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ABSTRACT 

 

This study analyzes the impact of gap size for two reaction turbine runners, to provide 

recommendations for the maximum of design and manufacture of open flume turbines. Two 

number of blades were tested: five blades (Runner A) and six blades (Runner B). Three 

methods were used for this investigation: the theoretical analysis to design the turbine, 

experiments to determine the actual turbine performance and to validate the design and the 

manufacturing processes, and computational fluid dynamics to study physical phenomena 

and re-check runner velocity triangles. From the results, it can be seen that gaps between 

blades can alter the velocity vector at the outlet, thus they can unbalance the runner rotation; 

this could cause cavitation as a result of the decrease in the velocity of the water on the outlet 

with the increase in pressure. This pressure increase causes the draft tube not to function 

optimally, and, consequently, the torque decreases because the water pressure in the draft 

tube approaches the atmospheric pressure. Two conditions must be satisfied to maximize the 

turbine performance: minimizing the radial velocity at the outlet by flow after passing 

through the turbine is made swirl; and avoid forming gaps between the blades.  

 

Keywords: Open flume turbine; velocity triangle; Euler equation; energy conversion. 

 

 

INTRODUCTION 

 

The economy of Indonesia has grown rapidly in the last two decades, thus increasing the 

country’s energy demands; the pattern of energy consumption, energy scenario, and 

sustainable energy in the country has been extensively discussed by Hasan et al. [1,2]. In 

2012, Indonesia’s population was more than 230 million. The country uses the equivalent of 

893 thousand barrels of oil, and is ranked 13th in the world among primary energy users, 

being the third largest emitter of greenhouse gases in Asia (392.9 million tonnes of CO2). In 

response to this issue, Indonesia is trying to develop alternative and renewable energy, 

including geothermal [3], bioenergy [4], biodiesel [5–8], and bioethanol [9–11]. The country 
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also actively promotes energy efficiency and sustainable energy programs to help prevent 

global warming [12–15].  

Increasing the electrification ratio is an effective way to improve living standards [16]. In 

some developing countries, the electrification ratio is increased using off-grid power plants 

to serve small local communities that are not served by the national electrical grid [17]. In 

this context, pico hydro is a potentially effective strategy, especially because of its low pay 

back time and low life-cycle cost per kilowatt compared to other electric power systems [18]. 

A pico hydro plant is defined as an hydropower plant with a power capacity below 5 kW 

[18]. Pico hydro is easy to manufacture and operate, and its design and construction materials 

(e.g., wood for water wheels) are readily available in remote areas. Therefore, pico hydro is 

one of the most appropriate energy solutions for remote areas [19]. 

However, the main problems with the development of pico hydro in Indonesia is its 

investment cost and its low and unstable efficiency; these problems are due to low income 

per capita and a lack of public knowledge within the community. Pico hydro turbines like 

Pelton, Turgo, Cross-flow, Francis, and Kaplan are not cost-effective and are quite complex 

to install using local manufacturers and expertise [20]. On the other hand, water wheels and 

propeller turbines are feasible and low-cost alternatives [21]; this study focuses on propeller 

turbines. 

Propeller turbines are reaction turbines with adjustable or fixed rotor blades [22]. 

When the blade positions can change according to the flow rate and head, propeller turbines 

are called Kaplan turbines. The hydraulic range for Kaplan turbines with adjustable blades is 

3080 m, and the range for propeller turbines is 530 m [22]. 

An open flume turbine (OFT) is a propeller turbine that can generate power with an 

average efficiency of more than 50% [22]. OFT guide vanes are fixed, thus no dam is needed, 

as the inlet goes directly in the flume. The advantage of the OFT compared to Kaplan and 

propeller turbines is its lower investment cost due to its simple blade shape and fixed guide 

vane. The OFT can be effectively applied for power output under 5 kW with less than 5 m 

head [23]. In addition, the maintenance, installation, and operational costs of OFTs are 

relatively easier when compared with Kaplan turbines. This is why some pico hydro turbine 

researchers use OFTs for remote areas [24–27]. 

Several previous studies have examined ways to improve the performance of 

propeller turbines. For example, Amromin [28] studied the cavitation of propeller turbines, 

and Simpson and Williams [29] researched blade design to optimize the performance of a 

propeller turbine. Arrieta et al. [30] observed the maximum deformation received by the 

propeller blade under various conditions. A study by Alexander et al. [31] determined the 

effect of specific speeds (𝑛𝑠) of the propeller turbine on the power generated; they concluded 

that the specific speed is related to the power generated by the turbine, and that the specific 

speed of 242 achieved the highest hydraulic efficiency of  75%. Singh and Nestmann [32] 

investigated the relative dominance of the size and number of blades on a turbine efficiency 

and concluded that the number of blades was more influential than blade size on the power 

generated, due to the slip effect and the loss mechanism on the runner. Swiderski et al. [33] 

developed a method for optimizing the blade shape to improve a turbine efficiency and 

suppress the cavitation of the turbine blades. Ramos et al. [34] analyzed four penstock 

systems commonly used with propeller turbines, and recommend that open-channel systems, 

such as the open flume, should be used, since their hydraulic losses are smaller than the losses 



Investigation of the effect of gaps between the blade of open flume pico hydro turbine runners 

5495 

of the Kaplan turbines. Bozic and Benizek [35] identified the profile and secondary losses of 

OFTs using numerical methods. 

The OFT uses the transfer of kinetic energy from the water to the blade combined 

with the pressure difference produced by the draft tube [22]. The design of a OFT is based 

on the velocity triangle analysis, e.g. Necleba [36]. However, Nechleba’s analysis has not 

been fully proven, as indicated by Othman et al. [37].  

This study examines two problem areas that may be linked to the performance of the 

OFT: the Euler equation and the velocity triangle theory. Ho-Yan [24] has claimed that the 

Euler equation is not helpful when designing an OFT runner, because the equation only 

suggests that energy conversion is maximized by decreasing the axial velocity at the outlet 

side (𝐶𝑥2
), but does not recommend a method for accomplishing this. In addition, the velocity 

triangle theory does not account for losses. Moreover, the velocity triangle analysis becomes 

inaccurate in cases where the designer is unaware of changes in the velocity vector that may 

result from manufacturing defects. To provide recommendations for the design and 

manufacture of OFT runners to maximize the conversion of kinetic and potential energy, this 

study will analyzes the impact of gap size in two runners, called Runner A and Runner B; 

Runner A has five blades, while Runner B has six. 

This study uses three methods to investigate the mismatches between expected and 

actual turbine power outputs. Analytical methods are used to design the turbine, and the 

method of experimentation is used to determine the actual performance of the turbine. 

Finally, a computational fluid dynamics (CFD) simulation is used to study the physical 

phenomena and re-check the velocity triangle of the turbine runner to detect possible 

mistakes in the design and manufacturing processes.  

 

 

METHODS AND MATERIALS 

 

Turbine Runner Geometry  

The specific speed (𝑛𝑠) is the parameter most frequently used to determine which type of 

turbine should be used for certain conditions. The specific speed is the speed of a turbine that 

has geometry identical to the original turbine and is capable of producing unit power under 

the unit head [22]. The specific speeds of open flume or propeller turbines range from 

3001000 m-kW [38]. Table 1 is used to determine the optimal number of blades (z) and the 

optimal hub-to-tip ratio (
𝑑ℎ

𝐷
): 

 

Table 1. Relationship between 𝑛𝑠, 
𝑑ℎ

𝐷
, and z 

 

Specific speed (ns) 1000 800 600 400 350 300 

Hub-to-tip ratio (
dh

D
) 0.3 0.4 0.5 0.55 0.6 0.7 

Number of Blades (z) 3 4 5 6 8 10 
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The blade is designed using the velocity triangle analysis to avoid uneven turbine rotation 

from hub to tip (see Figure 1). 

 

 
 

Figure 1. Velocity triangle analysis on OFT 

 

In Figure1 𝐶 is the absolute velocity, 𝑊 is the relative velocity, 𝑈 is the blade rotational 

velocity, the subscripts of 𝑥 and 𝑟 are the axial and the radial directions, 𝜔 is the rotational 

velocity, and 𝑅 is the radial of the runner. The OFT is categorized as an axial turbine. 

To maintain the stability of the turbine rotation, the absolute velocity angle (𝛼) and 

relative velocity angle (𝛽) at the inlet and outlet sides must be adjusted to blade rotational 

velocity (𝑈). After determining 𝛽 and 𝛼 for each piece of the blade, the stagger angle (𝜉) 

should be defined, which is the angle between the chord line of the airfoil blade and the axial 

reference line [24]. 

In this study, the specific speed (𝑛𝑠) was chosen as equal to 469.25 m-kW. If this 

value is compared with the information in Table 1, the recommended number of blades for 

this value is either five or six. Thus, this study uses two runner designs: five blades for Runner 

A and six blades for Runner B. Runner A uses a camber-twist blade design to facilitate the 

manufacturing process and its analysis. This is one of the advantages of Runner A compared 

to Runner B. However, it was predicted that Runner B would have a higher efficiency than 

Runner A, due to the predicted lift and drag forces of Runner B being higher than the forces 

of Runner A (since the shape of its blades use an airfoil concept). Consequently, Runner B 

manufacture will be more difficult than Runner A. Moreover, it will take longer to design 

Runner B than Runner A, as 𝜉 has to be analyzed first, so that the type and number of airfoils 

will have the optimal 𝐹𝐿 and 𝐹𝐷 at a predetermined 𝛽 angle.  

The geometry of Runners A and B can be seen in Table 2 and 3. The values 𝐶𝑥2
, 𝐶𝑟1

, 

and 𝛼1 (1.3 m/s, 4.06 m/s, and 64.44°, respectively) are constant along the blade of Runner 

B, while for Runner A, only 𝐶𝑟1
 is constant (i.e., 4.06 m/s). 
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Table 2. Dimensional velocity, angle, and NACA airfoil of Runner B 

 

𝑑ℎ/𝐷 
𝑈 𝐶𝑥1

 𝛼2 𝛽1 𝛽2 
𝛼𝑎𝑒𝑟𝑜𝑓𝑜𝑖𝑙 

𝑁𝐴𝐶𝐴 

𝑎𝑒𝑟𝑜𝑓𝑜𝑖𝑙 
(m/s) (m/s) () () () 

1 9.73 −1.15 −67.08 17.86 14.02 1.92 6506 

0.9 8.76 −1.42 −62.38 20.02 14.95 2.54 6406 

0.8 7.79 −1.76 −57.05 22.74 15.89 3.42 6306 

0.7 6.81 −2.2 −51.01 26.25 16.78 4.73 4506 

0.6 5.84 −2.78 −44.32 30.92 17.5 6.71 4409 

0.5 4.87 −3.6 −37.05 37.32 17.8 9.76 4309 

0.4 3.89 −4.82 −29.39 46.36 17.32 14.52 2412 

 

 

Table 3. Dimensional angle and velocity of Runner A 

 

𝑑ℎ/𝐷 
𝑊 𝑈 𝐶𝑥1

 𝛽 𝛼 

(m/s) (m/s) (m/s) () () 

1.0 3.90 3.8 −3.7 28.42 47.66 

0.7 4.01 5.3 −3.3 25.38 50.89 

0.6 4.08 6.8 −2.8 23.04 55.41 

0.5 4.15 8.2 −2.5 20.62 58.38 

0.4 4.19 9.7 −2.1 18.97 62.65 

 

Figures 2-a and Figure 2-b, respectively, are Runners A and B, based on Tables 2 and 3. 

 

 

  

a) Runner A (b) Runner B 

 

Figure 2. OFT runners 

 

After all variables in Figure 1 have been defined, the torque (𝜏) analysis of the blade is 

received. The 𝜏 of each blade length is determined using Equations (1)(3), 

𝜏 = ∑(𝐹𝐿𝑖
cos 𝛽𝑖 − 𝐹𝐷𝑖

cos 𝛽𝑖)𝑟  (1) 
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Where 𝐹𝐿𝑖
 and 𝐹𝐷𝑖

 are the coefficients of lift and drag, respectively. 

The incoming flow to the blade is assumed to be shock-free; hence, 𝑊1 has a direction 

that aligns with the angle 𝛽1. If the absolute velocity vector (𝐶) on the outlet side has an axial 

direction that is parallel to the pivot axis, then 𝐶2 = 𝐶𝑟2
. Euler’s equation for the OFT can 

then be written as (assumptions 𝑈1 = 𝑈2 = 𝑈): 

 

𝐸 =
𝑈(𝐶𝑥1

− 𝐶𝑥2
)

𝑔
  (2) 

From Equation (2), it can be determined that performance will be optimized if the axial 

velocity on the outlet side is zero (i.e., 𝐶𝑥2
= 0). 

 

Head Loss Analysis 

To maintain a close match between the mathematical predictions and the actual conditions, 

an analysis of head losses that occur in the piping system was conducted. In the OFT, these 

losses occur in the draft tube (𝐻𝑓) and penstock (𝐻𝐿) [39]. To analyze 𝐻𝐿, that occurs before 

the spiral volute, it was assumed that the channels are rectangular. The water passing through 

the channel before entering the turbine experiences head loss due to friction [39]. Because 

measurements are made at five locations along the channel prior to the turbine, the head loss 

analysis will be carried out for each channel segment, and the total channel loss (𝐻𝐿 𝑡𝑜𝑡𝑎𝑙), 

𝐻𝑓, and 𝐻𝐿 are expressed, respectively, as 

𝐻𝑓 =
8 𝑓 𝐿 𝑄2

𝜋2 𝑔 𝐷5
 (3) 

𝐻𝐿𝑖
=

𝑓 𝐿𝑖  𝑄𝑖
2(2𝑡𝑖 + 𝑙𝑖)

8 𝑔 𝑡𝑖
2𝑙𝑖

3    (4) 

𝐻𝐿 𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐻𝐿𝑖

5

𝑖=1

 (5) 

Where f is the coefficient of iron friction, t is the channel height, l is the channel width, and 

L is the distance of each measurement point (1.2 m) (see Figure 3). 

 

Output Power Analysis 

The power output is a function of torque (𝜏) and angular velocity (𝜔). The torque is a function 

of force (𝐹) and arm, which, in this case, is the radius of the turbine (𝑅𝑟𝑢𝑛𝑛𝑒𝑟), if the force is 

considered to be applied at the blade tip. The angular velocity is derived from the rotational 

speed (𝑛). These relationships are expressed as 𝑃𝑚𝑒𝑐ℎ =  𝜏 ×  𝜔. Since the measured ones 

are force with unit of N and angular velocity with unit of rpm, which must be converted to 

N·m and rad/s, then 

𝑃𝑚𝑒𝑐ℎ = 𝐹 ×  𝑅𝑟𝑢𝑛𝑛𝑒𝑟  ×  
2 ×  𝜋 ×  𝑁

60
  (6) 

The power generated (𝑃𝑔𝑒𝑛) is a function of voltage (𝐸) and current (𝐼) [38]: 
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𝑃𝑔𝑒𝑛 =  𝐸 ×  𝐼  (7) 

Where 𝐸 is voltage (V) and 𝐼 is current (A).  

 

Experimental Method 
Experiments were conducted to validate the mathematical analysis used in this study. Four 

variables were measured: water discharge, torque, turbine rotational speed, and power output 

(in terms of its voltage and current). The tests were conducted in a laboratory with an 

available water head of 2.71 m; the runner and hub diameters were 0.124 m and 0.05 m, 

respectively. Two runners were compared: Runner A, with five blades, and B, with six. The 

inlet and outlet angle of attack of Runner B were greater than those of Runner A. The 

generator specifications include four poles with three phases and a maximum rotational speed 

of 1500 rpm. 

The schematic diagram of the turbine system is shown in Figure 3. The measurement 

of discharge was done manually at five points, each point is 1.2 m: measure of water height 

to determine the cross-sectional flow area of water and flow velocity using a 0.03 m diameter 

of cork (fishing cork). This measurement approach was used to minimize errors. The angular 

velocity of the turbine was measured using a tachometer DT-6236B with an accuracy of 

0.05%, and the torque load was measured using a cell with an accuracy of 0.02% that was 

connected to the data acquisition unit. Multimeters were used to measure AC voltage and 

current with accuracies of 1.2% and 2%, respectively. 

To minimize the effects of measurement errors, statistical analyses were conducted 

on the data obtained. Before the data could be analysed, data filtering was done using 

Chauvenet’s criteria. The five stages of the analysis and data interpretation were: 

determination of the average value of the sample, estimation of the standard deviation, 

determination of the default error value, estimation of the total uncertainty and that of each 

variable. 

 

 
 

Figure 3. Schematic of OFT 

 

CFD Simulations 

This study used ANSYS Fluent 15.0 to perform CFD simulations because this software can 

be considered as a powerful tool to describe the hydraulics of reaction turbines [17,40]. The 

CFD simulations were used to verify the results of the velocity triangle analysis of the OFT. 

Simulations were performed in steady state. 
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The following boundary conditions were specified as a flow rate of 0.041 m3/s at the 

inlet, and a specified pressure at the outlet equal to zero or atmospheric pressure. The solver 

type was pressure-based (because the fluid was incompressible) [41], gravity was 9.81 m/s2, 

and the k-ɛ standard turbulence model was used to predict the turbulent flow [29]. Based on 

reports, this model is accurate enough to predict the flow field that occurs in propeller 

turbines [18]. Interpolation method was used is COUPLE. Equation (8) for k (kinetic energy) 

is as follows: 

 

𝐷𝑘

𝐷𝑡
=

𝜕

𝜕𝑥𝑖
[
𝜇𝑒𝑓𝑓

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑖
] + [𝜇𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝛿𝑖𝑗𝑘]

𝜕𝑈𝑗

𝜕𝑥𝑖
− 𝑐𝐷

𝜌𝑘3/2

𝑙𝑚
 ((8) 

 

Equation (9) for ɛ (dissipation rate) is the following: 

 

𝐷ɛ

𝐷𝑡
=

𝜕

𝜕𝑥𝑖
[
𝜇𝑒𝑓𝑓

𝜎ɛ

𝜕ɛ

𝜕𝑥𝑖
] + 𝑐ɛ,1 [𝜇𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝛿𝑖𝑗𝑘]

𝜕𝑈𝑗

𝜕𝑥𝑖
− 𝑐ɛ,1

𝜌ɛ2

𝑘
 ((9) 

To minimize errors in the numerical results, a test for mesh independence was 

conducted with three different mesh sizes: coarse (457332 elements), medium (1033956 

elements), and fine (1834786 elements). Due to the complex shape of the runners, with 

curved geometry and acute angles, a tetrahedral mesh was used (Figure 4).  

 

    
 

(a) Geometry setup 

 

 

(b) Boundary condition setup 
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(c) Meshing process 

 

Figure 4. CFD simulation setup  

 

Mesh independency was determined by comparing the torque (𝜏) of Runner B to the 

torque obtained from simulations. In addition, a Grid Convergence Index (GCI) analysis was 

performed to determine the percentage of error between the pairs of mesh sizes (i.e., fine to 

medium, and medium to coarse) [42]; the GCI for fine to medium mesh is 

 

GCI12 = 𝐹𝑠  ×  |
1

𝜏𝑓𝑖𝑛𝑒

𝜏𝑚𝑒𝑑𝑖𝑢𝑚 − 𝜏𝑓𝑖𝑛𝑒

𝑟12
𝑝𝑛 − 1

|  ×  100% ((10) 

where 𝐹𝑠, a safety factor, was assigned the value of 1.25. Prior to this analysis, the analysis 

of the order of convergence observed (pn) was conducted using Equation (11). In addition, 

Richardson’s extrapolation (𝑃𝑟ℎ=0) or exact value was applied to the two best mesh sizes 

(fine to medium mesh category) to obtain an approximate value of the velocity recovery at a 

zero-grid distance using Equation (13) [42], 

 

𝑝𝑛+1 = ln [(
𝜏𝑐𝑜𝑎𝑟𝑠𝑒 − 𝜏𝑚𝑒𝑑𝑖𝑢𝑚

𝜏𝑚𝑒𝑑𝑖𝑢𝑚 − 𝜏𝑓𝑖𝑛𝑒

(𝑟12
𝑝𝑛 − 1)) + 𝑟12

𝑝𝑛] / ln(𝑟12 · 𝑟23)     ((11) 

𝑃𝑟ℎ=0 = 𝜏𝑓𝑖𝑛𝑒 −  (
𝜏𝑚𝑒𝑑𝑖𝑢𝑚 − 𝜏𝑓𝑖𝑛𝑒

𝑟12
𝑝𝑛+1 − 1

) ((12) 

𝑟12 = (
𝑀𝑚𝑒𝑑𝑖𝑢𝑚

𝑀𝑓𝑖𝑛𝑒
)

0.5

 ((13) 

 

where 𝑟12 is the grid refinement ratio and 𝑀 is the mesh number. 
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RESULTS AND DISCUSSION 

 

Analytical Results 

The airfoil geometry of the blades was used to improve the angular velocity and the torque 

of the turbine. Therefore, the determination of the airfoil type based on the ratio of the lift 

and the drag forces is highest with the airfoil attack angle (𝛼𝑎𝑒𝑟𝑜𝑓𝑜𝑖𝑙). To obtain a stable 

angular velocity, the value of the lift and drag coefficients should increase towards the blade 

tip. Table 4 summarizes the analysis using the stagger angle (𝜉) and Equation (1) for Runner 

B, while Table 5 summarizes the analysis of Runner A using the lift (𝐹𝐿𝑖
) and drag (𝐹𝐷𝑖

) 

coefficients with Equation (1).  

 

Table 4. Analysis of 𝜉, 𝐶𝐿,𝐶𝐷, 𝐹𝐿, 𝐹𝐷, and 𝜏 on blade Runner B 

 

𝑑ℎ

/𝐷 

𝜉 
𝐶𝐿 𝐶𝐷 

𝐹𝐿 𝐹𝐷 𝜏 

(°) (N) (N) (Nm) 

1 15.94 0.6 0.03 15.42 0.77 0.9 

0.9 17.49 0.6 0.03 15.3 0.76 0.87 

0.8 19.32 0.6 0.03 15.13 0.76 0.85 

0.7 21.52 0.7 0.035 17.41 0.87 0.94 

0.6 24.21 0.7 0.04 17.06 0.98 0.88 

0.5 27.56 1 0.07 23.7 1.66 1.11 

0.4 31.84 1.2 0.1 27.25 2.27 1.06 

 

Table 5. Analysis of 𝐶𝐿,𝐶𝐷, 𝐹𝐿, 𝐹𝐷, and 𝜏 on blade Runner A 

 

𝑑ℎ

/𝐷 
𝐶𝐿 𝐶𝐷 

𝐹𝐿 𝐹𝐷 𝜏 

(N) (N) (Nm) 

1 0.84 0.45 13.31 6.66 0.190 

0.7 0.77 0.37 18.78 8.91 0.408 

0.6 0.72 0.31 26.09 11.10 0.732 

0.5 0.66 0.25 33.62 12.65 1.172 

0.4 0.61 0.21 65.34 22.46 3.378 

 

For the analysis of losses in the draft tube using Equation (3), the coefficient of friction (f) 

for PVC pipes was determined from the Moody diagram as 0.0014. Then, the energy losses 

on the channel (penstock) were analyzed using Equation (4) and (5). For a steel penstock, the 

coefficient of friction is 0.6; the effective head (𝐻𝑒𝑓𝑓) is a function of the available head, 

minus losses, and because the loss value is known, the 𝐻𝑒𝑓𝑓 can be known. Table 6 

summarizes the analysis losses that occur. 
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Table 6. Analysis of 𝐻𝑓, 𝐻𝐿,𝑡𝑜𝑡𝑎𝑙, and 𝐻𝑒𝑓𝑓 

 

Description Value 

Losses in the draft tube (𝐻𝑓) (m) 0.01 

Total of losses in the penstock (𝐻𝐿 𝑡𝑜𝑡𝑎𝑙) (m) 0.0277 

Effective head (𝐻𝑒𝑓𝑓) (m) 2.66 

 

Thus, the available power is 1176.93 W. 

 

Experiment Results 

The measured discharge at the five locations had different water levels. The water level 

increased towards the turbine, which caused the cross-sectional flow area to increase, but 

caused the water velocity to the turbine to decrease due to the conservation of mass (i.e., 

𝑚1 = 𝑚2). The measurement of the cross-sectional area and the velocity of the water is 

represented in Figure 5. To find out the available discharge must use the average flow 

velocity of water while the measured is the maximum velocity. The average water flow 

velocity is 85% of the maximum [38]. Based on Figure 5, the average discharge as 0.045 ± 

0.0055 m3/s.  
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Figure 5. Graph of the cross-sectional area and the water velocity 

 

The theoretical analysis was conducted testing the runners at 1500 rpm (maximum 

speed of the generator), while results of CFD simulations refer to 800 rpm (see Table 7). This 

difference is allegedly because the theoretical does not calculate losses in more detail than 

computational. The measurements indicated that the rotational speed of Runner B was 3338 

± 16.98 rpm, and the rotational speed of Runner A was 2732.08 ± 13.78 rpm. However, 

Runner A produced a higher torque than Runner B (3.25 ± 0.018 Nm versus 2.49 ± 0.016 

Nm, respectively). Furthermore, the electrical power (𝑃𝑒𝑙𝑒𝑐) of Runner A was 550 ± 17.6 W 
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and Runner B was 499.27 ± 15.97, respectively. The Runner A produced a higher electrical 

power (𝑃𝑒𝑙𝑒𝑐) than Runner B. Thus, the power generated by Runner B was not as significant 

as the power generated by Runner A; Table 7 summarizes the calculations and mechanical 

power while Table 8 presents the measurements of electrical power. The electrical power has 

been measured to ensure that the water power conversion by Runner A is higher than the 

conversion by B.  

 

Table 7. Performance of Runners A and B based on analytical, computational and 

experimentation results 

 

Parameter 

Descriptions 

Analytical Computational Experiment 

A B A B A B 

𝜏 (N·m) 5.88 6.61 9.93 9.12 3.25 2.59 

𝑛 (rpm) 1500 1500 800 700 2732.08 3338 

𝑃𝑚𝑒𝑐ℎ (W) 923.59 1038.30 831.89 668.53 929.83 905.35 

𝜂𝑚𝑒𝑐ℎ (%) 76.64 86.15 69.03 55.5 79.18 77.09 

 

Table 8. Electrical power and efficiency measurement of Runners A and B 

 

Parameter Runner A Runner B 

𝐼 (A) 2.5 ± 0.05 2.426 ± 0.05 

𝐸 (V) 220 ± 2.47 205.8 ± 2.64 

𝑃𝑒𝑙𝑒𝑐 (W) 550 ± 17.6   499.27 ± 15.97 

ƞ𝑔𝑒𝑛 (%) 95 95 

ƞ𝑡𝑜𝑡𝑎𝑙 (%) 46.73 42.42 

 

 

Numerical Results 

Before running the required simulations, GCI analysis is needed to determine the optimum 

mesh number (independency test). The independency test for the mesh number was carried 

out using Runner B. Validation or independency test is not referenced using experimental 

results. This is because the computation has its own value or magnitude where the value must 

be tested for accuracy (error) based on the results themselves [43,44]. From the numerical 

results, the torque produced by Runner B was 2.03, 2.45, and 2.55 N·m for the coarse, 

medium, and fine meshes, respectively (Table 9). Using these results, GCI analysis was then 

carried out.  Before iterations of to find a 𝑝ℎ value using Equation (11), the value of 𝑟 first 

had to be determined using Equation (13). Further, using Equation (12), the Richardson 

extrapolation (𝑃𝑟ℎ=0) or called exact value. Using Equation (11), the GCI12 or error 

simulation using a mesh number fine category can be determined. Summary of all analysis 

of GCI in Table 9. 
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Table 9. Water flow velocity with varying grid spacing 

 

Mesh Number  
Normalized 

spacing 
𝜏 

(N·m) 
𝑟 𝑝 GCI 

457332 2 2.03 - - - 

1033956 1.33 2.45 1.50 - - 

1834786 1 2.55 1.33 3.026 3.55% 

 

These results indicate that the fine mesh was in the asymptotic range which generally 

the percentage limit for computing errors is les than 5% while the mesh size error generated 

was only 3.55%. Thus, based on the results of GCI the fine mesh number category can be said 

not to be influenced by the number of mesh so that this mesh number has been verified and 

is valid for use. In addition, the numerical results summarized in Figure 6 are verified by their 

similarity to those obtained from studies by Simpson and Williamson [29], in which the 

generated torque decreased as the rotational speed increased.  

The torque generated by Runner A is higher than that of Runner B at the same 

rotational speeds; furthermore, with a discharge of 0.041 m3/s and a head of 2.71 m, the 

simulation results show that the highest efficiency for Runner A is 69.03% at 800 rpm and 

with a torque of 9.93 Nm, whereas these values for Runner B are 55.5%, 700 rpm, and 9.12 

Nm, respectively (Figure 6).  
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Figure 6. Efficiency and torque versus rotation speed based on numerical results 

 

Discussion  

Runner B perhaps produces less power because of the gaps between its blades (Figure 7, 

where the blue area indicates losses due to the gaps between the blades); thus, Runner B 

captures less energy from the water. In addition, the higher number of blades in Runner B 

greater flow loss. 
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(a) Runner A (b) Runner B 

 

Figure 7. Losses due to gaps between blades 

 

Considering the mathematical analysis, Runner B has the same radial velocity as 

Runner A (see Tables 2 and 3). However, because of the higher losses in Runner B (due to 

the larger gaps between the blades), the radial velocity increases at the outlet. Since the 

absolute velocity at the inlet (𝐶1) does not hit the blade, the radial velocity at the outlet is 

almost equal to that at the inlet (i.e. 𝐶𝑟2
≈ 𝐶𝑟1

). Thus, the absolute velocity vector at the 

outlet changes direction, such that the absolute velocity at the outlet (𝐶2) is not equal to the 

absolute radial velocity (i.e. 𝐶2 ≠ 𝐶𝑟2
), which results in a non-zero value of 𝐶𝑥2

. On the other 

hand, the runner velocity (𝑈) increases because  

𝐶2′ = 𝐶𝑟2
′ + 𝐶𝑥2

 

𝑈2
′ = 𝑈2 + 𝐶𝑥2

 

Thus, 𝑈1 = 𝑈 ≠ 𝑈2, because 𝑈2 becomes 𝑈2
′, and the value 𝑈 is expressed as 

 

𝑈 =
𝑈2

′ + 𝑈1

2
 

The next impact is that the turbine rotation becomes unbalanced, which causes 

vibration, as 𝑈1 = 𝑈 ≠ 𝑈2. In addition, Runner B potentially experiences cavitation, because 

the critical value of cavitation is a function of the velocity vector at the outlet of the runner. 

Cavitation occurs if the water pressure after the runner is smaller than the saturated vapor 

pressure [22]. On close observation, cavitation occurs mostly at the tip of the runner blade, 

as shown in Figure 9-b, presumably because the fast-moving blades of the turbine so that the 

local dynamics head increases due to the action of the blade and causes the static pressure to 

fall (and increases the absolute velocity). Consequently, the increased absolute velocity will 

decrease the absolute pressure, where the absolute pressure at the outlet (draft tube) drops 

below the saturated water vapor pressure at that water temperature. Figure 8 shows the 

velocity triangle analysis of the radial velocity at the outlet of the Runner B. 
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Figure 8. Velocity triangle analysis at the outlet of Runner B 

 

  
 

(a) Runner A 

 

(b) Runner B 

 

Figure 9. Cavitation symptoms on runner blade tips 

 

  
(a) Runner A (b) Runner B 

 

Figure 10. Streamline visualization at 1200 rpm rotational speed 
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The effect of increasing the absolute velocity vector at the outlet (after the water 

passes through the runner) is verified using the results of the numerical simulations. Figure 

10 shows the streamlines and vortex flows formed after the water passed through the blades 

of Runners A and B. The velocity triangle theory, as illustrated in Figure 1 for Runner A and 

Figure 8 for Runner B, is equivalent to the numerical results shown in Figure 10-a and Figure 

10-b, respectively. For Runner A, the swirling flow of water that occurs after passing the 

turbine is needed to minimize the radial velocity at the outlet so that the lost kinetic energy 

into potential energy becomes torque. However, the vortex flow that occurs on the blade 

should be avoided to prevent cavitation. In addition, based on Figure 6, the numerical results 

indicate that Runner B achieves a lower efficiency than that of Runner A because the 

resulting torque is lower, which also means that the potential energy of the water is not fully 

captured by Runner B. 

The visualization of the pressure contours that occur in the draft tube also shows that 

the pressure gradient across Runner A is steeper than the pressure gradient across Runner B 

(Figure 11). Presumably, this is because the swirling flow after passing through Runner A 

lowers the relative velocity in the draft tube in accordance with the law of the conservation 

of energy (Bernoulli’s principle). Based on Bernoulli’s principle, an increase in the speed of 

a fluid occurs simultaneously with a decrease in pressure or a decrease in the fluid potential 

energy, hence conserving energy. Thus, the draft tube on Runner A functions properly to 

minimize the loss of kinetic energy of the water by converting it into potential energy or 

pressure [45].    

 

  
 

(a) Runner A 

 

(b) Runner B 

 

Figure 11. Visualization of pressure contours in draft tube at 1200 rpm 

 

A study by Othman et al. obtained similar results using numerical methods [37]. 

Othman et al. described how the number of blades affects the power produced by the turbine 

[37]. The power produced by an OFT is inversely proportional to the number of blades [37]. 

Unlike the results presented in this paper, the results of Othman et al. [37] were not verified 

by experimental methods. Ramos et al. [46] also explained that the greater the number of 
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blades, the less power will be generated. Runner A, with more blades, produces high angular 

velocity but little torque [46]. Results obtained from previous studies using numerical 

methods have indicated that runners with five blades achieved less efficiency than those with 

six blades [23]. These studies claim that the higher losses were due to the bigger gaps of the 

five-blade runner compared to those of the six-blade runner. 

 

 

CONCLUSION 

 

Based on the results, there are two conditions are required to maximize turbine performance. 

First, swirling flow after the runner. Swirling flow is required after the water passes the 

runner because swirling flow minimizes the radial velocity at the outlet, so that the draft tube 

can function properly (the pressure on the draft tube decreases). The theoretical assumption 

of free vortex flow when water is in the runner blade is used to simplify the design. The thing 

should be avoided is the occurrence of swirling of vortex flow in the runner blade causes the 

blade wall to peel off, thereby shortening the service life of the turbine. Vortex flow can be 

avoided by designing the turbine blade with a relative velocity angle (𝛽) that is large enough 

to delay flow separation at the blade. Second, minimizing gaps between the runner blades. 

The errors between the mathematical calculations and the actual conditions are 

predominantly due to the gap between the blades changing the velocity vector at the outlet 

side unbalances the angular velocity of the runner and decreases the absorbed torque because 

the draft tube does not function optimally (the velocity increases, then the pressure 

decreases). Another consequence is the cavitation in the runner when the pressure at the outlet 

approaches the value of the saturated water vapor pressure at that water temperature if there 

is a gap between blades. For maximizing the turbine performance is to carefully choose the 

dimensions of the blade to avoid large gaps between the blades (when the gap size approaches 

zero, analysis results approach the actual conditions). 

A future study will examine whether a swirling vortex contributes to the energy 

transfer in an OFT. This is because one way to minimize the tangential velocity of water at 

the outlet (𝐶𝑥2
) is to reduce the relative velocity angle (𝛽2), which promotes the swirling flow 

of water after it passes through the runner.  
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