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Electron-doped SrTiO3 is a well-known n-type thermoelectric
material, although the figure of merit of SrTiO3 is still inferior
compared with p-type metal oxide-based thermoelectric
materials due to its high lattice thermal conductivity. In this
study, we have used a different amount of the non-ionic
surfactant F127 during sample preparation to introduce
nanoscale porosities into bulk samples of La-doped SrTiO3. It
has been observed that the porosities introduced into the bulk
sample significantly improve the Seebeck coefficient and
reduce the thermal conductivity by the charge carrier and
phonon scattering respectively. Therefore, there is an overall
enhancement in the power factor (PF) followed by
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a dimensionless figure of merit (zT) over a wide scale of temperature. The sample 20 at%

La-doped SrTiO3 with 600 mg of F127 surfactant (SLTO 600F127) shows the maximum PF of
1.14 mWm−1 K−2 at 647 K which is 35% higher than the sample without porosity (SLTO 0F127),
and the same sample (SLTO 600F127) shows the maximum value of zT is 0.32 at 968 K with an
average enhancement of 62% in zT in comparison with the sample without porosity (SLTO 0F127).

1. Introduction
More than 60% of the total energy produced worldwide is being wasted as heat. This leftover heat can be
used for producing necessary electrical energy by thermoelectric (TE) materials [1–4]. The full potential of
TE materials can be used by using them with other energy conversion technologies [5]. Thermoelectric
performance of a material is assessed by the dimensionless figure of merit, zT ¼ S2sT=k, where, S, σ,
T and κ are the thermopower (Seebeck coefficient, μV K−1), the electrical conductivity (S m−1), the
absolute temperature (K) and the thermal conductivity (W m−1K−1), respectively [6–9]. The term S2σ is
called the power factor (PF) of the thermoelectric material as well. For power generation application, it
is even more important for a thermoelectric material to have improved PF than to have high
efficiency, since most ubiquitous heat sources are free [10]. The relationship of the Seebeck coefficient
to carrier concentration for a doped semiconductor can be expressed as

S ¼ 8p2k2B
3eh2

m�T
p

3n

� �2=3
,

where kB stands for Boltzmann constant, e for electron charge, h refers to Planck’s constant, m* accounts
for the effective mass of the carrier, T is the absolute temperature and n the carrier concentration [8]. The
electrical conductivity varies proportionally with carrier concentration and carrier mobility, σ = neμ,
where μ is the carrier mobility. The overall thermal conductivity of a material is the product of the
thermal diffusivity, the heat capacity, and the material density, κ = αCpρ, where α, Cp and ρ are the
thermal diffusivity, the heat capacity at constant pressure and the material density, respectively [11].
Thermal conductivity κ has two components: κel is the thermal conductivity from the movement of
the electrons and the holes, and κph is the contribution from the movement of phonons through the
lattice, κ = κph + κel [7]. From Wiedemann–Franz Law, it is perceivable that there is an increase in κel
with increasing electrical conductivity, σ, and temperature, T. κel = LTσ, where L denotes the Lorenz
number. Normally, L is treated as a universal factor with the value of 2.44 × 10−8 WΩ K−2 for a
degenerate semiconductor [7]. However, there is a significant deviation in the Lorenz number of non-
degenerate semiconductors, where L converges to 1.5 × 10−8 WΩ K−2 [12]. Since the electronic thermal
conductivity κel is related to the electrical conductivity and high electrical conductivity is a
prerequisite for a TE material, the lattice thermal conductivity κph has to be reduced to lower the

overall thermal conductivity. The κph can be characterized by kph ¼ 1
3
CvVl, where the heat capacity

(Cv) and the phonon velocity (V ) are constant, so the κph mainly relies on the phonon mean free path
(MFP) (l ) [3]. It has been reported that nanoscopic pores in silicon thin film can suppress the lattice
thermal conductivity to the amorphous limit [13]. A modelling study on nanoporous SiGe suggests
that the enhancement of the Seebeck coefficient by scattering only low-energy electrons and a decrease
in the lattice thermal conductivity can take place because of nanoscale porosity in the material, but
high sample density is essential to prevent deterioration in the electrical conductivity [14]. The effects
of mesoporous structure on the TE properties of doped SrTiO3 thin film were investigated. The
mesoporous structure suppresses the thermal conductivity and improves the Seebeck coefficient
because of phonon and carrier scattering. The incorporation of Brij-S10 surfactant into doped SrTiO3

film increases the zT [15,16].
Conventional thermoelectric materials, for example, Bi2Te3, PbTe and Cu2Se exhibit high

thermoelectric performance, but these materials have some limitations such as poor lifetime at high
temperature in air, limited sources and high toxicity. On the other hand, metal oxide-based TE
materials have a high lifetime at high temperature, are low-cost and non-toxic, and have minimal
impact on the environment [17]. Some p-type metal oxide-based TE materials, such as NaCo2O4,
layer-structured cobalt oxide and BiSeCuO, exhibit excellent TE properties. The highest value of the
figure of merit reaches unity (zT = 1.4) for Bi0.875Ba0.125CuSeO [18]. As compared with the p-type
oxides, n-type oxide materials have lower thermoelectric performance. To fabricate a TE module
based on oxide materials, the zT of n-type oxides should be improved to the level of p-type materials.
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Strontium titanate (denoted as SrTiO3) is a well-known n-type thermoelectric material with the cubic

perovskite ABO3 crystal structure having the lattice parameter of 0.3905 nm. The melting temperature
of SrTiO3 is 2080°C which gives it chemical as well as thermal stability at high temperature. The
lattice thermal conductivity of SrTiO3 is high, 12 W m−1 K−1 at room temperature [11]. SrTiO3 with
appropriate stoichiometry is an insulator having a bandgap of 3.2 eV. However, the electrical
conductivity can be changed from insulating to metallic by substitutional doping of SrTiO3 with La3+

or Nb5+. Several methods are available to tune material properties such as chemical doping, pressure,
solid-state reaction and so on. However, chemical doping seems to be an effective approach to
improve the material performance without physical damage of the material [9,19–22]. It has been
reported that high zT has been achieved for La-doped SrTiO3 by creating a defective perovskite lattice
containing A- and O-site vacancies with mixed-valence Ti3+ and Ti4+ in the B-sites [23,24]. The effects of
spark plasma sintering (SPS) time on thermoelectric properties of lanthanum-doped SrTiO3 have also
been reported [25]. In another report, La-doped SrTiO3 nanostructured bulk has been synthesized by SPS
from chemically synthesized colloidal nanocrystals [26]. It has been reported that the addition of
nanosized Ag metal particles in Sr0.9La0.1TiO3 causes an increase in the carrier concentration and that the
electrical connection is built into an Ag particle between the grains. They improve the electrical
conductivity and reduce the thermal conductivity [27]. The thermoelectric properties of Sr1−xLaxTiO3

nanoparticle compacts which are fabricated by the hydrothermal process followed by cold pressure were
investigated [28]. The morphology of the nanoparticle compacts had abundant interfaces, which
effectively reduced phonon’s MFP.

So far, the effect of nanoscale porosity on the TE properties of La-doped SrTiO3 bulks has not been
published. Here, it is reported for the first time that nanoscale porosity in a La-doped SrTiO3

bulk sample has a significant impact on its thermoelectric properties. The nanoscale porosity
suppresses the thermal conductivity and significantly enhances the Seebeck coefficient by the phonon
and carrier scattering respectively. Therefore, there is an overall improvement in the PF and the zT of
La-doped SrTiO3.
2. Results and discussion
The XRD patterns of La-doped SrTiO3 calcined powders with different amounts of F127 surfactant are
shown with respect to undoped SrTiO3 in electronic supplementary material, figure S1. The XRD
patterns match with Joint Committee on Powder Diffraction Standards (JCPDS) card number 00-001-
1018, which confirms that the main phase is strontium titanium oxide (SrTiO3). There are some
impurity phases such as TiO2 and SrTi12O19 [29] with peaks in the 2θ range of 25°–35° in the XRD patterns.

Electronic supplementary material, figure S2a,b shows the nitrogen absorption/desorption isotherms
and pore size distributions of La-doped SrTiO3 calcinated powder with different amounts of F127
surfactant, respectively. It is clear from the figures that absorption/desorption of nitrogen gas and pore
volume increase with the amount of F127 surfactant, which indicates that the number of pores increases
in the sample with the amount of surfactant. The average pore size is 8–9 nm in both the samples,
which is in the range of mesoporosity (electronic supplementary material, table S1) since the pore
diameter depends on the size of the micelle made by F127. The specific surface area and pore volume
also increase with the amount of surfactant, which is also an indication that the pore number increases
with the amount of surfactant (electronic supplementary material, table S1).

SEM images of the La-doped SrTiO3 calcinated powders with different amounts of F127 surfactant
also reveal that the number of pores increases with an increasing amount of F127 surfactant. The
SLTO 0F127 sample (electronic supplementary material, figure S2c) has no porosity because it has zero
amount of surfactant. There are a few mesoscale pores in the SLTO 200F127 powder (electronic
supplementary material, figure S2d). The SLTO 600F127 powder has more mesopores compared with
the other samples (electronic supplementary material, figure S2e). The SEM images also show that
some pores have become agglomerated, which is because of the high calcination temperature [30].

Figure 1b shows the powder XRD patterns of the La-doped SrTiO3 bulks with different amounts of
F127 in comparison with undoped SrTiO3. There is no impurity phase that is detectable in the XRD
patterns. The enlarged (200) and (211) diffraction peaks (figure 1c,d ) are clearly shifted to a higher
angle. This indicates that La3+ has been successfully replaced on Sr2+ sites in the crystal lattice of
SrTiO3 and it is because the La ion has a fixed 3+ valence and La ion has a smaller ionic radius of
1.36 Å than that of Sr2+ (1.44 Å) [31]. In figure 1c,d, the peaks are Kα1 and Kα2 doublets rather than
single peaks [32]. The extracted lattice parameters from the XRD patterns also show that the shrinkage
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Figure 1. (a) Cubic perovskite crystal structure of SrTiO3, (b) XRD patterns of La-doped SrTiO3 bulk samples with different amounts
of F127 surfactant in comparison with undoped SrTiO3. (c) Enlarged (200) diffraction peak, (d ) Enlarged (211) diffraction peak. The
enlarged peaks are Kα1 and Kα2 doublets rather than single peaks [32].
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in the lattice is caused by the La doping. The shrinkage in lattice is from 0.3901 nm for undoped SrTiO3 to
0.389 for 20 at% La doping. The lattice parameter of samples is given in electronic supplementary
material, table S2.

The density of the SLTO-F127 samples is listed in electronic supplementary material, table S3. The
density of samples decreases slightly with increasing amounts of F127 surfactant in the sample. Since
all the samples are sintered under the same sintering conditions, the reduction in density is an
indication of the change in porosity inside the samples. The SEM cross-sectional images of the bulk
samples (figure 2) also reveal that the number and size of the pores inside the samples change with the
amount of F127 surfactant. The SLTO 0F127 sample (figure 2a,d ) has no porosity, and the grains have
become agglomerated. In figure 2b,e, the SLTO 200F127 sample has few nanoscale porosities in between
grains. In the SLTO 600F127 sample, there are more mesopores in between grains compared with the
sample SLTO 200F127, as shown in figure 2c,f. It can be also observed from figure 2 that the particle size
increases with amount of surfactant in the sample. Increase in particle size could be the reason to keep
the electrical conductivity unchanged, but, on the other hand, the porosities in between particles are
responsible for phonon scattering which helps to reduce the phonon thermal conductivity.

The dependence on temperature of σ, S, PF and κ for the La-doped SrTiO3 samples with different
amounts of F127 is shown in figure 3. For comparison, previously reported results [25,26,33,34] are
shown in figure 3, as well. The undoped SrTiO3 is found to be an insulator; however, its electrical
conductivity has been improved with 20 at% La doping in each sample and this result is comparable
with the previously reported results [23,24,26,35]. The electrical conductivity, σ of all the samples
increases initially with temperature up to 647 K (figure 3a), and then it starts to decrease with
temperature afterward. There is no substantial change in σ for the samples (figure 3a) with the
different amount of F127 surfactant. The carrier concentration in all the samples is the same since
the doping level is the same for all the samples.
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The Seebeck coefficient, S of all the samples is negative, and it increases in magnitude with
temperature (figure 3b). There is a significant improvement in the Seebeck coefficient with increasing
amounts of F127 surfactant which could be due to the scattering of charge carriers by the pore.
The SLTO 600F127 sample shows a high Seebeck coefficient compared with other samples over a wide
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scale of temperature. The maximum value of the Seebeck coefficient for this sample is 140 µV K−1 at
325 K which is 52% higher than the sample without porosity (SLTO 0F127).

The PF for the samples is presented in figure 3c. Owing to the improvement in the Seebeck coefficient,
there is a significant improvement in the PF also. The PF of the samples increases with the temperature up
to 647 K, where it has its peak value. The SLTO 600F127 sample shows the highest value of the PF,
1.14 mWm−1 K−2 at 647 K, which is 35% higher than the PF of the sample without porosity (SLTO 0F127).

Figure 3d exhibits the change in the thermal conductivity, κ of the samples with temperature. The
thermal conductivity of the SLTO 0F127, SLTO 200F127 and SLTO 600F127 is found to be 3.03, 2.88
and 2.75 W m−1 K−1, respectively, at temperature 967 K. The gradual reduction in thermal conductivity
has been observed with an increasing amount of surfactant. Moreover, the κ of all the samples is
found to be significantly lower than most of the published results [25,26,33,34]. The electronic thermal
conductivity and the phonon thermal conductivity are presented in electronic supplementary material,
figure S3a,b, respectively. The reduction in total thermal conductivity over the wide scale of
temperature is due to the scattering of phonons by the nanoscale porosity. The electronic
supplementary material, figure S3b is the evidence of a reduction in κPh due to the nanoscale porosity.

Because of the substantial improvement in the Seebeck coefficient and reduction in the thermal
conductivity, there is an overall improvement in the zT of the porous samples (SLTO 200F127 and SLTO
600F127) compared with the non-porous sample SLTO 0F127 as shown in figure 4a. There is also a
substantial improvement in the zT over a wide scale of temperature compared with the previously reported
result of 20 at%La-dopedSrTiO3 [23]. The SLTO600F127 sample shows the highest value of zTof 0.32 at 968 K.

The improvement in zT of the SLTO 600F127 in percentage compared with the sample SLTO 0F127 is
shown in figure 4b. It is important to mention that the average improvement of zT in the SLTO 600F127 is
found to be 62% compared with the SLTO 0F127. The efficiency of samples is calculated according to the
literature [36]. The efficiency of samples SLTO 0F127 and SLTO 600F127 compared with the reported
results is shown in figure 4c [23]. It is found that the efficiency for the SLTO 600F127 is greater than
5% at 968 K, which is around 26% higher than the SLTO 0F127 sample. The compatibility factor is
important to cascade a thermoelectric material with another one to fabricate the segmented
thermoelectric device. Two thermoelectric materials with a close compatibility factor are suitable for
cascading. The compatibility factor of samples (SLTO 0F127, SLTO 200F127, SLTO 600F127) for the
segmented thermoelectric generator is calculated based on the literature [37] as shown in figure 4d. It
could help to find the suitable thermoelectric material for cascading with La-doped SrTiO3.
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3. Conclusion
La-doped SrTiO3 bulk samples with F127 surfactant in different amounts have been fabricated for the first
time and investigated successfully. The experiments reveal that there is an impact of nanoscale porosity on
the transport properties of La-doped SrTiO3. It has been observed that the Seebeck coefficient increases,
while the thermal conductivity is reduced substantially by introducing porosity into the bulk sample
because of the carrier and phonon scattering by the nanoscale pores. Therefore, there is an overall
enhancement in the PF and the zT. The sample, SLTO 600F127, exhibits the highest value of the PF,
1.14 mWm−1 K−2 at 647 K, which is 35% higher than for the sample without porosity (SLTO 0F127).
The same sample (SLTO 600F127) also exhibits the maximum value of the zT is 0.32 at 968 K with an
average enhancement of 62% in zT in comparison with the sample without porosity (SLTO 0F127).
4. Experimental
4.1. Synthesis of La-doped SrTiO3 (SLTO) powders with nanoscale porosity
First, strontium acetate (0.26 g) and lanthanum acetate hydrate (0.11 g for 20 at% La doping) were dissolved
into acetic acid solution (3.0 ml) at 323 K with stirring. After the solution was cooled down to room
temperature, titanium butoxide (0.61 g) was further added to it. The commercially available poly
(ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) type triblock copolymer, Pluronic F127
(PEO106PPO70PEO106), was used as the soft-template. Pluronic F127 in different amounts (200 and
600 mg) was dissolved in ethanol solution (3.0 g) in another beaker. The above two solutions were mixed
together to prepare the precursor solutions. Then, the precursor solutions were transferred onto filter
paper. Finally, the filter papers were calcined for 10 min at 873 K to remove the templates (figure 5).

4.2. Preparation of La-doped SrTiO3 bulk
In the secondstageof fabrication (figure 5), highlydensebulk samples of 20 mmdiameterandaround1.5 mm
thick (electronic supplementary material, table S1) were prepared from the La-doped SrTiO3 calcinated
powders by SPS (Thermal Technology SPS model 10−4) for 15 min at 1423 K with 60 MPa pressure in
vacuum. Using a cutting machine (Struers Accutom-50), the bulk samples were shaped into rectangular
bars and round discs for transport measurement. La-doped SrTiO3 samples with different amounts of
F127 surfactant were denoted by the amount of surfactant, such as SLTO xF127 (x = 0, 200 and 600).

4.3. Sample characterization
The room temperature powder XRD patterns were determined by the X-ray diffractometry (Cu Kα, GBC
MMA, λ = 1.5418 Å). XRD patterns were measured with a step size of 0.02° and speed of 2° per min from
10° to 80°. The morphologies and nanostructures of the powder and bulk samples were studied using
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field-emission scanning electron microscopy (FE-SEM, JEOL 7500). The surface area and porosity of

powder samples were inspected by Brunauer–Emmett–Teller and Barrett–Joyner–Halenda analysis of
nitrogen absorption–desorption data collected on a Tristar 3020 system (Micrometrics Instrument
Corporation) after degassing at 150°C overnight. The S and the σ were measured from room
temperature to 968 K under vacuum using Ozawa RZ2001i. The thermal diffusivity was measured
under vacuum conditions using the instrument, LINSEIS LFA 1000, and the specific heat was
measured under argon atmosphere by DSC-204F1 Phoenix. The weight and dimensions of a
rectangular sample were used to determine the sample density. The results of the samples are
confirmed by repeating all the measurements several times.
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