 

was close to the value obtained in this study.  
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Table 2. Input variables of ANN and MLR models and their corresponding prediction of total 

nitrogen 

  TN (mg/kg) 

pH 

EC 

(μS/cm) C/N NH4/NO3
- 

WSC 

(mg/l) 

TP 

(mg/l) 

DEH enzyme 

(μg/g 24 h) Real ANN MLR 

7.32 712.80 102.57 15.03 319 12.46 29.54 0.35 0.36 0.30 

8.56 468.00 87.11 6.50 256 24.34 159.59 0.43 0.44 0.29 

8.85 655.20 36.19 1.94 197 75.26 261.72 0.52 0.52 0.73 

8.11 1569.60 25.31 1.00 180 99.18 320.28 0.71 0.71 0.91 

8.01 720.00 14.01 0.48 151 201.65 298.35 1.20 1.12 1.08 

7.27 748.80 80.51 16.06 286 18.86 22.16 0.43 0.42 0.53 

8.58 655.20 68.86 7.39 231 37.81 86.84 0.54 0.54 0.44 

8.69 1044.00 36.18 3.44 209 42.72 276.34 0.63 0.64 0.74 

8.24 1404.00 19.35 1.74 162 98.22 305.66 1.10 1.06 0.96 

7.93 1368.00 12.93 1.03 149 342.96 211.06 1.30 1.25 1.13 

7.56 871.15 71.63 9.99 267 24.32 11.07 0.45 0.45 0.49 

8.5 886.45 53.57 6.50 227 35.46 50.58 0.59 0.59 0.54 

8.61 900.00 34.73 2.30 223 54.56 152.27 0.73 0.74 0.69 

8.26 1296.70 19.54 1.83 151 75.34 261.72 1.10 1.10 0.94 

8.01 864.00 16.61 0.95 128 494.17 108.70 1.05 1.05 1.14 

7.5 1140.00 56.65 9.11 228 29.93 0 0.63 0.63 0.62 

8.22 994.73 55.51 5.28 228 45.82 14.40 0.52 0.52 0.52 

7.96 828.00 48.57 3.24 180 17.62 145.04 0.56 0.56 0.65 

8.21 1296.00 42.93 2.84 159 74.35 203.30 0.64 0.64 0.72 

8.12 936.00 28.16 1.27 124 415.82 94.15 0.92 0.92 0.98 
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Table 3. Input variables of ANN and MLR models and their corresponding prediction of total 

phosphorus 

pH EC 

(μS/cm) 

C/N NH4/NO3
- WSC 

(mg/l) 

DEH enzyme 

(μg/g 24 h) 

TN (mg/kg) TP (mg/l) 

Real          ANN          MLR 

7.32 712.80 102.57 15.03 319 29.54 0.35 12.46 12.51 -64.68 

8.56 468.00 87.11 6.50 256 159.59 0.43 24.34 24.88 -6.81 

8.85 655.20 36.19 1.94 197 261.72 0.52 75.26 75.43 42.10 

8.11 1569.60 25.31 1.00 180 320.28 0.71 99.18 94.94 8.33 

8.01 720.00 14.01 0.48 151 298.35 1.20 201.65 201.79 292.92 

7.27 748.80 80.51 16.06 286 22.16 0.43 18.86 13.49 2.50 

8.58 655.20 68.86 7.39 231 86.84 0.54 37.81 36.66 57.43 

8.69 1044.00 36.18 3.44 209 276.34 0.63 42.72 41.56 -12.52 

8.24 1404.00 19.35 1.74 162 305.66 1.10 98.22 88.58 134.92 

7.93 1368.00 12.93 1.03 149 211.06 1.30 342.96 357.36 267.60 

7.56 871.15 71.63 9.99 267 11.07 0.45 24.32 22.56 37.05 

8.50 886.45 53.57 6.50 227 50.58 0.59 35.46 36.21 68.28 

8.61 900.00 34.73 2.30 223 152.27 0.73 54.56 54.45 71.06 

8.26 1296.70 19.54 1.83 151 261.72 1.10 75.34 74.95 185.37 

8.01 864.00 16.61 0.95 128 108.70 1.05 494.17 494.12 360.97 

7.50 1140.00 56.65 9.11 228 0 0.63 29.93 31.94 113.45 

8.22 994.73 55.51 5.28 228 14.40 0.52 45.82 42.24 77.35 

7.96 828.00 48.57 3.24 180 145.04 0.56 17.62 17.28 155.91 

8.21 1296.00 42.93 2.84 159 203.30 0.64 74.35 69.12 101.50 

8.12 936.00 28.16 1.27 124 94.15 0.92 415.82 415.89 328.10 
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Table 3. Statistical comparison of ANN and MLR models 

    Total nitrogen   Total phosphorus 

 Index ANN MLR   ANN MLR 

R2 0.9983 0.834  0.9991 0.729 

Adjusted-R2 0.9982 0.7371  0.9991 0.571 

RMSE 0.013 0.0928  4.3 71.49 

AAD (%) 0.241 1.533   2.85 22.8 
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3.5. Sensitivity analysis 

To assess the importance (%) of pH, EC, C/N, NH4/NO3, WSC, DEH enzyme and TP on 

ANN model output (prediction of TN), a sensitivity analysis approach which partitions the 

connection weights of the developed ANN model was employed. This approach is an 

equation based technique (equation 7) that was first introduced by Garson (Baziar et al., 

2017), and was also used to determine the importance of input variables in developed ANN 

model for TN and TP. Table 5 shows the obtained ANN weights matrix in this work. Fig. 8 

presents the importance of each input parameter on the prediction of TN and TP. 

𝐼𝑗 =

∑ ((
|𝑊𝑗𝑚

𝑖ℎ|

∑ |𝑊𝑘𝑚
𝑖ℎ |𝑁𝑖

𝑘=1

) × |𝑊𝑚𝑛
ℎ𝑜|)𝑚=𝑁ℎ

𝑚=1

∑ {∑ (
|𝑊𝑘𝑚

𝑖ℎ |

∑ |𝑊𝑘𝑚
𝑖ℎ |𝑁𝑖

𝑘=1

) × |𝑊𝑚𝑛
ℎ𝑜|𝑚=𝑁ℎ

𝑚=1 }𝑘=𝑁𝑖
𝑘=1

  × 100                             (7) 

where 𝐼𝑗 is the percentage of  variable importance, W is ANN weight, 𝑁ℎ is ANN hidden 

layer neurons, 𝑁𝑖 is the number of input variables (neurons), the letters of i, h and o are 

respectively related  to the input, hidden, and output layer of ANN model, n is the number of 

output variable, k is the number of input variables, and m is the number of hidden neurons 

(Baziar et al., 2017). 
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Table 4. ANN model weights and biases for (a) total nitrogen, and (b) total phosphorus 

(a) IW LW b1 b2 

 -0.785 -0.736 0.539 -0.664 0.832 -0.629 0.413 -0.485 1.917 -0.142 

 0.936 -0.573 -0.867 -0.285 0.912 -0.602 -1.076 0.499 -1.019  

 -0.594 1.080 1.540 -0.929 -0.042 -0.658 -0.161 -1.083 -0.952  
TN 

(mg/kg) 0.473 0.380 0.366 -0.572 0.439 0.711 -0.900 0.504 0.545  

 -1.437 1.233 -0.551 -0.404 -0.156 -0.269 0.508 1.156 -0.244  

 0.135 -0.292 -0.475 0.694 -0.427 -1.407 0.740 0.528 1.412  

  0.630 0.124 0.967 -0.030 1.438 -0.032 -0.631 -0.875 2.468   

(b) IW LW b1 b2 

 -0.408 -1.138 1.645 0.942 0.295 -0.733 -0.342 -0.845 1.702 0.698 

 0.204 -0.624 0.265 -0.812 -1.337 -1.550 -1.286 0.930 -0.906  

 -0.863 -2.009 -1.195 1.116 -0.242 -1.707 2.550 2.854 -1.946  
TP 

(mg/l) 1.676 0.751 -0.672 -0.354 0.775 -1.217 -0.260 2.153 0.596  

 -0.281 0.093 -0.297 0.220 0.113 1.129 -2.008 0.422 -0.053  

 0.968 0.088 1.429 1.135 -0.961 -0.300 -0.951 -1.259 1.764  

  0.716 0.443 -0.676 0.523 0.975 0.472 -0.661 -0.205 2.163   
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Fig. 8. The percentage of variable importance in (a) total phosphorus, (b) total nitrogen from 

the ANN model. 
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As observed in Fig. 8, all input layer variables had significant effect on ANN outputs. 

However, the highest degree of importance was attributed to TN (17.76%) and C/N ratio 

(18.33%) as shown in Fig. 8(a) and 8(b), respectively. In addition, in a sewage sludge 

composting process study (Boniecki et al., 2012), four different ANN models were developed 

to predict the ammonia emissions. Their sensitivity analysis of the process demonstrated that 

C/N ratio and pH were two of the most efficient variables affecting the process performance  

 

4. Conclusions 

Nutrient recovery from waste is a challenging task and is receiving global interest to support 

UN sustainable development goals. This study focused on TN and TP recovery from 

vermicompost treatment of MSW, with the dual purposes of solid waste treatment and 

resource recovery. Four different treatments with various ratios of MSW to COMs were 

conducted, and the experimental results were used to build ANN and MLR models which 

were capable of predicting TN and TP changes during vermicompost. The models were 

compared by statistical analysis including R2, adjusted-R2, RMSE and AAD, demonstrating 

that ANN model provided better prediction than MLR. 
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